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ABSTRACT. LetA; be the first nontrivial eigenvalue of the Lapla-
cian on a compact surface without boundary. We show that
A1 = 2 on compact embedded minimal surfaces in $* which are
invariant under a finite group of reflections and whose funda-
mental piece is simply connected and has less than six edges. In
particular A; = 2 on compact embedded minimal surfaces in $3
that are constructed by Lawson and by Karcher-Pinkall-Sterling.

Given a minimal submanifold X of R™, it is well known that the Euclidean
coordinates X1, ..., Xm of R™ are harmonic on ¥. On the other hand, if " is an
n-dimensional minimal submanifold of $™~! c R™, then x1,..., Xm are eigen-
functions of the Laplacian on X with eigenvalue n. Therefore the first nontrivial
eigenvalue A; of the Laplacian on X should be less than or equal to n. Indeed
Ay is strictly less than 2 for a minimal torus with self intersection in S? and for a
Veronese surface in S$°. However, in case ¥ is a totally geodesic minimal submani-
fold S™ in S™~1, A equals n. Thus it is quite tempting to conjecture, as Yau did
[9], the following:

The first eigenvalue N1 on an n-dimensional compact embedded minimal hyper-
surface in S"* is equal to n.

This conjecture is still open. The only partial result obtained so far is by Choi
and Wang [2], which states A} = n/2. In this paper we show that Yau’s conjecture
is true for all compact embedded minimal surfaces in S® that are known to exist,
as constructed by Lawson [7] and by Karcher-Pinkall-Sterling [6].

More generally, let = C S3 be a compact embedded minimal surface invariant
under a group of reflections which tessellate $ into tetrahedra. We prove that if
the fundamental patch of X is simply connected and has less than six edges, then
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A1 = 2. Also, let g be the genus of 3 and L the number of tetrahedra in the
tessellation. If g < 1 + L/4, then A; = 2.

In a sequel to this paper we also show that A; = 2 on Kapouleas-Yang’s mini-
mal surfaces which were constructed recently [5].

1. TWO-PIECE PROPERTY

The first eigenvalue A; of A on a compact Riemannian manifold M without
boundary is defined by

J IVe|?
Ap = inf Mo
PECH (M), [y =0 J P2
M

If g is an eigenfunction with eigenvalue A, then
AP + Ay =0.

If Ay + A, = 0, by Courant’s nodal theorem [1] ¢ has exactly two nodal do-
mains (a nodal domain is a maximal connected domain of M on which ¢ has a
constant sign). Note, however, that an eigenfunction with two nodal domains is
not necessarily the first eigenfunction.

Let = be an n-dimensional minimal submanifold of $™~! ¢ R™ and denote
by X = (x1,...,Xm) the immersion of ¥ in R™. The minimality of X in $""!
implies that the cone O xX is minimal in R™. Therefore AX must be perpendicu-
lar to ™! and hence AX is parallel to X. Let ey, ..., e, be an orthonormal frame
in a neighborhood of = such that V,,e; = 0 at a point p in the neighborhood.

Then at p

(AX,X) = > (Ve, Ve, X, X)

D (ei(Ve, X, X) — (Ve X, Ve, X))

- > ei,ei) = —n.

Hence
AX +nX =0.

Therefore the Euclidean coordinates x1,..., X, of R™ are eigenfunctions of A
with eigenvalue n on 3",

If n is indeed the first eigenvalue of the Laplacian on X", then one can con-
clude, from Courant’s nodal theorem applied to a linear function a1x; + - - - +
AmXm on X, that any great hypersphere in $™~! will cut = into two connected



First Eigenvalue of Symmetric Minimal Surfaces in S3 271

pieces. This two-piece property has been proved to be true by Ros for compact
embedded minimal surfaces in S [8]. Ros’s two-piece property hints that Yau’s
conjecture could be true in $?. In fact Ros’s theorem can be easily extended to
higher dimension as follows.

Given a unit vector v € S"*1, define S"(v) = {p € S"*! | (v,p) = 0},
H,(v)={pesS*™! | (v,p)>0}and H_(v) = {p € S"! | (v, p) < 0}.

