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ABSTRACT. Let λ1 be the first nontrivial eigenvalue of the Lapla-
cian on a compact surface without boundary. We show that
λ1 = 2 on compact embedded minimal surfaces in S3 which are
invariant under a finite group of reflections and whose funda-
mental piece is simply connected and has less than six edges. In
particular λ1 = 2 on compact embedded minimal surfaces in S3

that are constructed by Lawson and by Karcher-Pinkall-Sterling.

Given a minimal submanifold Σ of Rm, it is well known that the Euclidean
coordinates x1, . . . , xm of Rm are harmonic on Σ. On the other hand, if Σn is an
n-dimensional minimal submanifold of Sm−1 ⊂ Rm, then x1, . . . , xm are eigen-
functions of the Laplacian on Σ with eigenvalue n. Therefore the first nontrivial
eigenvalue λ1 of the Laplacian on Σ should be less than or equal to n. Indeed
λ1 is strictly less than 2 for a minimal torus with self intersection in S3 and for a
Veronese surface in S5. However, in case Σ is a totally geodesic minimal submani-
fold Sn in Sm−1, λ1 equals n. Thus it is quite tempting to conjecture, as Yau did
[9], the following:

The first eigenvalue λ1 on an n-dimensional compact embedded minimal hyper-
surface in Sn+1 is equal to n.

This conjecture is still open. The only partial result obtained so far is by Choi
and Wang [2], which states λ1 ≥ n/2. In this paper we show that Yau’s conjecture
is true for all compact embedded minimal surfaces in S3 that are known to exist,
as constructed by Lawson [7] and by Karcher-Pinkall-Sterling [6].

More generally, let Σ ⊂ S3 be a compact embedded minimal surface invariant
under a group of reflections which tessellate S3 into tetrahedra. We prove that if
the fundamental patch of Σ is simply connected and has less than six edges, then
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λ1 = 2. Also, let g be the genus of Σ and L the number of tetrahedra in the
tessellation. If g < 1+ L/4, then λ1 = 2.

In a sequel to this paper we also show that λ1 = 2 on Kapouleas-Yang’s mini-
mal surfaces which were constructed recently [5].

1. TWO-PIECE PROPERTY

The first eigenvalue λ1 of ∆ on a compact Riemannian manifold M without
boundary is defined by

λ1 := inf
ϕ∈C1(M),

∫
M ϕ=0

∫
M
|∇ϕ|2∫
M
ϕ2

.

If ψ is an eigenfunction with eigenvalue λ, then

∆ψ+ λψ = 0.

If ∆ψ + λ1ψ = 0, by Courant’s nodal theorem [1] ψ has exactly two nodal do-
mains (a nodal domain is a maximal connected domain of M on which ψ has a
constant sign). Note, however, that an eigenfunction with two nodal domains is
not necessarily the first eigenfunction.

Let Σ be an n-dimensional minimal submanifold of Sm−1 ⊂ Rm and denote
by X = (x1, . . . , xm) the immersion of Σ in Rm. The minimality of Σ in Sm−1

implies that the cone O××Σ is minimal in Rm. Therefore ∆X must be perpendicu-
lar to Sm−1 and hence ∆X is parallel to X. Let e1, . . . , en be an orthonormal frame
in a neighborhood of Σ such that ∇eiei = 0 at a point p in the neighborhood.

Then at p

〈∆X,X〉 =∑
i
〈∇ei∇eiX,X〉

=
∑
i
(ei〈∇eiX,X〉 − 〈∇eiX,∇eiX〉)

= −
∑
i
〈ei, ei〉 = −n.

Hence ∆X +nX = 0.

Therefore the Euclidean coordinates x1, . . . , xm of Rm are eigenfunctions of ∆
with eigenvalue n on Σn.

