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Abstract

This is a contribution to a special volume in honor of Professor R.
Schoen for his sixtieth birthday. In the article, I introduce and survey
some developments related to the metric properties of Lagrangian sub-
manifolds. I would like to thank Professor Schoen for introducing me to
this fascinating direction twenty years ago, and for his constant support
and encouragements. The title here is almost the same as that in my
thesis [40]. After so many years, the field is still full of interesting and
important unanswered questions.

1 Introduction

A symplectic manifold M is a 2n-dimensional manifold with a closed non-
degenerated two form ω, which is called a symplectic form. Important sym-
plectic manifolds include (R2n,

∑n
j=1 dxj ∧ dyj), cotangent bundles with ω =∑n

j=1 dpj ∧ dqj , and Kähler manifolds with Kähler forms. A class of subman-
ifolds on symplectic manifolds of special interests are Lagrangian submanifolds
which are n-dimensional and on which the restriction of ω vanishes. More gen-
erally, we can consider immersions or other general maps from an n-dimensional
manifold into M , and the Lagrangian condition will be the pull back of ω van-
ishing. The notion of Lagrangian integral currents can also be defined. We
usually will not make distinctions between submanifolds and immersions.

The Kähler structure and Riemannian structure on a Kähler manifold are
related by ω(u, v) = g(Ju, v), where J is its complex structure. There always
exist compatible almost complex structures on a symplectic manifold and one
can define compatible metrics from the above relation. We are very interested

12000 Mathematics Subjects Classification: 5302, 53C38, 53D12

1



in understanding the interplay of symplectic structure and Riemannian struc-
ture, and that is this paper about. However, we will mainly focus on issues
related to the metric properties of Lagrangians. Another important topic, Mir-
ror Symmetry or more generally Homological Mirror Symmetry that concerns
the duality of the space of complex structures on one manifold with the space
of symplectic structures on another manifold, is not discussed. Even for issues
concerned in this paper, the results mentioned here are still very selective and
far from complete. There are many long papers in the field, and it is hard to
follow sometimes. My original plan is to go through the literature, and write a
comprehensive introduction and survey. But due to the limit of time and my
current knowledge, the plan is hard to realize at this moment and I can only
discuss things that I am more familiar with. I apologize for the incompleteness
and hope that a complete survey will be available in the future. However, be-
cause many of the results appearing in this note are due to Professor Schoen,
his collaborators, former students and post doctors, it can still somehow reflect
Professor Schoen’s great influence in this direction.

To make the article easier to read and not too lengthy, I will not list all
definitions or state theorems in their complete forms. Most of the time, they
are discussed in words and I may refer to material in later sections. The results
are not stated in a chronical order, but in their related contents instead. This
article should be considered as an informal introduction from the author’s point
of view, and the main purpose is to give a general picture without getting into
many details. In section 2, I will do a short survey to give an overview and some
rough ideas. A few definitions and properties are given in §3. Some consequences
and implications of these properties are also included. Many different techniques
have been applied to study the problems concerned here. I will explain two of
them, which are Geometric Measure Theory in §4 and singular perturbation in
§5.

I am very happy and honored to be a descendant of Schoen’s academic
family. He is not only our role model as a mathematician, but also as a human
being. I like to express my deep gratitude to him for his constant support and
encouragements, and wish him have a very Happy Birthday.

2 A short survey

There are different notions related to the area of Lagrangians. A minimal La-
grangian submanifold is a Lagrangian submanifold with zero mean curvature.
That is, it is a critical point of the area functional with respect to all variations.
(It is called Lagrangian minimal in [40, 41, 42].) On a Calabi-Yau manifold,
a minimal Lagrangian submanifold is equivalent to being a special Lagrangian,
which is defined by the notion of calibration [16]. One can restrict variations
to lie in Lagrangian category, and critical points of the area functional among
such variations are called Lagrangian stationary. To get a nice expression of
the Euler-Lagrangian equation, we usually further restrict the variations to be
Hamiltonian which necessarily give Lagrangian variations. A critical point of the
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area functional among Hamiltonian variations is called Hamiltonian stationary
[53]. Special Lagrangians have attracted much attention in recent years due to
their critical role in string theory, particularly in constructing mirror manifolds
and proving mirror symmetry [65]. Since special Lagrangians are calibrated,
they are area minimizing in their homology class [16]. Minimal Lagrangian sub-
manifolds in Kähler manifolds also admit many nice properties (see §3) which
make them very canonical representatives in their homology classes, and can
help us to obtain a deeper understanding on minimal submanifolds in higher
co-dimension. Hamiltonian stationary Lagrangians are related models for in-
compressible elasticity theory and occur naturally when we take the variational
approach initiated by Schoen and Wolfson in [58] to find minimal Lagrangians
or special Lagrangians.

