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Abstract

We prove that a domain� in the exterior of a convex domainC in a four-dimensional simply connected
Riemannian manifold of nonpositive sectional curvature satisfies the relative isoperimetric inequality
64³2 Vol.�/3 ≤ Vol.@� ∼ @C/4. Equality holds if and only if� is an Euclidean half ball and@� ∼ @C
is a hemisphere.

2000Mathematics subject classification: primary 49Q20, 58E35.

1. Introduction

The classical isoperimetric inequality states that if� is a domain inRn then

nn!n Vol.�/n−1 ≤ Vol.@�/n;(1)

where!n represents the volume of a unit ball inRn. Here equality holds if and only
if � is a ball. One natural way to extend this optimal inequality is the following. Let
H be a half-space{.x1; : : : ; xn/ : xn ≥ 0} in Rn and let� be a domain inH with
@� ∩ @H 6= �. If we define�̃ = {.x1; : : : ; xn−1;−xn/ : .x1; : : : ; xn/ ∈ �}, then it
follows from (1) that

nn!n Vol.� ∪ �̃/n−1 ≤ Vol.@.� ∪ �̃//n:
Dividing this inequality by 2n yields

1

2
nn!n Vol.�/n−1 ≤ Vol.@� ∼ @H/n:
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Motivated by this, one can ask the following question. Given a convex domainC ⊂ Rn

and a domain� inRn ∼ C with @�∩@C 6= �, does� satisfy the relative isoperimetric
inequality

1

2
nn!n Vol.�/n−1 ≤ Vol.@� ∼ @C/n;(2)

with equality holding if and only if� is a half-ball and@� ∼ @C is a hemisphere?
In [1] Aubin conjectured that (1) should hold for a domain� in ann-dimensional

simply connected Riemannian manifoldMn of nonpositive sectional curvature. This
conjecture is still open except for the dimensionsn = 2; 3; 4; these cases were proved
by Weil [10], Kleiner [9], and Croke [7], respectively.

Extending Aubin’s conjecture, one can ask the following. Does (2) hold for a
simply connected Riemannian manifoldMn of nonpositive sectional curvature,C a
convex domain inM , and� a domain inM ∼ C? Does equality hold if and only if
� is a Euclidean half ball?

One can easily prove (2) in a two-dimensionalM by considering the convex hull
of �. Recently, the relative isoperimetric inequality inM3 was proved in [6]. In this
paper we prove the inequality inM4. However, in dimensions higher than four, the
problem is still open. In Euclidean spaceRn, there are some partial results [8, 4] and,
recently, a general result [5].

The key idea of this paper in the proof of (2) is that the concavity ofM ∼ C
conforms naturally to the negativity of the curvature ofM . We employ Croke’s
method [7] in this paper.

We would like to thank Rick Schoen for inviting us to have a valuable sabbatical
year at Stanford University in 2002-2003.

2. Double cover of� relative to C

Let M be ann-dimensional Riemannian manifold andSM the unit sphere bundle
of M . A geodesic flow8t on M satisfies


v.t/ = ³ ◦8t.v/ and 
 ′
v.t/ = 8t.v/

where
v denotes the geodesic with initial point³.v/ and initial velocity vectorv, and
³ is the projection fromSMontoM . Note that8t takesSM to itself. Liouville proved
that8t preserves the canonical measure onSM, the local product of the Lebesgue
measure on the unit tangent spheres with the Riemannian measure onM . From this
theorem one obtains Santalo’s formula as follows.

Let� ⊂ M be a relatively compact domain. Forv ∈ SM, we set

l .v/ = sup{− : 
v.t/ ∈ �; ∀t ∈ .0; − /};
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that is,
v.l .v// will be the first point on the geodesic to hit@�. Denote by¹ the
inward unit normal vector field along@�, and letS+@� denote the set of inward
pointing unit vectors along@�, that is,

S+@� = {
u ∈ SS�|@� : 〈u; ¹³.u/〉 > 0

}
:

The measuredu onS+@� is the local product of the canonical measure on unit tangent
hemispheres with the Riemannian measure on@�.

Since the measuredv on SM is invariant with respect to the geodesic flow8t ,
integration onS� can be performed by summing up the one-dimensional integrals
along all geodesics in� starting from@�. This is the gist of Santalo’s formula

∫
S�

f .v/ dv =
∫

S+@�
〈u; ¹³.u/〉 du

∫ l .u/

0

f .8t u/dt:

For a proof, see [3, pages 231–232].
A characteristic of the relative isoperimetric inequality is that it does not count

the volume of@� ∩ @C. In other words,@� ∩ @C is not considered to be part of
the boundary of�. This motivates us to consider thegluing of � with itself along
@�∩@C. More precisely, let�1 and�2 be two replicas of�, let≈ be the equivalence
relation which identifies the two points of@�1 and@�2 that correspond to a point of
@�∩ @C, and define�∗ = �1 ∪�2= ≈. Let us call�∗ thedouble cover of� relative
to C. Obviously,�∗ is a smooth manifold if@C is smooth. Its boundary@�∗ is the
double cover of@� ∼ @C.