Lemma 1.1. If the boundary of a compact immersed orientable and stable mini-
mal hypersurface =" in S+ fies in a great sphere 11, then X is totally geodesic.

Proof- By stability we have for any smooth function f on X vanishing on 02

(1.1) L(fAf+nf2+ IARf2) <0,

where A is the second fundamental form of = in $"*!. Choose v in such a way
that $™(v) becomes the great sphere IT of the hypothesis. Let f(p) = (v, p) for
p € 3. Then

f=00n0Y and Af+mnf=0o0n5%,

and it follows from (1.1) that

J |AI2f% < 0.
b

If A # 0 in a neighborhood, then f = 0 in the same neighborhood. Either way X
is totally geodesic. m

Theorem 1.2. Any great sphere S™(v) in S™*! divides a compact embedded
minimal hypersurface X of S into two connected pieces.

Proof. Since the proof is trivial for totally geodesic %, let us assume that X is
not a great sphere. Suppose ¥ N H, (V) is not connected. Let X; be a connected
component of £ N H,(v) and let 2, = (X n Hy(v)) \ ;. Obviously X, #
@. Denote the components of S""! \ X by U; and U,. Since U; is a mean
convex domain and 0%, is nullhomologous in Uy, one can find an area minimizing
hypersurface £; in U; which is homologous to X;. Applying the same argument
to U, one obtains an area minimizing hypersurface 5, in U, which is homologous
to 3;. We claim that ;U 5, is a great sphere. Since each of 5, and 5, is stable
and since 8%, = 05, ¢ S™(v), Lemma 1.1 tells us that both £; and £, are totally
geodesic. If 0%, is not an (1 — 1)-dimensional great sphere in $™(v), then 5,
$, € §™(v) and moreover, 51 U 3, = S™(v). Suppose that 0%; is a great sphere.
Then 3 and £, are great hemispheres and in this case S,us, may not be smooth
along 0%,. Anyway we can rotate 5, around 9% inside U;. Since 05, c oUj,
we can obtain a rotated copy of £ which touches 3 from inside U;. Then by
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the boundary maximum principle X is totally geodesic, which is a contradiction.
Hence 95 is not a great sphere and S,us,isa great sphere.

Since 0%, c S"(v) N (51 U%,), and 85 is not totally geodesic, $,US, coin-
cides with S™(v). Now since £, ¢ U; and S, c U,, it follows that

SN S"wv) = 8%5;. But this contradicts our original assumption because
SNS"(w) = 0%, U0, and 03, # . Therefore X N H, (v) is connected.
Similarly ¥ n H_(v) is connected as well. O

2. MINIMAL SURFACES IN §3

In 1970 Lawson [7] constructed a variety of compact minimal surfaces in $°. His
construction starts from a geodesic polygon I' consisting of four geodesic edges.
At each vertex of T two adjacent geodesic edges are assumed to make an angle of
1/ (k + 1) and 11/ (m + 1) alternately, where k, m are positive integers. Morrey’s
solution to the Plateau problem for I' is a disk-type minimal surface spanning T
Extending this surface by 180° rotations about its geodesic boundary arcs, one can
eventually obtain Lawson’s compact minimal surfaces in $°.
To be more precise, let C; and C; be the great circles in S3 ¢ R* defined by

Cp = {(x1,%2,0,0) | x{ +x3 =1} and G = {(0,0,x3,x4) | x3 +x7 = 1}.

Let k and m be positive integers and choose points P;, P, € C and Q;, Q2 €
such that dist(P;,P;) = m/(k + 1) and dist(Q1,Q,) = 1/(m + 1). For the
geodesic polygon I := P1Q1P,Q3, the above construction gives rise to a minimal
surface denoted & k. Lawson showed that &,k is a compact orientable surface
of genus mk embedded in $°.