If n is indeed the first eigenvalue of the Laplacian on Σn, then one can con-
clude, from Courant’s nodal theorem applied to a linear function a1x1 + · · · +
amxm on Σ, that any great hypersphere in Sm−1 will cut Σ into two connected
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pieces. This two-piece property has been proved to be true by Ros for compact
embedded minimal surfaces in S3 [8]. Ros’s two-piece property hints that Yau’s
conjecture could be true in S3. In fact Ros’s theorem can be easily extended to
higher dimension as follows.

Given a unit vector v ∈ Sn+1, define Sn(v) = {p ∈ Sn+1 | 〈v,p〉 = 0},
H+(v) = {p ∈ Sn+1 | 〈v,p〉 > 0} and H−(v) = {p ∈ Sn+1 | 〈v,p〉 < 0}.

Lemma 1.1. If the boundary of a compact immersed orientable and stable mini-
mal hypersurface Σn in Sn+1 lies in a great sphere Π, then Σ is totally geodesic.

Proof. By stability we have for any smooth function f on Σ vanishing on ∂Σ
(1.1)

∫
Σ(f∆f +nf 2 + |A|2f 2) ≤ 0,

where A is the second fundamental form of Σ in Sn+1. Choose v in such a way
that Sn(v) becomes the great sphere Π of the hypothesis. Let f(p) = 〈v,p〉 for
p ∈ Σ. Then

f = 0 on ∂Σ and ∆f +nf = 0 on Σ,
and it follows from (1.1) that ∫

Σ |A|2f 2 ≤ 0.

If A ≠ 0 in a neighborhood, then f = 0 in the same neighborhood. Either way Σ
is totally geodesic. ❐

Theorem 1.2. Any great sphere Sn(v) in Sn+1 divides a compact embedded
minimal hypersurface Σ of Sn+1 into two connected pieces.

Proof. Since the proof is trivial for totally geodesic Σ, let us assume that Σ is
not a great sphere. Suppose Σ ∩H+(v) is not connected. Let Σ1 be a connected
component of Σ ∩ H+(v) and let Σ2 = (Σ ∩ H+(v)) \ Σ1. Obviously Σ2 ≠
∅. Denote the components of Sn+1 \ Σ by U1 and U2. Since U1 is a mean
convex domain and ∂Σ1 is nullhomologous in Ū1, one can find an area minimizing
hypersurface Σ̃1 in Ū1 which is homologous to Σ1. Applying the same argument
to U2, one obtains an area minimizing hypersurface Σ̃2 in Ū2 which is homologous
to Σ1. We claim that Σ̃1 ∪ Σ̃2 is a great sphere. Since each of Σ̃1 and Σ̃2 is stable
and since ∂Σ̃1 = ∂Σ̃2 ⊂ Sn(v), Lemma 1.1 tells us that both Σ̃1 and Σ̃2 are totally
geodesic. If ∂Σ̃1 is not an (n − 1)-dimensional great sphere in Sn(v), then Σ̃1,Σ̃2 ⊂ Sn(v) and moreover, Σ̃1 ∪ Σ̃2 = Sn(v). Suppose that ∂Σ̃1 is a great sphere.
Then Σ̃1 and Σ̃2 are great hemispheres and in this case Σ̃1∪ Σ̃2 may not be smooth
along ∂Σ̃1. Anyway we can rotate Σ̃1 around ∂Σ̃1 inside Ū1. Since ∂Σ̃1 ⊂ ∂U1,
we can obtain a rotated copy of Σ̃1 which touches Σ from inside Ū1. Then by
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the boundary maximum principle Σ is totally geodesic, which is a contradiction.
Hence ∂Σ̃1 is not a great sphere and Σ̃1 ∪ Σ̃2 is a great sphere.