The existence of these objects is a fundamental and still wildly open question.
Most of the known results are in Cn, spaces with special structure, and n = 2
case. In the seminal paper of Harvey and Lawson [16], they give various ways of
constructing special Lagrangians in Cn. An important generalization is made
by Lawlor to prove the angle conjecture [38]. These examples are generalized by
Joyce in a series of papers ([24]– [27], [33]– [34]) and others. There are also a lot
of research on the construction of special Lagrangian cones in Cn. A variant of
the special Lagrangian cones will also give a family of regular special Lagrangians
in Cn. Many of these studies use symmetry and group action to simplify the
problem. When n = 3, the intersection of the special Lagrangian cone with the
unit sphere is a two-dimensional minimal Legendrian surface in S5 and theories
in integrable system are used heavily in constructing T 2 special Lagrangian
cones. We refer to [5, 9, 11, 17, 27, 47, 64] for works related to these results.
Haskins and Kapouleas apply gluing techniques to obtain higher genus special
Lagrangian cones in C3 [18]. They recently obtain a profound generalization
of this construction to higher dimension [19, 20]. Special Lagrangian cones are
determined by their links in S2n−1, which project to minimal Lagrangians in
CPn. Hence the existence of minimal Lagrangian submanifolds in CPn are
also obtained. Gluing and singular perturbation is a very powerful method
which can also lead to other existence results. In [43], the author uses it to
show that we can desingularize the transversal self-intersections of a compact
special Lagrangian in Calabi-Yau manifolds to obtain a family of new embedded
special Lagrangians which converge to the original special Lagrangian (an angle
condition at intersections is necessary for n > 3). The situation for two special
Lagrangians intersecting transversally are studied by Butscher for Cn in [6] and
by D. Lee for Calabi-Yau manifolds in [39]. Joyce uses the method to study
the desingularization of conical singularities in details in [28, 31, 32]. We will
discuss more about the method and results in §5.

A K3 surface, which is a 2-dimensional Calabi-Yau manifold, admits a S2

family of complex structures. Every special Lagrangian in K3 surfaces is holo-
morphic with respect to a different complex structure [16]. Therefore, special
Lagrangians in this case are the same as holomorphic curves. This also moti-
vates us to study minimal Lagrangians/special Lagrangians with the hope that
they can serve as canonical representatives for their homology classes and even
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reveal indications on studying Hodge conjecture which is to find algebraic cycle
representatives for Hodge classes [57]. The higher dimensional generalization of
K3 surfaces are hyperkähler manifolds which also admit a S2 family of complex
structures. These manifolds are expected to have better properties, and can
serve as test cases in many occasions. For instance, we use these examples to
show that additional condition is necessary for n > 3 in the above mentioned
desingularization result [43].

When n = 2, there is one additional advantage that we can study the prob-
lem from a mapping point of view. By analyzing the energy density of harmonic
maps, Schoen proves in [56] the existence and uniqueness of minimal Lagrangian
diffeomorphisms between hyperbolic surfaces with the same genus. The graph
of a minimal Lagrangian diffeomorphism is a minimal Lagrangian in the prod-
uct space. This result is generalized by the author to show the existence and
uniqueness of minimal Lagrangian surfaces in some particular classes of the
product of two hyperbolic surfaces (of different topology) by same techniques
[41]. These surfaces are area minimizing in their homotopy classes because we
in fact show that every minimal surface in the class is Lagrangian and hence
unique. Also based on two dimensional analysis, the author has the follow-
ing theorem in [42]: if there exist minimal Lagrangian branch immersions for
one Kähler-Einstein surface with negative curvature, then there also exist min-
imal Lagrangian branch immersions for the whole connected component of the
Kähler-Einstein metrics. Here we fix the Kähler class and vary its complex
structure. In Calabi-Yau manifolds, one can also deform a special Lagrangian
immersion to obtain the existence of special Lagrangian immersions for nearby
Calabi-Yau metrics (a variant of [49]). However, we need to prove the result for
singular cases as well to obtain a global deformation as above.