Adopting a different method which is dual to Lawson’s construction, Karcher,
Pinkall and Sterling constructed new compact embedded minimal surfaces in S3.
They first find a disk-type minimal surface with boundary, called a patch, inside a
tetrahedron T which orthogonally intersects the four totally geodesic faces of the
tetrahedron. T is assumed to be a fundamental domain for a tessellation of $3.
Repeatedly reflecting patches across the faces of the tetrahedra of the tessellation,
they obtain a complete surface.

As a matter of fact, Lawson’s surfaces &k can be constructed also in this way.
Let S be Morrey’s solution for the Jordan curve I' = P1Q;P>Q; as defined above.
And let IT;, TI, be the great spheres in $® such that C; C I1; and T is symmetric
with respect to IT;, i = 1, 2. We claim that S is also symmetric with respect to
I1;. Suppose S is not symmetric. II; cuts S into two parts Sq and Sp. Assume
that area(S,) < area(Sp) and let S, be the mirror image of S, across IT;. If S is
perpendicular to TI; along a neighborhood U in S N I1;, then S, locally lies on
one side of Sp near an open subset of U, which contradicts the boundary point
lemma [4]. Therefore S; U S; is not smooth along S N IT;. Hence by a small
perturbation of Sq U Sa along § N II; one can construct a surface SwithdS =T

and area(S) < area(S). This contradiction proves the claim.
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I1; and I, cut S into four congruent pieces whose boundary contains the
geodesic segment P1Q1, Q1P,, P,Q3, and Q. P, respectively. Let S1/4 denote the
piece which contains P;Q; as a boundary curve. Let $ /4 be the rotation of Sy /4
about P1Q; by 180° and define S1,, = Sy/4 U §1/4. Then there exist two great
spheres I1; and I, such that C; c 1;, (0, 1) = w/(m + 1), 2(I,,TL) =
1/ (k + 1) and Sy, meets Iy, Iy, 11, 1T, orthogonally. Let T be the tetrahedron
with dihedral angles /2, /2, 7/2, /2, w/(k + 1), w/(m + 1) which is
surrounded by ITy, Iy, I1,, I1; such that S1/, € T and 38y, € 0T. T obviously
determines a tessellation of S? into cells which are congruent to T. Then the
minimal surface obtained by repeated reflections across the faces of the tetrahedra
in the tessellation is nothing but & k.

3. A THEOREM ON THE EXISTING SURFACES

Every great sphere IT in S"™*! gives rise to an isometry on S™*! which is the re-
flection across II. In this section we will see how the symmetry of a minimal
surface X influences the first eigenvalue and eigenfunction. From this we obtain

the following.

Lemma 3.1. Let G be a group of reflections in S\, Assume that a compact
minimal hypersurface . C S™1 is invariant under G. If the first eigenvalue of the
Laplacian on X is less than n, then the first eigenfunction must be invariant under G.

Proof. Let 0 € G be the reflection across a great sphere IT in $"*! and let
@ be an eigenfunction on X corresponding to the first eigenvalue A;. Note that
@ o 0 is also an eigenfunction with eigenvalue A;. Consider

Y(x):=@x)—-@oo(x).

If @ is the null function, then @ is invariant under o. If ¢ # 0, then y itself is
an eigenfunction with eigenvalue A;. Furthermore, its nodal set, the zero set of y,
contains 3 N IT because for p € 3 NI,

Yp)=@p)-poo(p)=pp) —@p) =0.

But Courant’s nodal theorem implies that ¢ vanishes only on £ N II. Let Dy, D,
be the components of X \ II such that ¢ is positive on D; and negative on D;.
One can find a linear function on R"**2 € = @1x1 + - - - + dn42Xn+2 that vanishes
on IT and is positive on D;. & is an eigenfunction on X with eigenvalue n. Since
A1 < n, § is orthogonal to ¢ on . Since ¢ and & have the same sign on Dy U D5,

we have J W& > 0, which contradicts the orthogonality of ¢ and &. Therefore @
must vanish on X. This completes the proof as o is an arbitrary element of G. T

Theorem 3.2. Let 3 be a compact embedded minimal surface in S3 which is
invariant under a group G of reflections. Suppose that the fundamental domain of G
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is a tetrabedron T. If the fundamental parch P := 3 N T is simply connected and has
four edges, then the first eigenvalue of the Laplacian on 3 equals 2.

