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Isoperimetric Inequalities of Minimal Submanifolds
Jaigyoung Choe

ABSTRACT. In this paper we introduce various types of isoperimetric inequal-
ities for minimal submanifolds in Euclidean space, sphere, hyperbolic space,
and Riemannian manifolds. Some inequalities for compound soap films, do-
mains, nonpositively curved surfaces and harmonic maps are also discussed.
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1. Introduction

The history of the isoperimetric problem begins with its legendary origins in
the Problem of Queen Dido, told by Virgil in the Aeneid. Dido was a Phoenician
princess from the city of Tyre. She fled by ship from Tyre when King Pygmalion,
her tyrannical brother, murdered her husband to usurp her possessions. When Dido
arrived in Africa at the site that was to become Carthage, she sought to purchase
land from the natives. They told her they would sell only as much land as she
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could surround with a bull’s hide. She accepted the terms and made the most of
the situation. First she had her people cut a bull’s hide into thin strips and tie
them together to form a single, very long, closed cord. Then, by sheer intuition,
she reasoned that she could encompass the most area by shaping the cord into the
circumference of a circle. In this way she acquired a larger piece of land than she
had coveted.

Here let us add our own fable to history: Dido was thus able to lead a com-
fortable life in the big land now called Byrsa. But her peaceful life did not last
long; King Pygmalion, wanting ever more power and land, invaded Carthage, and
Queen Dido was forced to flee again. This time she decided to move to Wonderland,
where people inhabit a big soap film (minimal surface). There she purchased land
surrounded by the same cord that she had used in Carthage. And Queen Dido
asked herself whether her land in Wonderland was bigger than that in Carthage. ..

The first proof that Dido made the optimum choice in Carthage appears in the
commentary of Theon to Ptolemy’s Almagest and in the collected works of Pappus.
The author of the proof is Zenodoros. However, Zenodoros’ proof still contained a
gap that was not filled in until the second half of the nineteenth century. A rigorous
mathematical proof was given by Weierstrass in his lectures at the University of
Berlin [Sp]. But Dido’s Wonderland question has not been completely settled yet.

This paper concerns Queen Dido’s new problem. We will summarize the results
so far obtained by the author and others, and will present some new results. Many
kinds of minimal submanifolds will be dealt with and various types of isoperimetric
inequalities for them will be introduced.

Queen Dido’s characterization of the circle is most succinctly expressed in the
isoperimetric inequality
ATA < L2,

where A is the area enclosed by a curve C of length L, and where equality holds if
and only if C' is a circle. The first result in regard to Dido’s new problem is due to
Carleman [Ca] who showed in 1921 that if S is a disk type minimal surface in R™
with area A and perimeter L, then

(1-1) 4rA < L*

with equality if and only if S is a flat disk. In other words, Queen Dido’s land in
Wonderland is smaller than that in Carthage. Then in 1933 Beckenbach and Radé
|[BR] generalized Carleman’s method and showed that 4mA < L? holds also for a
disk type surface of nonpositive Gaussian curvature. Note that minimal surfaces
have nonpositive Gaussian curvature.

It would seem at first glance that Carleman, Beckenbach and Radd’s results
provide a complete solution to Queen Dido’s new problem, but that is not the case
for some reason. The restriction to disk type surfaces is not a natural one. For
example, a simple closed curve in R® may bound a minimal surface of the type of a
Mgbius strip, or a surface with higher genus. One would like to know if 474 < L?
also in those cases. A point worth noting when one drops simple connectivity is that
the inequality 4mA < L? does not hold for general surfaces of nonpositive Gaussian
curvature. For example, on a long cylinder the perimeter remains fixed while the
area can be made as big as one wishes. Also one can construct an example with
a single boundary curve using a flat torus: the complement of a small disk is a
domain of genus one on the torus whose perimeter can be made arbitrarily small.
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In view of these examples it is something of a surprise that similar examples cannot
be constructed within the class of minimal surfaces. This leads us to the following.

OPEN PROBLEM 1.1. Prove that 4wA < L? for any minimal surface in R".

