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Abstract

We prove that a domaif2 in the exterior of a convex domafd in a four-dimensional simply connected
Riemannian manifold of nonpositive sectional curvature satisfies the relative isoperimetric inequality
6472 Vol ()% < Vol(dQ ~ dC)*. Equality holds if and only if2 is an Euclidean half ball an@2 ~ 9C

is a hemisphere.

2000Mathematics subject classificatioprimary 49Q20, 58E35.

1. Introduction

The classical isoperimetric inequality states thakils a domain inR" then
(1) n"w, Vol(2)"* < Vol (82)",

wherew, represents the volume of a unit ball®¥. Here equality holds if and only

if Qis a ball. One natural way to extend this optimal inequality is the following. Let
H be a half-spacg(xs, ..., X)) : X, > 0} in R" and let®2 be a domain inH with
IQNIH £ ¢. If we defineQ = {(Xq, ..., Xo_1, —Xn) : (X1, ..., Xy) € 2}, then it
follows from (1) that

N"w, VOI(S2 U )" < Vol (3(Q U Q)"
Dividing this inequality by 2 yields
1
> N"w, Vol ()" < Vol (32 ~ aH)".
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Motivated by this, one can ask the following question. Given a convex dothairR"
and adomaif2 in R" ~ C with dQNaC # ¢, doesx2 satisfy the relative isoperimetric
inequality

1
2) > N"w, VoI ()" < Vol (32 ~ aC)",

with equality holding if and only i€2 is a half-ball andd2 ~ 9C is a hemisphere?

In [1] Aubin conjectured thatl() should hold for a domaif in ann-dimensional
simply connected Riemannian manifdldl® of nonpositive sectional curvature. This
conjecture is still open except for the dimensions 2, 3, 4; these cases were proved
by Weil [10], Kleiner [9], and Croke T], respectively.

Extending Aubin’s conjecture, one can ask the following. Dd®shpld for a
simply connected Riemannian manifdid” of nonpositive sectional curvatur€, a
convex domain irM, and2 a domain inM ~ C? Does equality hold if and only if
Q is a Euclidean half ball?

One can easily prove?] in a two-dimensionaM by considering the convex hull
of Q. Recently, the relative isoperimetric inequalityM? was proved in€]. In this
paper we prove the inequality ib*. However, in dimensions higher than four, the
problem is still open. In Euclidean spaRé, there are some partial resulg fi] and,
recently, a general resub]|

The key idea of this paper in the proof d?)(is that the concavity oM ~ C
conforms naturally to the negativity of the curvature df We employ Croke’s
method [] in this paper.

We would like to thank Rick Schoen for inviting us to have a valuable sabbatical
year at Stanford University in 2002-2003.

2. Double cover off2 relative to C

Let M be ann-dimensional Riemannian manifold asM the unit sphere bundle
of M. A geodesic flond,; on M satisfies

y() =mod(v) and y,(t) = Pi(v)

wherey, denotes the geodesic with initial poimtv) and initial velocity vectow, and
7 is the projection frons MontoM. Note thatd, takesS Mto itself. Liouville proved
that @, preserves the canonical measureM, the local product of the Lebesgue
measure on the unit tangent spheres with the Riemannian measivte Brom this
theorem one obtains Santalo’s formula as follows.

LetQ C M be a relatively compact domain. Fere SM, we set

[(v) =suprt: @) e Q, Vte (0 1)},
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that is, y,(I(v)) will be the first point on the geodesic to Hif2. Denote byv the
inward unit normal vector field along<2, and letSt*9Q2 denote the set of inward
pointing unit vectors along<2, that is,

S9Q = {u € SQlaq : (U, vr@w) > 0}

The measurduon StaQ is the local product of the canonical measure on unit tangent
hemispheres with the Riemannian measur@@n

Since the measurdv on SM is invariant with respect to the geodesic flaby,
integration onSQ2 can be performed by summing up the one-dimensional integrals
along all geodesics if starting froma<2. This is the gist of Santalo’s formula

I (u)
/ f(v)dv:/ (u,vn(w)du/ f (d.u) dt.
SQ StaQ 0

For a proof, seed, pages 231-232].

A characteristic of the relative isoperimetric inequality is that it does not count
the volume ofda2 N aC. In other words, 02 N aC is not considered to be part of
the boundary of2. This motivates us to consider tigéuing of € with itself along
02N aC. More precisely, lef2; and2, be two replicas of2, let~ be the equivalence
relation which identifies the two points 6f2; anda<2, that correspond to a point of
02N aC, and define2* = Q; U R,/ ~. Let us call2* thedouble cover of2 relative
to C. Obviously,Q* is a smooth manifold iBC is smooth. Its boundar§2* is the
double cover ob2 ~ 9C.