Proof. Suppose A1 < 2. Let @ be an eigenfunction with eigenvalue A; on =
and N C X the nodal set of . Lemma 3.1 tells us that @ is invariant under G.
First we claim that N contains an interior point of P and P \ N has at least two
connected components. Suppose P N N C 0P. Then Courant’s nodal theorem
implies that N = X N S? for some great sphere S2. By the orthogonality argument
as used in the proof of Lemma 3.1, we get a contradiction. Hence P \ N is not
connected. Now one can find a face F of T and a component D of P \ N such
that 0D is disjoint from F. Let IT be the great sphere containing F and let D be
the mirror image of D across II. Denote by D1, D,, D3 the components of X\ N
containing D, D and intersecting I1, respectively. We claim that Dy, D;, D3 are
all distinct. D is the mirror image of D; and D3 is nonempty and symmetric
with respect to I1. Suppose on the contrary that Dy and D; are identical. Let T
be the mirror image of T across IT and set T, = T U T. Choose p € D and let
p € D be its mirror image. By the assumption, there is a curve y connecting
p to p which is disjoint from N. Let H be the normal closure of the subgroup
of G which is generated by the reflections across the faces of T different from F.
H is then a subgroup of G of index 2 whose fundamental domain is T>. Define
y ={0o(y)nT, | 0 € H}. Then y is a curve in T5 connecting p to p and disjoint
from N N T. But this is impossible. Hence D; and D, are distinct components.
The same argument can be used to conclude that D; and D3 are also distinct.
Therefore @ has at least three nodal domains, which contradicts Courant’s nodal
theorem. Thus A; = 2. O

Corollary 3.3. The first eigenvalue of the Laplacian on Lawsons embedded min-
imal surfaces Emx and Karcher-Pinkall-Sterlings minimal surfaces in S3 is equal
to 2.

Proof. As observed in the preceding section, both types of surfaces  originate
from a simply connected fundamental patch S with four edges inside a tetrahedron
T of a tessellation of S°. O

4. BOUNDARY OF THE FUNDAMENTAL DOMAIN OF X

In this section we extend the results of the preceding section. Let T be an (n + 1)-
simplex that is a fundamental domain for a finite group of reflections of S"*1.

Given a compact embedded minimal hypersurface =" in $"**!, the fundamental
patch P of X is defined by P =X N T.

Lemma 4.1. Let 3" be a compact embedded minimal hypersurface of S™*!
which is invariant under the group G of reflections in S"1. Suppose that the fun-
damental patch P is homeomorphic to a ball. If \1 < n, then there are at least two
disjoint nodal domains in P and the boundary of each domain must intersect every

n-face of T.
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Proof. Suppose that A is less than n. Then by Lemma 3.1 the first eigenfunc-
tion @ is G-invariant and so is its nodal set N. Consider the nodal set restricted
to P. This set must be nonempty because otherwise @ would have only one nodal
domain on P, which contradicts Courant’s nodal theorem. Moreover, by the or-
thogonality argument as in the proof of Lemma 3.1, N contains an interior point
of P and hence there are at least two nonempty nodal domains in P. Suppose that
the boundary 0D of one of the nodal domains of P is disjoint from an n-face F
of T. Let I be the great sphere containing F and D the mirror image of D across
I1. Denote by Dy, D,, D3 the components of =\ N containing D, D, and inter-
secting II, respectively. Then by reasoning as in the proof of Theorem 3.2, one
can show that Dy, D,, D3 are distinct components, contradicting Courant’s nodal
theorem. o

Theorem 3.2 generalizes as follows.

Theorem 4.2. Let S be a compact embedded minimal surface in S® invariant
under a group of reflections that tessellate S® into tetrabedra. If the fundamental patch
P of 3 is simply connected and has less than six edges, then Ay is equal to 2.