The difficulty in this open problem is that the minimal surface S C R"™ may
have arbitrary topology, 05 may have more than one components, and S may not
be area minimizing. Here are two arguments which give some insight into why one
might expect the classical isoperimetric inequality (1-1) to hold also on minimal
surfaces. Consider a surface S C R" that has least area among all surfaces with the
same boundary curve 05. Let its area be A and its perimeter L. First, suppose that
05 is connected. Let S’ be the cone over 95 with vertex at some point of 9S. Then
S’ has the same boundary as S, and hence its area A’ is not less than A. But since it
is a cone, S’ can be developed in R? onto a domain D C R2, preserving its area and
perimeter. By the classical isoperimetric inequality in the plane, 47 A < 4w A’ < L2,
Second, suppose 95 is not connected, and let C1, ..., C), be the distinct components
of 05, 51,...,5, the Douglas—Radé solutions with 05; = C;, A; the area of .5,
and L; the length of C;. Then S; U---U S, has the same boundary as S, and
hence its area A; + --- + A, is not less than A. But by the first argument for
each S;, 41A; < L?, and so 47A < 4m(A; + -+ A,) < L3+ -+ L2 < [2
These arguments, unfortunately, are valid only for area minimizing surfaces, while
in Open Problem 1.1 S is an arbitrary minimal surface.

2. Osserman and Schiffer’s Proof

First we take a look at the history of the isoperimetric inequality of a minimal
surface in space. Carleman [Ca] used complex function theory in 1921 for the proof
of (1-1). In 1959 Reid [Re] proved (1-1) for a minimal surface with connected
boundary in R3. His proof is based on Wirtinger’s inequality:

27 27
dy\?2 / 2
21 / SNt > y2dt,
(2-1) 0 (dt) 0

where y(¢) is a smooth function with period 27 and fozﬂ y(t)dt = 0. This proof
was extended by Hsiung [Hs| to R™ in 1961. Then in 1975 a proof of (1-1) was
obtained by Osserman-Schiffer [OS] for a doubly connected minimal surface in R3,
and in 1977 by Feinberg [Fe| for a doubly connected minimal surface in R”. In 1983
Li-Schoen—Yau proved (1-1) for a minimal surface with two boundary components
in R3. And in 1990 the author [C1] gave a proof for a minimal surface with two
boundary components in R™.

In this section we shall give a proof for a minimal surface with connected
boundary in R™. Also Osserman and Schiffer’s result will be outlined.

Let S be an arbitrary surface in R™. If H is the mean curvature vector of S,
and if z is the position vector, then a general formula for the area A of S is

(2-2) 2A = —/S<x—p, H) +/85<x—p, V)

where p € R™ is arbitrary, and v is the outward unit conormal to 05 on S, i.e.,
the normal to 35S which is tangent to S. This formula is a special case of the first
variation formula of area, using the variation field of the 1-parameter family of
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homothetic expansions about p. Therefore

ArA < L? —27r/ (x—p, ﬁ>,
D

which is the desired isoperimetric inequality for a minimal surface S, if we can show
(2-3) 27T/ (x—p, v) < L2
a8

Osserman gave a proof of this inequality in [O1], p. 209. As a matter of fact,
we can prove that this inequality is a consequence of an isoperimetric inequality
provided p is a point of 0S and 0S5 is connected. To see why, let n be the unit
normal to 95 which makes the smallest angle with z—p among the normals to 0S.
Then (z—p, v) < (x—p, ) and hence

PR

From the definition of 7 it is not difficult to see that

5[ ta=po) = Avea(pxo5),
o)

where px 0S8 is the cone which is the union of the line segments from p to the points
of 9S. Therefore (2-3) follows from the isoperimetric inequality of the planar
domain obtained by developing px0S on R?. Note here that in general px9dS
cannot be developed onto a planar domain if p is not from 9.5 or 95 is not connected.
This kind of estimation of an integral by the area or angle of a cone will play a key
role in Section 4 (see (4-1) and (4-2)).