Although the metric of2* is smooth away fromC, itis just continuous oAQ2NJC.
Being a Riemannian manifol®* has geodesics. When a geodesi®bdimoves from
Q; to Q,, or the other way around, it bounces @ffat 92 N dC just as a light ray
is reflected by a mirror. Given a poimt off 9C andv € M, there exists a unique
geodesigy, starting fromp in the direction ofv. However, ifpisin 92 N aC andv
is tangent tdC then there are three geodesj¢on Q* since there are two identical
geodesicy, on 2; and2,, and the third is the geodesic &€ in v direction.

Nonunigueness of geodesics is due to the nonsmoothness of the mefeic of
along 9C. Since the metric is only continuous, the Christoffel symbiojs are
discontinuous ap € aC and so the sectional curvature can be infinitgaft 9C is
strictly convex. Still, the Jacobi field is well defined.J is smooth away fromdC and
continuous alongC. Because of nonuniqueness of geodesic, the geodesicijow
on Q* along a geodesic pathis not well defined whery is tangent tdC. However,
it is well defined and smooth almost everywhere. In particular, it is not difficult
to see thatb, is measure preserving alongwheny is transversal t&C. This is
because even though the metric@f is not smooth ap € y N 3C, &, is measure
preserving both up tg and afterp. Therefore we still have Santalo’s formula on
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the C° Riemannian manifold2*

I(u)
/ f(v)dv:/ uvdu/ f (®,u) dt,
SQ* StoQ* 0

whereu, := (U, v;«,). Hence lettingf (v) = 1 gives the following.

LEMMA 2.1. Vol(2%) = (1/nwn) [ .. | (WU, du.

Recall thatQ* is a double cover of2 andd2* is a double cover 062 ~ aC.
Therefore the relative isoperimetric inequaliB) for 2 c M will follow if we can
prove the classical isoperimetric inequality for,

(3) n"w, Vol (29" < Vol (3Q*)".
For the following lemma let us write ant:= —y, (I (u)). See [] for its proof.

LEMMA 2.2. For an integrable function g os*oQ*,

/ g(u)uvdu:/ g(antuyu, du.
StoQ* S0

3. Concavity vs negativity of curvature

Suppose tha¥l is a 2-dimensional Riemannian manifoldjs a convex domain in
M, andD c M is a domain in the exterior &. Then the Gaussian curvature [Df
alongdD N aC can be—oo. For example, l[e€ = {(x,y) € R? : x>+ y? < 1} and
D = {(x,Yy) : 1 < x?2 4+ y? < 2}. Then the integral of the Gaussian curvaturedsf
alonga D N dC equals—4rn. This follows from the Gauss-Bonnet theorem applied to
the annuluD*.

Thus the concavity oD alongaD N aC implies the negativity of curvature on
D* N aC. However, this is not the case for a dom&inn M", n > 3. The sectional
curvature of2* along the section o§C is even positive. However, i is simply
connected and nonpositively curvee, still enjoys properties of a negatively curved
manifold: (i) the volume of a geodesic ball i2* grows as in a negatively curved
manifold; and (ii) two rays emanating from a point never intersect each other. First
we need the following.

LEmMMA 3.1. Suppose tha¥l is simply connected and nonpositively cun@éd; M
is a convex domain and a domaft ¢ M lies in the exterior ofC. Suppose that
o :[0,1] — Q*is a geodesic segment passing throdghN oC ato (a) transversally.
Theno (t) ¢ 02 N aC for anyt # a.
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PROOF Suppose that C 2 hits 9Q2 N dC whent = b. SinceM is simply
connected and nonpositively curvedis the unique geodesic from(a) to o (b). By
the convexity ofC, o (a, b) lies in C, which is a contradiction. O

Lemma 3.1 implies that a geodesic which moves fram to €, transversally
crossing2NaC never comes back ;. This partially proves property (ii) mentioned
above.

Let dx be the volume form oM", du, the volume form of the unit sphere M,,
and (u, r) the polar coordinates abopte M. Thendx = h(u, r)duydr for some
positive functiorh(u, r). If M has nonpositive sectional curvature tign, r) > r"-*
with equality if and only if the sectional curvatures of all sections contaipjraye 0
(see B, Section 11.10]).

LEMMA 3.2. (a) LetM, C, Q be as in Lemm&.L Thenh(u,r) > r"-! on Q*,
with equality for everyp if and only if * is flat.
(b) Two rays inQ* emanating from a point and transversal & N dC never
intersect each other.