Proof. Suppose A1 < 2. We know from the proof of Lemma 4.1 that N n P,
the nodal line in P, is nonempty. First let us suppose that N N P is connected.
Since P is simply connected, N cuts P into two sets, D and D;. Suppose 0P
consists of edges e, ..., em. Let p, g € 0P be the end points of N N P. Then

(i) p, q are interior points of some edges, or
(ii) p is an interior point of an edge and ¢ is a vertex of P, or
(iii) both p and g are vertices.

In case of (i), assume p € e; and g € ex. Then ey,...,ex and N n P bound D;.
Since by Lemma 4.1 0D intersects all four faces of T, we have k > 4. Similarly
€ky Chkaly -+, em,e1 and N N P bound D, and hence m — k + 2 = 4. Therefore
m = 6. In case of (ii), assume p € e; and q € &, N &x.1. Theney,...,ex, NNP
bound D; and ey 41,...,em,e1, NNP bound D,. Hence k = 4 and m—k+1 = 4,
and therefore m > 7. In case of (iii), assume p = €; N &, and g = €x N €. 1.
Then k = 4 and m — k > 4 and hence m > 8. In any case, we have m > 6. A
similar proof holds even when N N P is not connected. m

5. FINITE GROUP OF REFLECTIONS

In this section we describe all the groups of reflections of $* whose fundamental
domain is a tetrahedron. The reason for this presentation is two-fold. On the
first hand we will show that there exists a group of reflections for which the [6]’s
construction would give a new embedded minimal surface but which was not
presented in [6]. On the second hand, the description of the associated tetrahedra
is needed in the last section in order to compute the genus of the G-invariant
minimal surfaces.
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The finite groups of reflections have been classified by Coxeter in [3]. We
will consider groups generated by four reflections, i.e., the groups that induce a
tessellation of $3 by tetrahedra. Indeed reflections are represented by vectorial hy-
perplanes of R%. Just as in dimension three, where planes of R? define a division
of the sphere into congruent triangles, hyperplanes define a division of the hyper-
sphere $? by congruent tetrahedra. Reciprocally, a tetrahedron T that tessellates
S? defines a group of reflections generated by the four reflections of the hyper-
planes corresponding to the four faces of T. T is then the fundamental domain
of G, hence G is characterized by the six dihedral angles of T: Bij, i,j = 1,...,4,
where B;j denotes the dihedral angle between faces F; and Fj. The Bi; must be
divisors of 17, hence there exist integers by such that B;; = 1/by.

We will denote the reflection group G by (b1, by, b3, b4, bs, bs), the angles
being classified according to the lexicographical order.

Furthermore, a sphere around any vertex of T is tessellated by congruent tri-
angles which lie in each tetrahedron near the vertex. Necessary conditions on the
existence of triangles tessellations on the sphere will then yield necessary condi-
tions on the existence of tetrahedra tessellations of S°.

5.1. Reducible group of reflections 1f one face of T, say F1, is perpendicular
to the other three, then the angles B1,j = 7w/2, j = 2,3, 4, and the vertex opposite
to Fy is at a constant distance 71/2 to any point of F;. The tessellation of the
hypersphere reduces in that case to the tessellation of the sphere IT containing F;
by triangles congruent to F; and IT is globally invariant under G.

F in turn is determined by three angles that correspond to the three remaining
dihedral angles of T. They must be divisors of 1, hence equal respectively to
/K1, T0/k2, T0/k3 where k; are integers. The fundamental domain of G is then
a tetrahedron whose faces are pieces of spherical planes and whose six dihedral
angles are

T T T T T
BI,Z = 5 Bl,3 = ?J Bl,4 = ?J BZ,3 = k_li B3,4 = 7, B4,2 = 7.

2 X
Thus
G =1(2,2,2,k1,ky, k3).
In dimension two, conditions on the angles of congruent triangles to tessellate $?

are easily obtained by the Gauss-Bonnet theorem. Applied to the triangle F; C
I, = S

3
J K+Z5i=21T
F

i=1
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where K is the Gaussian curvature (equal to 1) and 6; is the exterior angle of the
triangle F1. Hence

3
1
(5.1) area(Fy) = 10 — —1).
: <lzl ki )

In particular there is only a finite number of solutions that satisfy the Diophantine
inequality

3
Zki—1>o
=1 1

with k; > 1, i = 1,2,3. This yields the following four types of groups (with
possible permutations on the integers k;)

G =(2,2,2,2,2,n), n=2; G, =4(2,2,2,2,3,3);
Gs =(2,2,2,2,3,4); G4 =1(2,2,2,2,3,5).