We have thus proved the following.

THEOREM 2.1. If S is a minimal surface in R™ with connected boundary, then
4T A < L2,

Suppose now that S is minimal and has at least two boundary components.
Let 0S5 = |JC;, L; = Length(C;) and choose points p; € C;. Then by (2-3)

(2-4) o / (s—pi,v) < L2,
But
(2-9) [ i) = [ wpi) = [ tr-pin)
so combining (2-4) and (2-5) with (2-2) gives
k k
(2-6) 4T A < ZLf + 2772/ (pi—p1,v).
i=1 i=2/Ci

If the integral term in (2-6) could be made to vanish, one would get
k
(2-7) ATA <> L}
i=1

which is strictly stronger than 47 A < L2. In fact (2-7) does hold for area minimiz-
ing surfaces as we have seen at the end of the previous section. On the other hand,
(2-7) is not true in general. Consider a catenoidal waist S bounded by parallel
circles which is the horizon when viewed from a point p in the axis of the catenoid.
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In other words, the catenoid is tangent to the position vector from p along the
boundary circles of S. By [C6, Proposition 1], Area(S) = Area(px9S) and so
Area(S) will be greater than the sum of the areas A; of the disks bounded by the
separate circles. But for each of those disks we have 41 A; = L?. Hence (2-7) fails
to hold.

Returning to (2-6), let us think of geometric conditions under which the integral
term of (2-6) can be made to vanish. A useful observation is the following. Applying
(2-2) to a minimal surface S with 95 = | C; yields

[)S<p,u>—és<x,u>—2A,

for any p. Since the right hand side is independent of p, it follows that

Z/Ciu_/asu_o.

Actually this integral is called the fluz of S along dS (see [Fa] p. 81).

THEOREM 2.2. (a) Let S be a minimal surface in R™ with 0S = Ule C;. If
the flux fCi v of S along C; vanishes for each i, then

k
ArA <Y L7
i=1
(b) [O1] Let S be a minimal surface in R™ with two boundary components, i.e.,
0S = C1 U Cy. If no hyperplane separates Cy from Co, then
4rA < LI+ L3

Proor. (a) follows from (2-6) since p;—p; is a constant vector on each C;.
The flux fCl v=— f02 v may or may not be a zero vector. In any case, let II be a
hyperplane which is orthogonal to the flux and intersects both C; and C5. Choose
p1 € C1 N1l and py € Co NIL Then (p2—p1, Ie, v) =0, so (2-6) proves (b). O

Suppose that a hyperplane separates C; from ULQ C;. Then it is easy to see
that the flux fCl v of S along C; is nonzero. This observation and Theorem 2.2
lead to the following.

OPEN PRrROBLEM 2.3. If S is a minimal surface in R™ with 05 = Ule C; such
that none of C1,...,Cy can be separated from the others by a hyperplane, then

k
AmA <Y L7

i=1
The inequality of Theorem 2.2 (b) is equivalent to
L? —47A > 2L, Lo.

Likewise, for an arbitrary doubly connected minimal surface in R®, Osserman and
Schiffer [OS] (see p. 297) proved the following.

THEOREM 2.4. [OS] For any doubly connected minimal surface in R?,

(2-8) L? — 47w A > 2L, La(1 — log 2).
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Let S C R™ be a doubly connected minimal surface. S is parametrized by a
conformal harmonic map ¢ of an annulus 1 < |z| < ro into R™, where 1) is assumed
to extend continuously to the boundary circles and to map them onto Jordan curves
C1,Cs. Let L(r) be the length of the image of the circle |z| = r, for r1 <r < ra.
The only case of interest is that where C; and Cs are rectifiable, of length say, L,
and Ly. In that case, lim,_,,., L(r) = L; for ¢ = 1,2. The key lemma for the case
n = 3 is this:

PROPOSITION 2.5. [OS] The function L(r) satisfies
d’L .
d(logr)? —

with equality possible in only two cases: if ¢ is a conformal map onto a planar
annulus, or if the image of ¥ is a catenoid bounded by o pair of coaxial circles in
parallel planes.