PrROOF. (a) We have only to consider the case when the geodesic reatiziitg
dC transversally. Fixp € Q* and letS be a 2-dimensional surface & consisting
of geodesics emanating from Let J(t) be the Jacobi field along a geodegit)
from p = y(0) with J(0) = 0, ]J’(0)| = 1, andJ’(0) L ¥’(0). J satisfies the Jacobi
equation

4 J"+ R/, )y =0,

whereR is the Riemann curvature tensor 8f However, this equation is not well
defined becaus® = —oo wheny hits 9C. So let us consided’ instead ofJ”.
Equation §) implies that|J'(t)| is nondecreasing as a function toAway fromaC.
Wheny hitsaC, |J'| is discontinuous. The point is thgl’| jumps up oM C. This is
where the convexity of plays a key role. Hengdl’| can be said to be nondecreasing
everywhere. Therefore

1J'(1)] =130 =1,
and hence

(5) RIGTER?
This inequality implies that the exponential map exp;, — * is length increasing

(nondecreasing, to be precise). Now let us show that exp is volume increasing.
Suppose thatlexp(u;) = v, 1 = 1,...,n— 1, and thaty; are orthogonal to each
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other andy; L y’. LetU andV be(n — 1)-dimensional parallelepipeds generated by
u; andv;, respectively. Then

VolU) < ] tul= [ 1wl =Volv).

1<i<n-1 1<i<n-1

Hence exp is volume increasing and it follows thaw, r) > r"-1.

If equality holds at evenyp, then VolU) = Vol(V) and solu;| = |vi| andu; are
pairwise orthogonal. Thus exp is an isometry &tids flat.

(b) We see from &) that exp has nonsingular differential and hence it is a local
diffeomorphism. Therefore the exponential map is one-to-one. O

LEMMA 3.3.

| n-1
/ W™ 40 < Vol (9?2
SHHQ* (antu)u

with equality if and only i€2 is flat and convex.

PrROOF. Letd Abe the volume form o8 Q2*. If we denoteB = exp{tu : t =1(u)},
thenB C 9Q* anddAlg = h(u,l(u))/(antu), du,. Write S{oQ* = 7~ p} for
72 ST9Q* — 9Q*. Thenthe ma : S79Q" — 9Q* defined byp(u) = exp(l (U)u)
is a one-to-one map by Lemn®2 (b). This is another place where the convexity
of C is critically used. Therefore we have

/ Mdup = \Vol(B) < Vol (8%2").
s (@ntu),

Note that Vo[B) = Vol(a2*) if and only if 9Q* is star-shaped fronp. Integrating
overp € aQ* yields

[P0 gy
Staa (antu)v

with equality if and only if©2 is convex. Thus Lemma.2(a) completes the proof.[]

See [7] for the proof of the following.
LEMMA 3.4,

/ (antu), Y2y, -V/0-2 qy < o, Vol (92*)
StaQ*
where

/2
oy = (N — l)wn1/ cos/™? t sin"?t dt.
0

Equality holds if and only ifantu), = u, everywhere.
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4. Theorem
We are now ready to prove the relative isoperimetric inequalitf¥ar M ~ C.
THEOREM. Let M be a four-dimensional simply connected Riemannian manifold
of nonpositive sectional curvature. @f C M is a convex domain ang is a domain
in M ~ C, then(2 satisfies
6472Vol(22)® < Vol(32 ~ 9C)*.

Equality holds if and only if2 is a Euclidean half-ball and2 ~ 9C is a hemisphere.

ProoF. We will first prove the classical isoperimetric inequaliB) {or Q*.

1
Vol(2%) = >3 [(Wu,du (Lemma2.l)
StoQ*
1 I (u) 13

= —— 7 (antu);”"u, du

272 stae+ (antu);

1 | (u)3 1/3 L 3 2/3
< — du / (antu),“u; du) (Holden
27'[2 (/;Jrgg* (antu)v ) ( SHoQ*

1 2\ 2/3
< 55 Vol(o%)*° (%) Vol(92)%°.  (Lemmas3.3-3.4)
T

v

Therefore
12872 Vol (£2*)% < Vol (3%

Dividing this inequality by 2 gives the desired relative isoperimetric inequalitySor
Equality holds only if we have equalities in Lemmas-3.4 as well as in the
Holder inequality. Hence equality holds onlysif is flat and convex(antu), = u,,
andl(u) = du, for some constantl > 0. ThereforeQ* is an Euclidean ball of
diameterd. O
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