The most general construction for the existence problem is due to Schoen
and Wolfson [58]. They minimize area among Lagrangian integral currents to
obtain Lagrangian minimizers. Although all special Lagrangians must be among
Lagrangian minimizers, the minimizers obtained are not a-priori minimal be-
cause they are constructed in a restricted class. It is a very important issue
to develop a regularity theory for these Lagrangian minimizers. When n = 2,
by setting the problem from the mapping point of view, Schoen and Wolfson
show that branch points and cone singularities are the only possible singularities
in their celebrated paper [58]. Their discussions are on symplectic 4-manifolds
with compatible metrics. When the ambient space is a Kähler-Einstein surface,
they show that the minimizer will be minimal when it admits no cone singulari-
ties. Schoen and Wolfson’s results in particular shows the existence of (singular)
Hamiltonian stationary Lagrangians, and the cone singularities appear to be the
obstruction to the existence of special Lagrangians or minimal Lagrangians in
Kähler-Einstein surfaces. The higher dimensional analogy of Schoen and Wolf-
son’s regularity results is still not available. Hélein and Romon use integrable
system theory to find a Weierstrass-type representation for all Hamiltonian sta-
tionary Lagrangian tori in C2 and CP 2 [21, 22, 23]. Joyce, Schoen, and the
author obtain families of smooth embedded small Hamiltonian stationary La-
grangians in every compact symplectic manifold with given compatible metric
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in [36]. Local criterion for the existence and characterization of a family of
Hamiltonian stationary tori in Kähler manifolds are derived by the author in
[44], and Butscher and Carvino in [7].

There are some other results on the existence of minimal Lagrangians: for
instance, the case of Kähler-Einstein manifolds with positive scalar curvature
and a Tn-action is studied by Goldstein [15], complex hyperquadrics studied
by Palmer [54], CHn studied by Castro, Montealegre, and Urbano [10], and
etc. The with boundary case is also investigated by several authors in different
settings. An existence result is obtained by Caffarelli, Nirenberg, and Spruck
for an equation related to special Lagrangians in Cn under Dirichlet conditions
[8]. The existence and uniqueness of minimal Lagrangian diffeomorphisms be-
tween strictly convex domains in H2 with the same area is proved by Brendle in
[2]. The existence of minimal Lagrangian diffeomorphisms between uniformly
convex domains in Rn is shown by Brendle and Warren in [3]. Earlier studies
on the problem is made by Wolfson [69]. Another potential approach to the
construction of special Lagrangians/minimal Lagrangians is the mean curva-
ture flow- as the negative gradient flow of the area functional. The Lagrangian
condition will be preserved when the solution is smooth and the ambient man-
ifold is Kähler-Einstein [60]. Lagrangian mean curvature flow has been studied
by various authors and we refer to [61, 63, 66, 67] for some of the discussions.
Issues and references related to singularities of Lagrangian mean curvature flow
will be mentioned in §4.