(2-9)

Using this equality together with (2-2) and the specific expressions for L(r) on
a catenoid, they prove Theorem 2.4.

The proof of Proposition 2.5 depends on the Weierstrass representation formula
for minimal surfaces in R3, and does not go through for n > 3. But Feinberg [Fe]
noted that a weaker form of (2-9) will yield a weaker form of (2-8). Specifically,

d*L 2
2-10 — > — L.
( ) d(logr)? = x2
He proved this by deriving an analog of the Wirtinger inequality (2-1) but “without
the squares”. Namely,

27 27 2 27
/ YOt =0 = / /()] dt > —/ 1y (t)] dt.
0 0 ™ Jo

Note that unlike (2-1), the inequality here is a strict one. However, the constant
2/7 is best possible. The inequality 47 A < L? for all doubly connected minimal
surfaces in R™ follows from (2-10).

A final remark for doubly connected surfaces. We have learned from Carleman,
Feinberg and Beckenbach—Radé that disk type minimal surfaces, doubly connected
minimal surfaces and disk type nonpositively curved surfaces all satisfy the in-
equality 4mA < L2. However, as mentioned in the Introduction, doubly connected
nonpositively curved surfaces do not satisfy the inequality because there are long
cylinders with fixed perimeter whose area can be arbitrarily large. But is there any
way of controlling the area of a cylinder with fixed perimeter? One way would be
to fix the conformal structure of the cylinder. Consider all flat doubly connected
surfaces which are conformally equivalent. It is not difficult to show that among
them the flat annulus A with boundary curves of equal length satisfies the best
isoperimetric inequality. Motivated by this, we propose the following.

OPEN PROBLEM 2.6. Let S be a nonpositively curved annulus which is confor-
mally equivalent to a flat annulus A with boundary curves of equal length. Show
that

Area(S) < Area(A)
Length(95)2 — Length(dA)2’
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3. Li, Schoen and Yau’s proof

In this section we briefly introduce Li-Schoen—Yau’s proof for a minimal surface
with two boundary components [LSY]. Their proof works also for a minimal surface
with connected boundary.

First we rederive (2-2) for minimal S. Fix a point p € R™ and define r(z) =
dist(p,x),z = (x1,...,x,). Given an m-dimensional submanifold N C R", it is
well known that

ANx=(Axy,...,Axy) = ﬁ,

where A is the intrinsic Laplacian on N and H is the mean curvature vector of N.

Hence the rectangular coordinate functions x4, ..., z, are harmonic on a minimal
submanifold of R™. If we take p as the origin, then
(3-1) Ar? :ZAI? :2inAa:i+22|in|2 =2m on N.
Integrating this over N = S for m = 2 yields
0
(3-2) 4 Area(S) = / Ar? = / 20"
s os O

where v is the outward unit conormal to 0.S. Translating S suitably, we may assume
J55 i = 0. Then

or 1/2
4 Area(S :/ 2r—§2/ r < 2 Length(dS 1/2(/ xf)
(S) £ - (95) OSZ

oS

1 3/2 dzin2\? 1 )
< — ’ = —
< - Length(9S) </as E ( 7 ) ) - Length(95)

(on the last line, the inequality follows by (2-1) or the Poincaré inequality, and the
equality because Y (dz;/ds)? = 1). This gives 4mA < L? when 95 is connected.

In case 0S is not connected, we cannot use the Poincaré inequality as above.
However, note that [, > (dx;/ds)? is invariant under translations in R™ and that
faSfo may or may not be invariant depending on the choice of translations.
Note also that the disconnected boundary 95 may be made into a connected curve
provided a suitable translation is applied to each component of 9S. With these
observations Li, Schoen and Yau introduced the following.

DEFINITION 3.1. A set ' C R"™ is weakly connected if there ezists a rectangular
coordinate system {x;}"_, of R™ such that for every affine hypersurface H" ' =
{z; = constant} in R™, H does not separate T.