All these groups are symmetry groups of regular polyhedra (except for the first one
which is reducible to the symmetry group of the 2n-gon).

S3 is then tessellated by two mirror copies through IT of the corresponding
regular polyhedra. Each polyhedron in turn is being divided by congruent copies
of the tetrahedron T as follows.

Take the center Py of the polyhedron together with the center P; of a face of
the polyhedron. Then draw a triangle on the face, whose vertices are P;, one vertex
P; of the face, and a mid-point P3 of one of the two edges of the edge adjacent to
P,. The fundamental tetrahedron T of G is PyP;P,P3. Notice that any of these
tetrahedra is quadri-rectangular.

It is convenient to use Schlifli’s notation to represent polyhedra, and Coxeter’s
graphical representation of reflection groups [3].

Schlifli’s notation goes as follows. The regular polygon of k edges is denoted
by [k]; then a regular polyhedron whose bounding figure (i.e., bounding face) is
a polygon [k;] and whose vertex figure (i.e., the set of vertices joined to a given
vertex by an edge) is [k, ] is denoted by [k1, k2] (for example, the bounding figure
and vertex figure of a cube are respectively a square and a triangle; hence Schlifli’s
symbol of the cube is [4,3]). By induction, an n-dimensional polytope whose
bounding figure is [ki, k2, ..., kn—1] and whose vertex figure is [ka, ..., kn] is
denoted by [ki, ..., kn].

Coxeter’s notation goes as follows. Each dot represents a reflection plane. Two
dots are joined by a link marked k if the dihedral angle of the two corresponding
planes is 71 /k. By convention, the unmarked link corresponds to k = 3, and two
dots are not connected by a direct link if the corresponding planes are perpendic-
ular.
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(1) ™y oX, G is the direct product of 2 dihedral groups, each being the
symmetry group of a [2m] and a [2k]. This is the group of invariance of
Lawson’s &,,—1 k-1 surfaces.

(2) e o o e Gz =Ssisthe symmetry group of the regular tetrahedra [3, 3].

3)e o ots G3=2S3x73 is the symmetry group of the cube [4, 3] (and its
dual, the octahedron [3, 4], or cocube).

4) o 5 G4 is the symmetry group of the icosahedron [3, 5] (or its dual,
the dodecahedron [5, 3]).

The number N of tetrahedron cells that tessellate S? is given by equation (5.1). As
N is twice the number of triangles that tessellate S2,

No—

3
St
i=1 1
This gives the order of three of the four groups, namely

N, = 48, N3 = 96, N4 = 240.

As for Gy, notice that the first dihedral subgroup subdivides S into N = 8m
tetrahedra. Each tetrahedron is subdivided into k/2 tetrahedra by the action of
the second dihedral subgroup. Hence

N1 = 4mk.

This classifies the reducible groups of tessellations by tetrahedra.

5.2. Irreducible group of reflections We follow the classification given in
[3]; the situation for dimension four is particularly rich since we obtain the largest
possible number of groups, namely five. In each case the fundamental domain T
is tri-rectangular and all groups except one are symmetry groups of regular hyper-
polyhedra of R4. The cells of each hyper-polyhedron tessellate in turn the circum-
scribed hypersphere S by congruent regular polyhedra. Each polyhedron is in
turn decomposed by congruent tetrahedra as it is described in the reducible case.

(1) Gs = (3,2,2,3,2,3). It is the symmetry group of the 4-
dimensional tetrahedron T4 = [3, 3, 3]. The projection of this regular poly-
hedron on the circumscribed hypersphere tessellates S° by five Ty, four lying
at each vertex. As before, each tetrahedron is divided into 24 T’s totaling
Ns = 120 tetrahedra to cover S3.