Besides the problem of existence, understanding singularities is another fun-
damental and challenging problem. From above discussions, we can see its
importance and inevitability. To compactify the moduli space of special La-
grangians, one needs to enlarge the objects from smooth to singular. Integral
currents which are generalizations of manifolds are very suitable for this pur-
pose. It is very interesting to characterize the structure of singular set of special
Lagrangian currents, which is expected to be better behaved than general area
minimizing currents. The deformation of these singular special Lagrangians,
both when the ambient Calabi-Yau structure is fixed or varied, plays a crit-
ical role in studying the moduli spaces and in developing a global existence
theory of special Lagrangians. The simplest case that only conical singulari-
ties occur is studies by Joyce in [28]– [32]. The desingularization of transversal
self-intersections in [43] can also be interpreted as moving from one boundary
point to the interior of moduli space. In utilizing the variational approach of
Schoen and Wolfson [58], the most crucial part is to develop a regularity the-
ory. To generalize their beautiful results from 2-dimension to higher dimension,
we must first face this important and difficult issue. Many two dimensional
techniques used in [58] are not eligible any more, so substantial modification
on the argument and new ideas are needed in studying the higher dimensional
case. As mentioned in last paragraph, cone singularities are the obstruction
to the existence of minimal Lagrangian surfaces in a Kähler-Einstein surface.
Many efforts have been made trying to exclude them. But unfortunately, cone
singularities do occur. Wolfson find a (non-algebraic) K3 surface where every
Lagrangian minimizer there admits cone singularities [70]. It is important to
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understand the cone singularities and find ways to deal with them. Schoen and
Wolfson analyze the local models of the cone singularities and find that they
are cones of the curves in (7), which will be called Schoen-Wolfson cones. They
also prove that the cone is stable if and only if p = q + 1 (assuming p > q) and
conjecture that among these cones, only (2, 1) cone can occur. In [45], Wang
and the author construct eternal solutions of Lagrangian Brakke flow without
mass loss to resolve a (p, q) Schoen-Wolfson cone with p > q > 1. It in partic-
ular distinguishes (2, 1) cone from all other cones, and shows that other cones
are not minimizing at infinitesimal level. There also exist eternal solutions of
Lagrangian Brakke flow without mass loss that resolve any (p, q) cone with an-
other pairing Schoen-Wolfson cone [45]. The results and Schoen-Wolfson cones
are generalized to higher dimension in [46]. Other higher dimensional Hamilto-
nian stationary cones are also obtained in [20].

3 Definitions and properties

As mentioned in the introduction, we have the symplectic structure and Rie-
mannian structure related by

ω(u, v) = g(Ju, v). (1)

If M is not Kähler, here J and g will be a compatible almost complex structure
and a compatible metric of ω respectively. The Lagrangian condition then can be
characterized as that JTL is equal to the normal bundle T⊥L. On a Lagrangian
immersion in a Kähler manifold, (1) implies that the second fundamental form
defined by B(X,Y, Z) = 〈∇XY, JZ〉 is fully symmetric for any X,Y, Z ∈ TxL.
We can also define an isomorphism from TxM to T ∗xM by

αv(·) = ω(v, ·). (2)

A diffeomorphism φ on M is called a symplectic map if φ∗(ω) = ω. Clearly
symplectic maps will send Lagrangians to Lagrangians. Simple computation
shows that the variational vector field v of symplectic maps is characterized by
dαv = 0. Such vector fields are called symplectic vector fields. When αv = df
or equivalently v = −J∇f , v will be called a Hamiltonian vector field and
the variation it produce is called a Hamiltonian deformation. On a Lagrangian
immersion L in a Kähler manifold, we have

dαH |L = Ric |L, (3)

where H is the mean curvature vector of L, and Ric is the Ricci form of M
defined by Ric(u, v) = R(Ju, v) from the Ricci tensor R (see [4, 14]). When
consider (2) along L, we will require v ∈ T⊥L and it gives an isomorphism from
T⊥L to T ∗L. A generalization of (3) to symplectic manifolds is given in [58].
From (3), it follows that the restrictions of ω and Ric on a minimal Lagrangian
will both vanish. This is an overdetermined condition and we cannot expect the
existence of minimal Lagrangian immersions in Kähler manifolds except some
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obvious examples such as the fix set of an involution anti-holomorphic isometry.
When M is Kähler-Einstein, the Ric form is proportional to ω and thus (3)
implies dαH = 0 on a Lagrangian. The class 1