Since ∂Σ̃1 ⊂ Sn(v)∩ (Σ̃1∪ Σ̃2), and ∂Σ̃1 is not totally geodesic, Σ̃1∪ Σ̃2 coin-
cides with Sn(v). Now since Σ̃1 ⊂ Ū1 and Σ̃2 ⊂ Ū2, it follows thatΣ ∩ Sn(v) = ∂Σ̃1. But this contradicts our original assumption becauseΣ ∩ Sn(v) = ∂Σ1 ∪ ∂Σ2 and ∂Σ2 ≠ ∅. Therefore Σ ∩ H+(v) is connected.
Similarly Σ∩H−(v) is connected as well. ❐

2. MINIMAL SURFACES IN S3

In 1970 Lawson [7] constructed a variety of compact minimal surfaces in S3. His
construction starts from a geodesic polygon Γ consisting of four geodesic edges.
At each vertex of Γ two adjacent geodesic edges are assumed to make an angle of
π/(k+ 1) and π/(m+ 1) alternately, where k,m are positive integers. Morrey’s
solution to the Plateau problem for Γ is a disk-type minimal surface spanning Γ .
Extending this surface by 180◦ rotations about its geodesic boundary arcs, one can
eventually obtain Lawson’s compact minimal surfaces in S3.

To be more precise, let C1 and C2 be the great circles in S3 ⊂ R4 defined by

C1 = {(x1, x2,0,0) | x2
1 + x2

2 = 1} and C2 = {(0,0, x3, x4) | x2
3 + x2

4 = 1}.

Let k and m be positive integers and choose points P1, P2 ∈ C1 and Q1, Q2 ∈ C2
such that dist(P1, P2) = π/(k + 1) and dist(Q1,Q2) = π/(m + 1). For the
geodesic polygon Γ := P1Q1P2Q2, the above construction gives rise to a minimal
surface denoted ξm,k. Lawson showed that ξm,k is a compact orientable surface
of genus mk embedded in S3.

Adopting a different method which is dual to Lawson’s construction, Karcher,
Pinkall and Sterling constructed new compact embedded minimal surfaces in S3.
They first find a disk-type minimal surface with boundary, called a patch, inside a
tetrahedron T which orthogonally intersects the four totally geodesic faces of the
tetrahedron. T is assumed to be a fundamental domain for a tessellation of S3.
Repeatedly reflecting patches across the faces of the tetrahedra of the tessellation,
they obtain a complete surface.

As a matter of fact, Lawson’s surfaces ξm,k can be constructed also in this way.
Let S be Morrey’s solution for the Jordan curve Γ = P1Q1P2Q2 as defined above.
And let Π1, Π2 be the great spheres in S3 such that Ci ⊂ Πi and Γ is symmetric
with respect to Πi, i = 1, 2. We claim that S is also symmetric with respect toΠi. Suppose S is not symmetric. Πi cuts S into two parts Sa and Sb. Assume
that area(Sa) ≤ area(Sb) and let S̃a be the mirror image of Sa across Πi. If S is
perpendicular to Πi along a neighborhood U in S ∩ Πi, then S̃a locally lies on
one side of Sb near an open subset of U , which contradicts the boundary point
lemma [4]. Therefore Sa ∪ S̃a is not smooth along S ∩ Πi. Hence by a small
perturbation of Sa ∪ S̃a along S ∩ Πi one can construct a surface Ŝ with ∂Ŝ = Γ
and area(Ŝ) < area(S). This contradiction proves the claim.
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Π1 and Π2 cut S into four congruent pieces whose boundary contains the
geodesic segment P1Q1, Q1P2, P2Q2, and Q2P1, respectively. Let S1/4 denote the
piece which contains P1Q1 as a boundary curve. Let S̃1/4 be the rotation of S1/4

about P1Q1 by 180◦ and define S1/2 = S1/4 ∪ S̃1/4. Then there exist two great
spheres Π̂1 and Π̂2 such that Ci ⊂ Π̂i, ∠(Π1, Π̂1) = π/(m + 1), ∠(Π2, Π̂2) =
π/(k+ 1) and S1/2 meets Π1, Π2, Π̂1, Π̂2 orthogonally. Let T be the tetrahedron
with dihedral angles π/2, π/2, π/2, π/2, π/(k + 1), π/(m + 1) which is
surrounded by Π1, Π2, Π̃1, Π̃2 such that S1/2 ⊂ T and ∂S1/2 ⊂ ∂T . T obviously
determines a tessellation of S3 into cells which are congruent to T . Then the
minimal surface obtained by repeated reflections across the faces of the tetrahedra
in the tessellation is nothing but ξm,k.