Therefore a connected set is obviously weakly connected. The key idea of
[LSY] is that if 0S is weakly connected, then one can find a family of suitable
translations which leave [,o > 27 unchanged and make 95 into a connected curve
C. Consequently, the Poincaré inequality can be applied to C, and thereby yielding
4w A < L? for S as above. In this way they proved

THEOREM 3.2. [LSY] If S is a minimal surface in R™ with weakly connected
boundary OS, then S satisfies 4rA < L2.

And then applying the maximum principle to the family of homothetic con-
tractions of a catenoid, they showed that if the boundary of a minimal surface S in
R3 has two components and is not weakly connected, then S cannot be connected.
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In this way they proved that a minimal surface in R with one or two boundary
components satisfies 47 A < L2.

4. The Cone Method

The author extended Li-Schoen—Yau’s theorem by taking a more geometric
point of view [C1]. In their proof they used the inequality % < 1. But if 7 is the
unit normal to 05 which makes the smallest angle with Vr, then

In fact n is the outward unit conormal to 9S on the cone pxdS, the union of the
line segments from p to the points of dS. Although pxdS is not minimal, the
identity Ar? = 4 holds there too because

Ar? =442z, Az) =4+ 2(x, H) = 4,

where H is the mean curvature vector of px 0S5, which is perpendicular to z. There-
fore
(4-1)
9 or or 9
4 Area(S) :/Ar :/ 2r— g/ 2r— :/ Ar® =4 Area(px9S),
S as Ov as On pX oS
which gives an area comparison between S and px0dS.

A nice thing about the cone px0dS is that px 39S is flat and hence is locally
developable. If 95 is connected, cut along a line segment [ from p to a point of 0.5
and then one can develop px 39S into a cone OxC on R?. OxC has the same area
as pxdS and C has the same length as 0S. C may not be a closed curve, but we
can show that it is a curve with self-intersection if p is an interior point of S as
follows. Choose a point p € S and show that (Lemma 4.5 below)

Alogr > 2m6,,.
Then

10r 10r
4-2 27r§/A10gr:/ ——g/ —— = Angle(05S, p),
(42) s as T OV as T On ( )

where Angle(955, p) is the angle of 35 viewed from p. In other words, Angle(9S, p)
equals 27 times the density of pxdS at p. This angle estimate implies that 05
rotates around p by at least 360° and consequently C should intersect itself. Then
cutting Ox C' into two pieces and pasting them appropriately give rise to a domain
D C R? with

Area(D) > Area(OxC) > Area(S), Length(0D) = Length(C') = Length(95)

(see [C1, Lemma 1] for the construction of D). Therefore the classical isoperimetric
inequality for D gives rise to (1-1) for S.

So far 9S has been assumed to be connected. However, even if 05 is not
connected, C' as defined above may behave like a connected curve. This motivates
the following.

DEFINITION 4.1. A set I' C R" is said to be radially connected from p € R™ if
{r:r =dist(p,q), ¢ € T} is a connected interval.
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If 0SS is radially connected from p, then we can apply to px S the argument of
“cutting and inserting and pasting” to obtain a cone OxC C R? with C connected.
Moreover, if p is in S, then C has a self-intersection and so we can obtain the
domain D C R? as above and hence the desired isoperimetric inequality for S. See
[C1, Theorem 1] for more details. Thus we have outlined the proof of the following.

THEOREM 4.2. [C1] If S is a minimal surface whose boundary is radially con-
nected from a point of the surface, then it satisfies 4w A < L2,

Although there is no relationship between radial connectivity and weak con-
nectivity, we have a stronger corollary than Li-Schoen-Yau’s: If S is in R" such
that 0.5 has two components then 95 is radially connected from a point in .S which
is a midpoint between the two boundary components, and hence (1-1) holds for
such S.

The volume comparison as in (4-1) holds for higher dimensional minimal sub-
manifolds as well with the same proof:

PROPOSITION 4.3. [C1]. If N C R" is an m-dimensional minimal submanifold
and p is a point in R™, then

Vol(N) < Vol(pxIN).