π [αH ] ∈ H1(L;Z) is equal to
the Maslov class of L. Moreover, it follows that H is an infinitesimal symplecic
vector field. We therefore expect that the Lagrangian condition is preserved
along mean curvature flow which deforms the submanifold along the direction
of its mean curvature vector. This is indeed the case as long as the submanifold
is smooth [60]. When M is a Calabi-Yau manifold, we have αH = −dθ or
equivalently H = J∇θ on an oriented Lagrangian, where θ is the Lagrangian
angle θ : L → R/2πZ or R defined by Ω|L ≡ eiθvolL, and Ω is a Calabi-
Yau (n, 0) form. When L is minimal, it follows that θ is a constant θ0 and
Re(e−iθ0Ω)|L ≡ volL. That is, L is calibrated by Re(e−iθ0Ω). Recall that a
smooth p-form ϕ on a Riemannian manifoldM is called a calibration if it is closed
and of comass 1 [16]. We say an oriented submanifold Σ (or more generally an
integral current T ) is calibrated by ϕ if ϕ(TxΣ) = 1 for any x ∈ Σ (or a.e. for
currents). A direct consequence of Stoke Theorem shows that if T is calibrated,
then

M(T ) = T (ϕ) = T ′(ϕ) 6M(T ′) (4)

for any integral current T ′ in the same homology class of T . Hence T has the
least area in its homology class and if equality holds in (4), T ′ will also be
calibrated by ϕ. Harvey and Lawson show in [16] that Re Ω and Re(e−iθ0Ω) are
calibrations, and hence every minimal Lagrangian integral current in a Calabi-
Yau manifold is area minimizing.

Now we derive the Euler-Lagrangian equation for a Hamiltonian stationary
Lagrangian in a symplectic manifold with a compatible metric as in [53]. We
have

0 =
dAt
dt
|t=0 = −

∫
L

〈H, v〉dV = −
∫
L

〈αH , αv〉dV

= −
∫
L

〈αH ,df〉dV = −
∫
L

〈δαH , f〉dV (5)

for any function f , and it implies δαH = 0. Here we use the Lagrangian condi-
tion that JTL is equal to T⊥L in the third equality above. Combining with (3),
it follows that αH is a harmonic 1-form for a Hamiltonian stationary Lagrangian
in Kähler-Einstein manifolds. The condition for L to be Hamiltonian stationary
in a Calabi-Yau manifold then becomes ∆Lθ = 0.

The second variational formula of the area at a minimal Lagrangian immer-
sion in a Kähler manifold has the following nice expression [12, 53]:

d2At
dt2
|t=0 =

∫
L

(|dαv|2 + |δαv|2 −R(v, v))dV, (6)

where v is the variational field, αv is defined as (2), δ is the Hodge dual of d,
and R is the Ricci tensor of M . It implies that L is stable if M has nonpos-
itive Ricci curvature, and L is unstable if M has positive Ricci curvature and
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H1(L,Z) 6= 0. When M is Ricci flat, we have that L is stable and the Jocobi
fields are those vectors whose associated 1-forms αv on L are harmonic. McLean
shows that in Calabi-Yau manifolds these Jacobi fields are indeed realized by
deformations of special Lagrangians, and therefore the moduli space of special
Lagrangians is smooth at a special Lagrangian immersion and the dimension is
b1 = dim H1(L,Z) [49].

The property that a minimal Lagrangian immersion is strictly stable on M
with negative Ricci curvature is used in [43, 56] to prove the uniqueness of
minimal surfaces/minimal Lagrangians in some Lagrangian homotopy classes
[Σ,M ]. To prove this result, we first show that every minimal surface in the
depicted class is Lagrangian and is therefore strictly stable. Minimal surfaces in
a homotopy class of [Σ,M ] can be characterized as critical points of an energy
functional E on the Teichmüller space of Σ, which is a proper function on finite
dimensional space. Since every critical point of E is strictly stable, it is therefore
unique and the result follows. The existence part is obtained by a theorem of
Schoen and Yau [59]. The uniqueness will imply that the minimal Lagrangians in
these homotopy classes of [Σ,M ] are area minimizing. We can also use the strict
stability to deform a minimal Lagrangian immersion for nearby Kähler-Einstein
metrics. It first gives the deformation as a minimal immersion. The Lagrangian
condition is preserved because a nearby deformation of a Lagrangian immer-
sion is totally real and Wolfson has proven that a totally real minimal (branch)
immersion in Kähler-Einstein surfaces of negative scalar curvature must be La-
grangian [68]. However, when we take a limit of these surfaces, branch points
may develop. We need to show (4) for minimal Lagrangian branch immersions,
their deformations for nearby metrics first as minimal branch immersions, then
show them are totally real, and therefore Lagrangian. These are done in [42] to
obtain the deformation of minimal Lagrangian branch immersions in the whole
connected component of Kähler-Einstein metrics.