3. A THEOREM ON THE EXISTING SURFACES

Every great sphere Π in Sn+1 gives rise to an isometry on Sn+1 which is the re-
flection across Π. In this section we will see how the symmetry of a minimal
surface Σ influences the first eigenvalue and eigenfunction. From this we obtain
the following.

Lemma 3.1. Let G be a group of reflections in Sn+1. Assume that a compact
minimal hypersurface Σ ⊂ Sn+1 is invariant under G. If the first eigenvalue of the
Laplacian on Σ is less than n, then the first eigenfunction must be invariant under G.

Proof. Let σ ∈ G be the reflection across a great sphere Π in Sn+1 and let
ϕ be an eigenfunction on Σ corresponding to the first eigenvalue λ1. Note that
ϕ ◦ σ is also an eigenfunction with eigenvalue λ1. Consider

ψ(x) :=ϕ(x)−ϕ ◦ σ(x).

If ψ is the null function, then ϕ is invariant under σ . If ψ � 0, then ψ itself is
an eigenfunction with eigenvalue λ1. Furthermore, its nodal set, the zero set ofψ,
contains Σ∩Π because for p ∈ Σ∩Π,

ψ(p) =ϕ(p)−ϕ ◦ σ(p) =ϕ(p)−ϕ(p) = 0.

But Courant’s nodal theorem implies that ψ vanishes only on Σ∩ Π. Let D1, D2
be the components of Σ \ Π such that ψ is positive on D1 and negative on D2.
One can find a linear function on Rn+2 ξ = a1x1+· · ·+an+2xn+2 that vanishes
on Π and is positive on D1. ξ is an eigenfunction on Σ with eigenvalue n. Since
λ1 < n, ξ is orthogonal toψ on Σ. Sinceψ and ξ have the same sign on D1∪D2,

we have
∫
Σψξ > 0, which contradicts the orthogonality of ψ and ξ. Therefore ψ

must vanish on Σ. This completes the proof as σ is an arbitrary element of G. ❐

Theorem 3.2. Let Σ be a compact embedded minimal surface in S3 which is
invariant under a group G of reflections. Suppose that the fundamental domain of G
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is a tetrahedron T . If the fundamental patch P := Σ∩ T is simply connected and has
four edges, then the first eigenvalue of the Laplacian on Σ equals 2.

Proof. Suppose λ1 < 2. Let ϕ be an eigenfunction with eigenvalue λ1 on Σ
and N ⊂ Σ the nodal set of ϕ. Lemma 3.1 tells us that ϕ is invariant under G.
First we claim that N contains an interior point of P and P \ N has at least two
connected components. Suppose P̄ ∩ N ⊂ ∂P . Then Courant’s nodal theorem
implies that N = Σ∩ S2 for some great sphere S2. By the orthogonality argument
as used in the proof of Lemma 3.1, we get a contradiction. Hence P \ N is not
connected. Now one can find a face F of T and a component D of P \ N such
that ∂D is disjoint from F . Let Π be the great sphere containing F and let D̂ be
the mirror image of D across Π. Denote by D1, D2, D3 the components of Σ \N
containing D, D̂ and intersecting Π, respectively. We claim that D1, D2, D3 are
all distinct. D2 is the mirror image of D1 and D3 is nonempty and symmetric
with respect to Π. Suppose on the contrary that D1 and D2 are identical. Let T̂
be the mirror image of T across Π and set T2 = T ∪ T̂ . Choose p ∈ D and let
p̂ ∈ D̂ be its mirror image. By the assumption, there is a curve γ connecting
p to p̂ which is disjoint from N. Let H be the normal closure of the subgroup
of G which is generated by the reflections across the faces of T different from F .
H is then a subgroup of G of index 2 whose fundamental domain is T2. Define
γ̃ = {σ(γ)∩T̄2 | σ ∈ H}. Then γ̃ is a curve in T̄2 connecting p to p̂ and disjoint
from N ∩ T2. But this is impossible. Hence D1 and D2 are distinct components.
The same argument can be used to conclude that D1 and D3 are also distinct.
Therefore ϕ has at least three nodal domains, which contradicts Courant’s nodal
theorem. Thus λ1 = 2. ❐

Corollary 3.3. The first eigenvalue of the Laplacian on Lawson’s embedded min-
imal surfaces ξm,k and Karcher-Pinkall-Sterling’s minimal surfaces in S3 is equal
to 2.