Similarly, the angle estimate (4-2) holds in higher dimension also. To show
this we need to define the geometric quantity angle:

DEFINITION 4.4. [C1]. Let M C R" be o k-dimensional rectifiable set and p a
point in R™. We define the k-dimensional angle of M from p, Angle(M, p) to be the
k-dimensional mass of (pxM)> N OB} (1) counting multiplicity, where (px M)
is the infinite cone obtained by indefinitely extending px M across M and 0B} (1)
is the unit sphere with center at p in R™.

Note that
Angle(M,p) = (k + 1w 10" (px M, p),
where w1 is the volume of a unit ball in R**! and ©%+!(px M, p) denotes the
(k 4 1)-dimensional density of px M at p. Using this, we can also define the angle
of a set in a Riemannian manifold.

LEMMA 4.5. [C1]. (a) logr is subharmonic on a minimal surface N> C R™.
More precisely, %A logr > 6, the Dirac delta function with singularity at p.
(b) On an m-dimensional minimal submanifold N C R", m > 3, Ar?=™ < mw,,0p.

PROOF. Use Ar? = 2n, [Vr| < 1 on N. And recall that in R™ Ar?—™
mwmdo and that near p N approximates to R™.

ol

Integrating these Laplacians and using the facts % < g—; and |, N rl_mg—;
Angle(ON, p), we get the following angle estimate.

PROPOSITION 4.6. [C1]. If p is an interior point of an m-dimensional minimal
submanifold N C R™, then

Angle(ON,p) > mwm,

and equality holds if and only if N is totally geodesic and star-shaped with respect
to p.
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5. Hyperbolic Case

The author and Gulliver [CG1], [CG2] investigated the possibility of extending
the cone method to a minimal surface S in S™ and H™. We showed that the area
comparison Area(S) < Area(px9dS) does hold for S C H™ but not for S C S™ (see
[CG1, Proposition 2, Remark 1]), whereas the angle estimate Angle(9S,p) > 2«
holds for S C S™ as well as for S ¢ H" (|[CG2, Proposition 2]). As a result we
proved the isoperimetric inequality

ArA < L% — A?

for a minimal surface S C H™ whose boundary is radially connected from a point
of S.

Just as px9S C R" is flat away from p, px9S C H™ has constant Gaussian
curvature —1 away from p. Therefore we can also develop px9S C H™ on H? as
we did px9S C R™ on R2. In H", however, we shall take a different approach:
apply Bol’s isoperimetric inequality. Bol showed that a simply connected domain
D on a surface satisfies the inequality

4rA < L? + (supp K)A?,

where K is the Gaussian curvature of the surface [Bo]. In this section Bol’s isoperi-
metric inequality will be used on a smooth surface which is very close to px95S.

Given a k-dimensional submanifold NV in a Riemannian manifold M, one can
define the extrinsic Laplacian /\ and intrinsic Laplacian /\ on N as follows. Let
e1,...,ex be orthonormal vector fields on a domain of N. Define

Af = szf(ei,ei) and Af= Zv2f(€i,€i)a

where V and V are the Riemannian connections of M and N, respectively. Then
one can easily prove the following.

LEMMA 5.1. Af =Af — ﬁf, where H is the mean curvature vector of N.

By this lemma the intrinsic Laplacian on a minimal submanifold or a cone can
be replaced with the extrinsic Laplacian which is easier to compute.

Let G(r) be a Green’s function of S* (or H*), whose gradient is sin' " rVr (or
sinh 7! =*rVr, respectively). For instance,

sinh 7 o
14 cosr 1+ coshr
Note that AG(r) = kwy6,. Assuming S* C S™ and H* C H", one can extend G

to a rotationally symmetric function G(r) on S™ and H". Then by Lemma 5.1 we
have

sinr

G(r) = log on §? and G(r) = log n H?.

LEMMA 5.2. [CG2] AG(r) > kwid, on minimal N C S™ or H", and AG =
kwr©d, on pxON, where © is the density of pxON at p.