The notion of Hamiltonian stable and the corresponding second variational
formulae for the area at a minimal Lagrangian, and at a Hamiltonian stationary
Lagrangian are defined and derived by Oh in [52, 53]. There are a lot of studies
on the Hamiltonian stabilities of different examples, and on whether the Clifford
torus in CPn minimizes volume in its Hamiltonian class.

4 Singularities and geometric measure theory

As discussed in Section 2, we need to study objects with singularities for ques-
tions concerning the existence or moduli space. The most natural class to work
on is integral currents, which are defined and studied in Geometric Measure
Theory. There are many important problems and techniques arisen from Geo-
metric Measure Theory. We will use some examples in this section to discuss
the connection and related issues.

Schoen and Wolfson in [58] minimize area among all Lagrangians. They
take the 2-dimensional advantage to study the problem from the mapping point
of view, and find minimizers in W 1,2 Lagrangian classes. Unlike the classical
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stationary case, it is very tricky to derive a related monotonicity formula which
is a fundamental issue and starting point to develop a regularity theory in Geo-
metric Measure Theory. We remark that although in most places only Hamilto-
nian stationary condition is needed, here they do use the Lagrangian stationary
property of the minimizers in deriving the monotonicity formula. They need
the Lagrangian being locally exact to lift the problem to a contact setting and
include more variations which project to Lagrangian, but not Hamiltonian de-
formations. These variations in particular include dilations, but it still involves
solving a wave equation to find suitable compact support variations. By many
clever and beautiful arguments, they find the almost unique way to make things
work. However, the mystery behind the proof still remains unraveling, not to
mention the situation in higher dimensional case. After the monotonicity for-
mula obtained, one needs to use the geometric measure theory techniques again
to develop an analogy of Allard regularity theorem, and show that the only sin-
gularities are branch points and cone singularities. The tangent cones at cone
singularities are Hamiltonian stationary Lagrangian cones determined by their
links in S3. These links, up to unitary transformation, can be characterized as

γpq(s) = (

√
q

p+ q
eips , i

√
p

p+ q
e−iqs), 0 6 s < 2π, (7)

where p , q are two co-prime positive integers. Schoen and Wolfson further show
in [58] that the Hamiltonian stationary cone Cp,q with link γp,q is Hamiltonian
stable if and only if |p − q| = 1. We will assume p > q for simplicity. They
conjecture that among these stable cones, only (2, 1) cone is area minimizing. In
[45], the author and Wang use Lagrangian Brakke flow to distinguish (2, 1) cone
from other cones and show that the conjecture holds at infinitesimal level. Here
Brakke flow is a generalization of mean curvature flow in Geometric Measure
Theory setting [1]. Our construction also indicates that one may need to use
Z2 (or Zp) integral currents instead of integral currents to construct Lagrangian
Brakke solutions. Noting that Lagrangian minimizers are constructed among
Lagrangian integral currents and Wolfson has found Lagrangian minimizers with
cone singularities in a K3 surface, hence it is not possible to find a generalization
of mean curvature flow for all Lagrangian integral currents that both decreases
the area (unless it is already stationary in classical sense), and remains in the
class of Lagrangian integral currents. When considering Z2 Lagrangian integral
currents, one should recall a result of Qiu [55] that the set of Z2 Lagrangian
integral currents (flat chains) in R4 is dense under the flat norm in the space
of all Z2 integral currents (flat chains). However, this phenomenon may not
appear when we consider Lagrangian Brakke flow because the area is under
better control. I would like to thank Schoen and White’s suggestion on this
possibility.