2) 4 Ge = (3,2,2,3,2,4) is the symmetry group of the hyper-cube
Cs4 = [4,3,3] or its dual, the cocube, or hyper-octahedra C} = [3, 3,4]; $°
is tessellated by the cells of Cy4, that comprise eight cubes, four cubes meeting
at each of the 16 vertices of C4. Dually, S? is tessellated by 16 tetrahedra; in
both cases Ng = 384.
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(3) 4 G7 = (3,2,2,4,2,3) is the symmetry group of the 24-cell
[3,4,3]; S° is tessellated by 24 octahedra, six occurring at each of a total
of 24 vertices of the 24-cell. Hence N7 = 1152.

(4) oo o2e Gg = (3,2,2,3,2,5) is the symmetry group of the 120-cell
[3,3,5] or its dual, the 600-cell. S3 is tessellated by 120 dodecahedra or
600 octahedra. Ng = 14400.

(5) Finally Gy = (2,2,3,2,3,3); there is a vertex whose 3 adja-
cent edges have a 71/2 dihedral angle. It is remarkable that Gy does not
correspond to a tessellation of S? by regular polyhedra. It does correspond,
however, to a symmetry group of a semi-regular polyhedron. This fact is
true for any reflection group: given a tessellation of $® by tetrahedra, the
centers of the in-sphere of each tetrahedron define the vertices of a polyhe-
dra; the adjacent edges join any vertex to its reflected points by the faces of
the T’s (four edges to each vertex of equal length) and the configuration at
each vertex is identical. Gy is the symmetry group of a CJ -like polyhedron
with any other two non congruent tetrahedra. Ng = 192.

[6]’s construction should apply for the tetrahedron (2,2,3,2,3,3) to give a new
embedded minimal surface of genus 9 in S°.

6. SYMMETRIC MINIMAL SURFACES OF LOwW GENUS

In Section 4 we obtained a condition on the number of edges which ensures that
A1 equals two. In this section, by contrast, this condition will be replaced by an
upper bound on the genus of X. For this purpose we introduce a combinatorial
argument which gives a relationship between the number of edges and the genus.

Let X be an embedded minimal surface invariant under a reflection group G.
Denote by e the number of edges of P (that correspond to the intersection of P
with the faces of T), by v the number of vertices of P (intersection of P with the
edges of T), and by f the number of components of P. More precisely, denote by
v; the number of vertices belonging to the edges of T whose adjacent faces make
an angle of 71 /k; for an integer k; > 2.

Let L be the number of cells that tessellate $® by G. If we denote respectively
by V, E, F the total number of vertices, edges and faces of =, and by V; the total
number of vertices on X corresponding to v; in P, then

Lf=F, Le:2E, L‘Ui=2kiVi, i=1,...,6.

Let g be the genus of . The Euler characteristic of the surface X is

L

2k;”

6
x(Z)=2—2g:F—E+V=Lf—]§e+ > i
i=1
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As X is connected, f = 1; as 0P is polygonal, e = v and hence

6
L(v Vi

Example 6.1. In Karcher-Pinkall-Sterling’s examples, the reflection group is
one of the nine groups, and P is a simply connected domain with four edges, and
three of the four vertices belong to a rectangular edge of T (i.e., their vertex angle
is 11/2). If the fourth angle equals 77/k, = has genus

L 2
a=1+50-7):

The summation term in (6.1) can be estimated in terms of v. Therefore (6.1)
will turn an estimate of g into an estimate of v as follows.
Since k; = 2, we have

Nc

61)
2o

Soifg <1+ L/4, then v < 6 and from Theorem 4.2, A; equals two. Thus we
have proved the following theorem.

Theorem 6.2. LetS C S® be a compact embedded minimal surface of genus g
invariant under a reflection group G of order L that tessellates S° into tetrabedra. If
g <1+L/4, thenA; =2

Example 6.3. Let G be the reflection group generated by four mutually or-
thogonal spheres. If P has at least four vertices, then

g—1+8(Z—1>=2v—7

and A; equals two for any X of genus less than five. The Clifford torus is an
example of G-invariant minimal surfaces.
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