Although the metric of�∗ is smooth away from@C, it is just continuous on@�∩@C.
Being a Riemannian manifold,�∗ has geodesics. When a geodesic of�∗ moves from
�1 to �2, or the other way around, it bounces offC at @� ∩ @C just as a light ray
is reflected by a mirror. Given a pointp off @C andv ∈ Mp there exists a unique
geodesic
v starting fromp in the direction ofv. However, if p is in @� ∩ @C andv
is tangent to@C then there are three geodesics
v on�∗ since there are two identical
geodesics
v on�1 and�2, and the third is the geodesic of@C in v direction.

Nonuniqueness of geodesics is due to the nonsmoothness of the metric of�∗

along @C. Since the metric is only continuous, the Christoffel symbols0i
jk are

discontinuous atp ∈ @C and so the sectional curvature can be infinite atp if @C is
strictly convex. Still, the Jacobi fieldJ is well defined.J is smooth away from@C and
continuous along@C. Because of nonuniqueness of geodesic, the geodesic flow8t

on�∗ along a geodesic path
 is not well defined when
 is tangent to@C. However,
it is well defined and smooth almost everywhere. In particular, it is not difficult
to see that8t is measure preserving along
 when
 is transversal to@C. This is
because even though the metric of�∗ is not smooth atp ∈ 
 ∩ @C, 8t is measure
preserving both up top and afterp. Therefore we still have Santalo’s formula on
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theC0 Riemannian manifold�∗

∫
S�∗

f .v/ dv =
∫

S+@�∗
u¹ du

∫ l .u/

0

f .8t u/ dt;

whereu¹ := 〈u; ¹³.u/〉. Hence lettingf .v/ ≡ 1 gives the following.

LEMMA 2.1. Vol.�∗/ = .1=n!n/
∫

S+@�∗ l .u/u¹ du.

Recall that�∗ is a double cover of� and@�∗ is a double cover of@� ∼ @C.
Therefore the relative isoperimetric inequality (2) for � ⊂ M will follow if we can
prove the classical isoperimetric inequality for�∗,

nn!n Vol.�∗/n−1 ≤ Vol.@�∗/n:(3)

For the following lemma let us write antu := −
 ′
u.l .u//. See [7] for its proof.

LEMMA 2.2. For an integrable function g onS+@�∗,∫
S+@�∗

g.u/u¹ du =
∫

S+@�∗
g.ant u/u¹ du:

3. Concavity vs negativity of curvature

Suppose thatM is a 2-dimensional Riemannian manifold,C is a convex domain in
M , andD ⊂ M is a domain in the exterior ofC. Then the Gaussian curvature ofD∗

along@D ∩ @C can be−∞. For example, letC = {.x; y/ ∈ R2 : x2 + y2 < 1} and
D = {.x; y/ : 1 < x2 + y2 < 2}. Then the integral of the Gaussian curvature ofD∗

along@D ∩ @C equals−4³ . This follows from the Gauss-Bonnet theorem applied to
the annulusD∗.

Thus the concavity ofD along@D ∩ @C implies the negativity of curvature on
D∗ ∩ @C. However, this is not the case for a domain� in Mn, n ≥ 3. The sectional
curvature of�∗ along the section of@C is even positive. However, ifM is simply
connected and nonpositively curved,�∗ still enjoys properties of a negatively curved
manifold: (i) the volume of a geodesic ball in�∗ grows as in a negatively curved
manifold; and (ii) two rays emanating from a point never intersect each other. First
we need the following.

LEMMA 3.1. Suppose thatM is simply connected and nonpositively curved,C ⊂ M
is a convex domain and a domain� ⊂ M lies in the exterior ofC. Suppose that
¦ : [0; l ] → �∗ is a geodesic segment passing through@�∩@C at¦.a/ transversally.
Then¦.t/ =∈ @� ∩ @C for anyt 6= a.
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PROOF. Suppose that¦ ⊂ � hits @� ∩ @C when t = b. Since M is simply
connected and nonpositively curved,¦ is the unique geodesic from¦.a/ to ¦.b/. By
the convexity ofC, ¦.a; b/ lies in C, which is a contradiction.

Lemma 3.1 implies that a geodesic which moves from�1 to �2 transversally
crossing@�∩@C never comes back to�1. This partially proves property (ii) mentioned
above.

Let dx be the volume form ofMn, dup the volume form of the unit sphere inMp,
and.u; r / the polar coordinates aboutp ∈ M . Thendx = h.u; r /dupdr for some
positive functionh.u; r /. If M has nonpositive sectional curvature thenh.u; r / ≥ r n−1

with equality if and only if the sectional curvatures of all sections containing
 ′
u are 0

(see [2, Section 11.10]).

LEMMA 3.2. (a) Let M, C, � be as in Lemma3.1. Thenh.u; r / ≥ r n−1 on�∗,
with equality for everyp if and only if�∗ is flat.
(b) Two rays in�∗ emanating from a point and transversal to@� ∩ @C never

intersect each other.