The generalization of Schoen and Wolfson’s fundamental work [58] to higher
dimension is a very challenging and important problem. Since the mapping
approach is not available for higher dimension in general, new ideas and a lot
of modifications are required. It will heavily depend on Geometric Measure
Theory to carry out the program. As mentioned in §3, mean curvature flow is
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another potential approach to study the existence of minimal Lagrangians and
the Lagrangian condition is preserved in Kähler-Einstein manifolds as long as
the solution is smooth. However, singularities will occur in general. To have a
deep understanding of the singularities, or to consider weak solutions such as Z2

Lagrangian integral current Brakke solutions mentioned above, it again requires
a lot of techniques from Geometric Measure Theory. For instance, Neves uses
Geometric Measure Theory to show that when applying central blow up near
the finite time singularities, the tangent flow will be special Lagrangian cones
if the initial submanifold is an almost calibrated and rational Lagrangian [50].
We refer to [13, 37, 45, 46, 51, 67] for some other investigations related to
singularities of mean curvature flow.

There are many other important questions one can ask. For instance, what
is the structure of the possible singularities for special Lagrangian integral cur-
rents? With the additional Lagrangian condition, can we have better character-
ization of the set and obtain better properties such as uniqueness of the tangent
cone? How can we deform a singular special Lagrangian and understand its local
moduli space? All these questions are very much involved Geometric Measure
Theory. By putting some further restrictions, Joyce studies the simplest coni-
cal singularity case in [28]– [32]. The method employed is gluing and singular
perturbation which will be discussed in next section.

5 Gluing and singular perturbation

For the gluing and singular perturbation method, we first need to have some
well understood good models, then use gluing to obtain approximate solutions,
and the last step is to perturb the approximate solutions to exact solutions. The
last step usually can be formulated as finding zeros of a map F , and by applying
Taylor expansion to F at 0, the problem becomes solving a nonlinear PDE. We
need to study the linearlized operator DF|0 and derive some detailed estimates,
including information of the initial approximate solutions. In some occasions,
there are approximate kernel for the self-adjoint operator DF|0. There are
different ways to overcome this difficulty. One way is that we first solve the
projection problem which involves a map between Banach spaces perpendicular
to the kernel. It improves our approximate solutions, and reduce the dimension
of the space we work on to essentially the dimension of the approximate kernel.
Then it usually requires additional conditions or special properties of the ap-
proximate solutions to perturb the improved ones to exact solutions. Another
way is to add extra freedom and modify F , such that new DF̃ is surjective. We
will discuss a few different results below to demonstrate the ideas and make a
comparison.

When constructing approximate solutions for the desingularization problem
in [6, 28, 39, 43], we need the local models to be nonsingular special Lagrangians
that are asymptotic to the tangent cones at the singularities of original singular
special Lagrangians. However, except Lawlor necks [38] which are diffeomor-
phic to Sn−1 ×R and are local models for resolving intersecting points, and an
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example of Harvey and Lawson [16] as local models for resolving a Tn−1 cone,
we do not know other suitable models. We remark that the family of nonsin-
gular special Lagrangians constructed from one special Lagrangian cone in [17]
are asymptotic to two special Lagrangian cones instead one. Lawlor necks have
been applied successfully to resolve intersecting points in different occasions
[6, 28, 39, 43]. Joyce develops the theory of desingularizing conical singularities
assuming the existence of related asymptotically conical special Lagrangians
[31, 32]. In these situations, we first replace a small neighborhood of the inter-
secting/singular point by a suitable scaled Lawlor neck/local model. To make
this work in Calabi-Yau manifolds, we have to find special Darbox coordinates
near the point. Then connect the local model to original special Lagrangian
outside a neighborhood of the point to construct Lagrangian approximate so-
lutions. Note that an angle condition, which always holds for n = 2 and 3,
is needed to find a Lawlor neck asymptotic to the pair of intersecting tangent
planes [43]. From examples of complex special Lagrangians, one can see that
it is not possible to obtain a desingularization without further restriction for
n > 3.