Proof. As observed in the preceding section, both types of surfaces Σ originate
from a simply connected fundamental patch S with four edges inside a tetrahedron
T of a tessellation of S3. ❐

4. BOUNDARY OF THE FUNDAMENTAL DOMAIN OF Σ
In this section we extend the results of the preceding section. Let T be an (n+1)-
simplex that is a fundamental domain for a finite group of reflections of Sn+1.
Given a compact embedded minimal hypersurface Σn in Sn+1, the fundamental
patch P of Σ is defined by P = Σ∩ T .

Lemma 4.1. Let Σn be a compact embedded minimal hypersurface of Sn+1

which is invariant under the group G of reflections in Sn+1. Suppose that the fun-
damental patch P is homeomorphic to a ball. If λ1 < n, then there are at least two
disjoint nodal domains in P and the boundary of each domain must intersect every
n-face of T .
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Proof. Suppose that λ1 is less than n. Then by Lemma 3.1 the first eigenfunc-
tion ϕ is G-invariant and so is its nodal set N. Consider the nodal set restricted
to P̄ . This set must be nonempty because otherwiseϕ would have only one nodal
domain on P , which contradicts Courant’s nodal theorem. Moreover, by the or-
thogonality argument as in the proof of Lemma 3.1, N contains an interior point
of P and hence there are at least two nonempty nodal domains in P . Suppose that
the boundary ∂D of one of the nodal domains of P is disjoint from an n-face F
of T . Let Π be the great sphere containing F and D̂ the mirror image of D acrossΠ. Denote by D1, D2, D3 the components of Σ \ N containing D, D̂, and inter-
secting Π, respectively. Then by reasoning as in the proof of Theorem 3.2, one
can show that D1, D2, D3 are distinct components, contradicting Courant’s nodal
theorem. ❐

Theorem 3.2 generalizes as follows.

Theorem 4.2. Let Σ be a compact embedded minimal surface in S3 invariant
under a group of reflections that tessellate S3 into tetrahedra. If the fundamental patch
P of Σ is simply connected and has less than six edges, then λ1 is equal to 2.

Proof. Suppose λ1 < 2. We know from the proof of Lemma 4.1 that N ∩ P ,
the nodal line in P , is nonempty. First let us suppose that N ∩ P is connected.
Since P is simply connected, N cuts P into two sets, D1 and D2. Suppose ∂P
consists of edges e1, . . . , em. Let p, q ∈ ∂P be the end points of N ∩ P . Then

(i) p, q are interior points of some edges, or
(ii) p is an interior point of an edge and q is a vertex of P , or

(iii) both p and q are vertices.

In case of (i), assume p ∈ e1 and q ∈ ek. Then e1, . . . , ek and N ∩ P bound D1.
Since by Lemma 4.1 ∂D1 intersects all four faces of T , we have k ≥ 4. Similarly
ek, ek+1, . . . , em, e1 and N ∩ P bound D2 and hence m − k + 2 ≥ 4. Therefore
m ≥ 6. In case of (ii), assume p ∈ e1 and q ∈ ēk ∩ ēk+1. Then e1, . . . , ek,N ∩ P
boundD1 and ek+1, . . . , em, e1, N∩P boundD2. Hence k ≥ 4 andm−k+1 ≥ 4,
and therefore m ≥ 7. In case of (iii), assume p = ē1 ∩ ēm and q = ēk ∩ ēk+1.
Then k ≥ 4 and m − k ≥ 4 and hence m ≥ 8. In any case, we have m ≥ 6. A
similar proof holds even when N ∩ P is not connected. ❐

5. FINITE GROUP OF REFLECTIONS

In this section we describe all the groups of reflections of S3 whose fundamental
domain is a tetrahedron. The reason for this presentation is two-fold. On the
first hand we will show that there exists a group of reflections for which the [6]’s
construction would give a new embedded minimal surface but which was not
presented in [6]. On the second hand, the description of the associated tetrahedra
is needed in the last section in order to compute the genus of the G-invariant
minimal surfaces.