PROOF. (a) We have only to consider the case when the geodesic realizingr hits
@C transversally. Fixp ∈ �∗ and letS be a 2-dimensional surface in�∗ consisting
of geodesics emanating fromp. Let J.t/ be the Jacobi field along a geodesic
 .t/
from p = 
 .0/ with J.0/ = 0, |J ′.0/| = 1, andJ ′.0/ ⊥ 
 ′.0/. J satisfies the Jacobi
equation

J ′′ + R.
 ′; J/
 ′ = 0;(4)

whereR is the Riemann curvature tensor ofS. However, this equation is not well
defined becauseR = −∞ when
 hits @C. So let us considerJ ′ instead ofJ ′′.
Equation (4) implies that|J ′.t/| is nondecreasing as a function oft away from@C.
When
 hits @C, |J ′| is discontinuous. The point is that|J ′| jumps up on@C. This is
where the convexity ofC plays a key role. Hence|J ′| can be said to be nondecreasing
everywhere. Therefore

|J ′.t/| ≥ |J ′.0/| = 1;

and hence

|J.t/| ≥ t:(5)

This inequality implies that the exponential map exp: �∗
p → �∗ is length increasing

(nondecreasing, to be precise). Now let us show that exp is volume increasing.
Suppose thatd exp.ui / = vi , i = 1; : : : ; n − 1, and thatvi are orthogonal to each
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other andvi ⊥ 
 ′. LetU andV be.n − 1/-dimensional parallelepipeds generated by
ui andvi , respectively. Then

Vol.U / ≤
∏

1≤i ≤n−1

|ui | ≤
∏

1≤i ≤n−1

|vi | = Vol.V/:

Hence exp is volume increasing and it follows thath.u; r / ≥ r n−1.
If equality holds at everyp, then Vol.U / = Vol.V/ and so|ui | = |vi | andui are

pairwise orthogonal. Thus exp is an isometry and�∗ is flat.
(b) We see from (5) that exp has nonsingular differential and hence it is a local

diffeomorphism. Therefore the exponential map is one-to-one.

LEMMA 3.3. ∫
S+@�∗

l .u/n−1

.antu/¹
du ≤ Vol.@�∗/2

with equality if and only if� is flat and convex.

PROOF. Let d A be the volume form of@�∗. If we denoteB = exp{tu : t = l .u/},
then B ⊂ @�∗ and d A|B = h.u; l .u//=.antu/¹ dup. Write S+

p @�
∗ = ³−1{p} for

³ : S+@�∗ → @�∗. Then the map' : S+
p @�

∗ → @�∗ defined by'.u/ = exp.l .u/u/
is a one-to-one map by Lemma3.2 (b). This is another place where the convexity
of C is critically used. Therefore we have∫

S+
p @�∗

h.u; l .u//

.antu/¹
dup = Vol.B/ ≤ Vol.@�∗/:

Note that Vol.B/ = Vol.@�∗/ if and only if @�∗ is star-shaped fromp. Integrating
over p ∈ @�∗ yields ∫

S+@�∗

h.u; l .u//

.antu/¹
du ≤ Vol.@�∗/2

with equality if and only if� is convex. Thus Lemma3.2(a) completes the proof.

See [7] for the proof of the following.

LEMMA 3.4. ∫
S+@�∗

.antu/¹
1=.n−2/u¹

.n−1/=.n−2/ du ≤ Þn Vol.@�∗/

where

Þn = .n − 1/!n−1

∫ ³=2

0

cosn=.n−2/ t sinn−2 t dt:

Equality holds if and only if.antu/¹ = u¹ everywhere.
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4. Theorem

We are now ready to prove the relative isoperimetric inequality for� ⊂ M ∼ C.

THEOREM. Let M be a four-dimensional simply connected Riemannian manifold
of nonpositive sectional curvature. IfC ⊂ M is a convex domain and� is a domain
in M ∼ C, then� satisfies

64³2 Vol.�/3 ≤ Vol.@� ∼ @C/4:

Equality holds if and only if� is a Euclidean half-ball and@� ∼ @C is a hemisphere.

PROOF. We will first prove the classical isoperimetric inequality (3) for �∗.

Vol.�∗/ = 1

2³2

∫
S+@�∗

l .u/u¹ du .Lemma2.1/

= 1

2³2

∫
S+@�∗

l .u/

.antu/1=3¹

.antu/1=3¹ u¹ du

≤ 1

2³2

(∫
S+@�∗

l .u/3

.antu/¹
du

)1=3 (∫
S+@�∗

.antu/1=2¹ u3=2
¹ du

)2=3

.Hölder/

≤ 1

2³2
Vol.@�∗/2=3

(
³2

4

)2=3

Vol.@�∗/2=3: .Lemmas3.3–3.4/

Therefore
128³2 Vol.�∗/3 ≤ Vol.@�∗/4:

Dividing this inequality by 24 gives the desired relative isoperimetric inequality for�.
Equality holds only if we have equalities in Lemmas3.3–3.4 as well as in the

Hölder inequality. Hence equality holds only if� is flat and convex,.antu/¹ = u¹,
and l .u/ = d u¹ for some constantd > 0. Therefore�∗ is an Euclidean ball of
diameterd.
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