For the gluing construction of special Lagrangian cones by Haskins and
Kapouleaus, the process is done at the link level, namely for special Legen-
drians in S2n−1. Also the approximate solutions are constructed from building
blocks and need to be done carefully to admit required symmetry. It depends on
a detailed study of the building blocks [18, 19, 20] and their approach needs more
attentions on constructing approximating solutions. The perturbation method is
also used in constructing Hamiltonian stationary Lagrangians by Joyce, Schoen
and the author in [36], and by the author herself in [44]. A slightly different
approach is given by Butscher and Corvino in [7]. For this problem, we first
need a family version of good Darboux coordinates in symplectic manifolds and
Kähler manifolds. Here ”good” means that we have a nice control and approx-
imation of the metric. Approximate solutions here are obtained by positing a
scaled compact Hamiltonian stationary Lagrangian in Darboux coordinates.

Now back to the special Lagrangian cases. For the next step, we need to
solve a nonlinear equation to perturb the approximate solutions to exact so-
lutions. This is done by a quantitative version of inverse function theorem in
[6, 39, 43]. Note that we in fact construct a family of approximate solutions
parameterized by the neck size. Thus if we can obtain right orders in related
estimates, we can then argue that the conditions needed in the inverse function
theorem are satisfied when the neck size is small enough, and show the existence.
In [43], we have a uniform positive lower bound for the first eigenvalues of the
linearlized operators on approximate manifolds Lα. This is because L \ {x} is
connected, where x is a transversal self-intersecting point. If we consider two
special Lagrangians intersecting transversally at a point as in [6] and [39], it
becomes disconnected after deleting the intersecting point and there are ap-
proximate kernel for the linearlized operators. There is a good geometric reason
to explain why in these situations it is not possible to solve the problem without
introducing extra freedom. Recall that the dimension of the local moduli space
of special Lagrangians at a special Lagrangian immersion L is equal to the first
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Betti number b1(L). The first Betti number is increased by one when we at-
tach one handle to a connect manifold. It is the case when we glue a Lawlor
neck into a neighborhood of a self-intersection. Thus it is possible to obtain a
family of special Lagrangians parameterized by the neck size α. However, when
we add a handle to connect two special Lagrangians L1 and L2, the first Betti
number of the connect sum is just b1(L1) + b1(L2). Therefore it is impossible
to obtain a new family of special Lagrangians parameterized by the neck size α
since it will increase the dimension of the moduli space by 1. Hence Butscher
allows the phase of the Lagrangian angle changing to get one extra freedom
[6]. D. Lee allows the Calabi-Yau metric changing and thus the new special
Lagranians constructed from the connect sum is w.r.t a different metric [39].
Some additional conditions are needed in his construction, but never the less,
new examples of non-flat special Lagrangian submanifolds of Calabi-Yau tori
are found. We remark that the case Butscher studies is special Lagrangians
with boundary in Cn [6]. Both unobstructed and obstructed cases are studied
by Joyce, and he shows that when certain balancing condition is satisfied, the
obstructed case can also be solved [28]. Note that [43] is unobstructed, and [6],
[39] are obstructed.

For the case of Hamiltonian stationary Lagrangian discussed in [36] and [44],
there are a big set of approximate kernel. We remark that here the approximate
solutions are parameterized by points in the ambient manifold, the unitary frame
at that point, and the size of scaling. We first solve the projection problem, that
is to find solutions mod the set of kernel. This always can be done. If the model
is in addition chosen to be a rigid Hamiltonian stationary Lagrangian in Cn. We
prove that the problem of finding Hamiltonian stationary Lagrangians in M is
equivalent to finding critical points of a smooth function on the unitary bundle
of M . If M is a compact symplectic manifold, then the existence of critical
points follows from a simple property of continuous functions on compact sets
[36]. When M is Kähler and the Hamiltonian stationary Lagrangian model is
Tn, we can do detailed analysis and obtain a local criterion that guarantees the
existence of one smooth family of embedded Hamiltonian stationary Lagrangians
near the point [44]. Furthermore, the tori in the family do not intersect each
other.
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