276 JAIGYOUNG CHOE & MARC SORET

The finite groups of reflections have been classified by Coxeter in [3]. We
will consider groups generated by four reflections, i.e., the groups that induce a
tessellation of S3 by tetrahedra. Indeed reflections are represented by vectorial hy-
perplanes of R4. Just as in dimension three, where planes of R3 define a division
of the sphere into congruent triangles, hyperplanes define a division of the hyper-
sphere S3 by congruent tetrahedra. Reciprocally, a tetrahedron T that tessellates
S3 defines a group of reflections generated by the four reflections of the hyper-
planes corresponding to the four faces of T . T is then the fundamental domain
of G, hence G is characterized by the six dihedral angles of T : βij , i, j = 1, . . . ,4,
where βij denotes the dihedral angle between faces Fi and Fj . The βij must be
divisors of π , hence there exist integers bk such that βij = π/bk.

We will denote the reflection group G by 〈b1, b2, b3, b4, b5, b6〉, the angles
being classified according to the lexicographical order.

Furthermore, a sphere around any vertex of T is tessellated by congruent tri-
angles which lie in each tetrahedron near the vertex. Necessary conditions on the
existence of triangles tessellations on the sphere will then yield necessary condi-
tions on the existence of tetrahedra tessellations of S3.

5.1. Reducible group of reflections If one face of T , say F1, is perpendicular
to the other three, then the angles β1,j = π/2, j = 2,3,4, and the vertex opposite
to F1 is at a constant distance π/2 to any point of F1. The tessellation of the
hypersphere reduces in that case to the tessellation of the sphere Π containing F1
by triangles congruent to F1 and Π is globally invariant under G.

F1 in turn is determined by three angles that correspond to the three remaining
dihedral angles of T . They must be divisors of π , hence equal respectively to
π/k1, π/k2, π/k3 where ki are integers. The fundamental domain of G is then
a tetrahedron whose faces are pieces of spherical planes and whose six dihedral
angles are

β1,2 =
π
2
, β1,3 =

π
2
, β1,4 =

π
2
, β2,3 =

π
k1
, β3,4 =

π
k2
, β4,2 =

π
k3
.

Thus

G = 〈2,2,2, k1, k2, k3〉.

In dimension two, conditions on the angles of congruent triangles to tessellate S2

are easily obtained by the Gauss-Bonnet theorem. Applied to the triangle F1 ⊂Π1 = S2: ∫
F1

K +
3∑
i=1

δi = 2π
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where K is the Gaussian curvature (equal to 1) and δi is the exterior angle of the
triangle F1. Hence

(5.1) area(F1) = π
( 3∑
i=1

1
ki
− 1

)
.

In particular there is only a finite number of solutions that satisfy the Diophantine
inequality

3∑
i=1

1
ki
− 1 > 0

with ki > 1, i = 1,2,3. This yields the following four types of groups (with
possible permutations on the integers ki)

G1 = 〈2,2,2,2,2, n〉, n ≥ 2; G2 = 〈2,2,2,2,3,3〉;
G3 = 〈2,2,2,2,3,4〉; G4 = 〈2,2,2,2,3,5〉.

All these groups are symmetry groups of regular polyhedra (except for the first one
which is reducible to the symmetry group of the 2n-gon).

S3 is then tessellated by two mirror copies through Π of the corresponding
regular polyhedra. Each polyhedron in turn is being divided by congruent copies
of the tetrahedron T as follows.