DEFINITION 5.3. Let C C S™ be a k-dimensional rectifiable set and p a point
in S™. The k-dimensional angle Angle(C,p) of C viewed from p is defined by
~ Vol[(pxC) N OB} (1)]

Angle(C, p) i

)
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where OB (t) is the geodesic sphere of radius t < dist(p,C) centered at p, and the
volume is measured counting multiplicity. Clearly the angle does not depend on t.
There is obviously an analogous definition for the angle of C C H" viewed from
pe H™.

Note that
Angle(C,p) = (k + Dwi+10" ™ (px O, p),

where ©FF1(pxC, p) is the (k + 1)-dimensional density of pxC at p. Now we
integrate the Laplacians of Lemma 5.2 on N and on pxdN. Using 0r/0v < Or/dn
as in the previous section, we can prove the following.

PROPOSITION 5.4. [CG2]|. Let N be a k-dimensional minimal submanifold in
S™ or H"™ and p an interior point of N. In case of N C S™, we assume that
dist(p,q) < w/2 for all g € N. Then

Angle(ON,p) > kwy,.
Equality holds if and only if N is totally geodesic and star-shaped with respect to p.

Now let a(r) be the volume of the geodesic ball of radius 7 in H* and let f(r)
be a function on H* such that Vf = 2 Vr. Then f(r) = log(1 + coshr) for k = 2.
If we extend f to a rotationally symmetric function f(r) on H® > H’, then by
Lemma 5.1 we have

LEMMA 5.5. [CG1] Af > 1 on minimal N* C H" and Af =1 on H* and a
k-dimensional cone in H™.

Here the vertex of the cone should be the point p from which the distance r is
measured. Therefore integrating these Laplacians, we get the following.

PROPOSITION 5.6. [CG1]| Let N be a minimal submanifold of H" and p any
point in H™. Then

Vol(N) < Vol(pxIN);

equality holds if and only if p € N, and N must be totally geodesic and star-shaped
with respect to p.

If 0S5 is radially connected from p, then after applying the cutting and pasting
arguments one can think of pxdS as a cone with connected boundary. Now Propo-
sition 5.4 implies that for £k = 2 and N = S, the Gaussian curvature of pxdS at p
is either —oo if Angle(9S,p) > 2, or —1 if Angle(9S,p) = 27. In the case of —o0
one can slightly perturb pxdS near p to a smooth surface ¥ of Gaussian curvature
< —1; see [CG1, Lemma 3]. Then Bol’s isoperimetric inequality for ¥ implies

4 Area(px0S) < Length(9S)? — Area(px9S)?

(see [CG1, Lemma 4] for details). Hence using Proposition 5.6 and the mono-
tonicity of the quadratic function 4w A + A2 for positive area A, we can prove the
following.

THEOREM 5.7. [CG1] If S is a minimal surface in hyperbolic space H™ whose
boundary is radially connected from a point of the surface, then S satisfies 4mA <
L? — A?, with equality if and only if S is a geodesic disk in a totally geodesic
H? C H™.
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6. Variable Curvature Case

So far we have considered minimal surfaces in a Riemannian manifold M of
constant sectional curvature K. In this section we extend the results of the preced-
ing sections to minimal surfaces in a manifold M of variable curvature < K. The
main obstacle to this extension is that one cannot prove the area comparison

Area(S) < Area(px05)

for a minimal surface S C M. But we will get around this difficulty by comparing
the area of S with that of a cone in M.

When we study a Riemannian manifold of variable curvature the comparison
theorems are very useful tools. Among them, the one that we need most for our
purposes is the Hessian comparison theorem for the distances in M and in M.
Let r(x) be the distance from a fixed point p to z in M and denote the Hessian
of r by V?r. Assume that ~ is a geodesic from p to ¢ and v is a vector at g
perpendicular to 7. Then V2r(v,v) is the second variation of the length of
associated with the Jacobi field X along ~ satisfying X (p) = 0 and X(q) = v.
The Jacobi field minimizes the second variation among all vector fields along
with the same boundary conditions. Therefore if the sectional curvature of M™ is
bounded from above by that of a space form M™ which has a distance function 7
with 7(-) = dist(p, -) and the Riemannian connection denoted by V, then one gets
the Hessian comparison

(6-1) V2r(v,v) > vzf(u, u),

where u is a vector at ¢ € M with |u| = |v] and 7() = 7(q), which is perpendicular
to the geodesic ¥ C M from p to g (see [SY1] p. 4).