Take the center P0 of the polyhedron together with the center P1 of a face of
the polyhedron. Then draw a triangle on the face, whose vertices are P1, one vertex
P2 of the face, and a mid-point P3 of one of the two edges of the edge adjacent to
P2. The fundamental tetrahedron T of G is P0P1P2P3. Notice that any of these
tetrahedra is quadri-rectangular.

It is convenient to use Schläfli’s notation to represent polyhedra, and Coxeter’s
graphical representation of reflection groups [3].

Schläfli’s notation goes as follows. The regular polygon of k edges is denoted
by [k]; then a regular polyhedron whose bounding figure (i.e., bounding face) is
a polygon [k1] and whose vertex figure (i.e., the set of vertices joined to a given
vertex by an edge) is [k2] is denoted by [k1, k2] (for example, the bounding figure
and vertex figure of a cube are respectively a square and a triangle; hence Schläfli’s
symbol of the cube is [4,3]). By induction, an n-dimensional polytope whose
bounding figure is [k1, k2, . . . , kn−1] and whose vertex figure is [k2, . . . , kn] is
denoted by [k1, . . . , kn].

Coxeter’s notation goes as follows. Each dot represents a reflection plane. Two
dots are joined by a link marked k if the dihedral angle of the two corresponding
planes is π/k. By convention, the unmarked link corresponds to k = 3, and two
dots are not connected by a direct link if the corresponding planes are perpendic-
ular.
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(1) r
m

r r
k

r G1 is the direct product of 2 dihedral groups, each being the
symmetry group of a [2m] and a [2k]. This is the group of invariance of
Lawson’s ξm−1,k−1 surfaces.

(2) r r r r G2 = S3 is the symmetry group of the regular tetrahedra [3,3].
(3) r r r

4
r G3 = S3×Z3

2 is the symmetry group of the cube [4,3] (and its
dual, the octahedron [3,4], or cocube).

(4) r r r
5

r G4 is the symmetry group of the icosahedron [3,5] (or its dual,
the dodecahedron [5,3]).

The number N of tetrahedron cells that tessellate S3 is given by equation (5.1). As
N is twice the number of triangles that tessellate S2,

N = 8
3∑
i=1

1
ki
− 1

.

This gives the order of three of the four groups, namely

N2 = 48, N3 = 96, N4 = 240.

As for G1, notice that the first dihedral subgroup subdivides S3 into N = 8m
tetrahedra. Each tetrahedron is subdivided into k/2 tetrahedra by the action of
the second dihedral subgroup. Hence

N1 = 4mk.

This classifies the reducible groups of tessellations by tetrahedra.

5.2. Irreducible group of reflections We follow the classification given in
[3]; the situation for dimension four is particularly rich since we obtain the largest
possible number of groups, namely five. In each case the fundamental domain T
is tri-rectangular and all groups except one are symmetry groups of regular hyper-
polyhedra of R4. The cells of each hyper-polyhedron tessellate in turn the circum-
scribed hypersphere S3 by congruent regular polyhedra. Each polyhedron is in
turn decomposed by congruent tetrahedra as it is described in the reducible case.

(1) r r r r G5 = 〈3,2,2,3,2,3〉. It is the symmetry group of the 4-
dimensional tetrahedron T4 = [3,3,3]. The projection of this regular poly-
hedron on the circumscribed hypersphere tessellates S3 by five T4, four lying
at each vertex. As before, each tetrahedron is divided into 24 T ’s totaling
N5 = 120 tetrahedra to cover S3.

(2) r r r
4

r G6 = 〈3,2,2,3,2,4〉 is the symmetry group of the hyper-cube
C4 = [4,3,3] or its dual, the cocube, or hyper-octahedra C∗4 = [3,3,4]; S3

is tessellated by the cells of C4, that comprise eight cubes, four cubes meeting
at each of the 16 vertices of C4. Dually, S3 is tessellated by 16 tetrahedra; in
both cases N6 = 384.
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(3) r r
4

r r G7 = 〈3,2,2,4,2,3〉 is the symmetry group of the 24-cell
[3,4,3]; S3 is tessellated by 24 octahedra, six occurring at each of a total
of 24 vertices of the 24-cell. Hence N7 = 1152.

(4) r r r
5

r G8 = 〈3,2,2,3,2,5〉 is the symmetry group of the 120-cell
[3,3,5] or its dual, the 600-cell. S3 is tessellated by 120 dodecahedra or
600 octahedra. N8 = 14400.

(5) r r��
XX

r

r

Finally G9 = 〈2,2,3,2,3,3〉; there is a vertex whose 3 adja-
cent edges have a π/2 dihedral angle. It is remarkable that G9 does not
correspond to a tessellation of S3 by regular polyhedra. It does correspond,
however, to a symmetry group of a semi-regular polyhedron. This fact is
true for any reflection group: given a tessellation of S3 by tetrahedra, the
centers of the in-sphere of each tetrahedron define the vertices of a polyhe-
dra; the adjacent edges join any vertex to its reflected points by the faces of
the T ’s (four edges to each vertex of equal length) and the configuration at
each vertex is identical. G9 is the symmetry group of a C∗4 -like polyhedron
with any other two non congruent tetrahedra. N9 = 192.

[6]’s construction should apply for the tetrahedron 〈2,2,3,2,3,3〉 to give a new
embedded minimal surface of genus 9 in S3.

6. SYMMETRIC MINIMAL SURFACES OF LOW GENUS

In Section 4 we obtained a condition on the number of edges which ensures that
λ1 equals two. In this section, by contrast, this condition will be replaced by an
upper bound on the genus of Σ. For this purpose we introduce a combinatorial
argument which gives a relationship between the number of edges and the genus.

Let Σ be an embedded minimal surface invariant under a reflection group G.
Denote by e the number of edges of P (that correspond to the intersection of P
with the faces of T ), by v the number of vertices of P (intersection of P with the
edges of T ), and by f the number of components of P . More precisely, denote by
vi the number of vertices belonging to the edges of T whose adjacent faces make
an angle of π/ki for an integer ki ≥ 2.

Let L be the number of cells that tessellate S3 by G. If we denote respectively
by V , E, F the total number of vertices, edges and faces of Σ, and by Vi the total
number of vertices on Σ corresponding to vi in P , then

Lf = F, Le = 2E, Lvi = 2kiVi, i = 1, . . . ,6.

Let g be the genus of Σ. The Euler characteristic of the surface Σ is

χ(Σ) = 2− 2g = F − E + V = Lf − L
2
e+

6∑
i=1

vi
L

2ki
.
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As Σ is connected, f = 1; as ∂P is polygonal, e = v and hence

(6.1) g = 1+ L
2

(
v
2
− 1−

6∑
i=1

vi
2ki

)
.

Example 6.1. In Karcher-Pinkall-Sterling’s examples, the reflection group is
one of the nine groups, and P is a simply connected domain with four edges, and
three of the four vertices belong to a rectangular edge of T (i.e., their vertex angle
is π/2). If the fourth angle equals π/k, Σ has genus

g = 1+ L
8

(
1− 2

k

)
.

The summation term in (6.1) can be estimated in terms of v. Therefore (6.1)
will turn an estimate of g into an estimate of v as follows.

Since ki = 2, we have
6∑
i=1

vi
2ki

≤ v
4
.

So if g < 1 + L/4, then v < 6 and from Theorem 4.2, λ1 equals two. Thus we
have proved the following theorem.

Theorem 6.2. Let Σ ⊂ S3 be a compact embedded minimal surface of genus g
invariant under a reflection group G of order L that tessellates S3 into tetrahedra. If
g < 1+ L/4, then λ1 = 2.

Example 6.3. Let G be the reflection group generated by four mutually or-
thogonal spheres. If P has at least four vertices, then

g = 1+ 8
(
v
4
− 1

)
= 2v − 7

and λ1 equals two for any Σ of genus less than five. The Clifford torus is an
example of G-invariant minimal surfaces.
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