From this comparison one can obtain the following lemmas on the Laplacian of
some functions of distance.

LEMMA 6.1. [C4] Let S be a minimal surface in a simply connected Riemannian
manifold M of sectional curvature bounded above by a constant K. Define r(x) =
dist(p, x) for fized p € M.

(I) If K =0, we have on S:

(a) Ar? > 4;

(b) Br 2 ~(2 - [97]);

T

(¢) Alogr > 2mé, if pe S.
(IT) If K = —k%* <0, then

(d) Ar > k(2 — |Vr[?)coth kr;

() Alog(l+ coshkr) > —K;

sinh kr
f — > ; :
() AIOgl—Fcoshkr > 2oy if p €S

(g) Alogsinhkr > 276, — K ifpe S.
(II) If K = k? > 0, then
(h) Ar > k(2 — |Vr|?) cot kr;
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(i) Alogsinkr > 276, — K ifpe S and r < 2—7;;

sin kr T
i) Alog ———— > 276, i Sandr < —.
6) Og1+coskr_ oy if p €S an r<or

PROOF. Denote the metrics of M and M by g and g, respectively. Assume
first that K = 0 and M = R". A straightforward computation in orthonormal
coordinates of R" gives

(6-2) V' = 2g.
Since

V22 = V2 4 2Vr @ Vr and Vo7 = 27V F 4+ 2VF © Vv,
(6-1) and (6-2) imply

V22 > 2g.
This and Lemma 5.1 imply (a). For (b) we compute
1 1 1 1
— N1/2 _ qio t o2 — S A2 L > 2o 2
Ar = divV(r?) d1V2TV7° 27’AT 5,3 (Vr, 2rVr) > r(2 [Vr|%).

Similarly for (c)
1 1 1,2 )
Alogr =div—=Vr = =Ar — <|Vr|* > = (1 - |Vr[?) > 0.
r r r2 r2

Near p, however, S can be identified with 7},5, the tangent plane of S at p, on which
Alogr = 276, with respect to the Euclidean metric. Therefore on S, Alogr >
270p.

Assume now that K = —k? < 0. For any circle C C M of radius a with center
at p, the length of C equals I(a) = (27/k) sinh ka. So the geodesic curvature of C is
I'(a)/l(a) = k coth ka. Hence the principal curvature of the geodesic sphere ¥ C M
of radius a with center at p is kcoth ka everywhere on ¥ in any direction. Note
here that both the tangent space and the normal line to ¥ are the eigenspaces of

the Hessian of 7, V’F. Therefore one can easily see that

(6-3) ¥ cosh k7 = (k2 cosh k)7,
and hence
(6-4) V'F = kcoth ki (g — VF ® V7).

Thus Lemma 5.1, (6-1), (6-4) and the fact that Vr(= gradr) is an eigenvector of
V2r with eigenvalue zero prove (d). Then

ksinh kr k2 |2 k sinh kr

Alog(1 hkr) = di = \Y T
og(1 + cosh kr) v 1+ cosh kr " 1+ cosh kr [V 1+ cosh kr "
2 2 2(1 _
S 2k* cosh kr + k*|Vr|?(1 — cosh kr) > g2,
- 1+ cosh kr -
which gives (e). Now we have
sinh kr k k2 cosh kr k
Al = di =———Vrf A
8 T cosnhr ~ W anher ¥ aermal KU ey

S 2k? cosh kr(1 — |Vr|?)

- sinh? kr

> 0.
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However,
1 sinh kr
T = o o T ot Br
is a fundamental solution of /A on H?(K) since
1 1
——— = —sinhk
277f/(r) A S T

is the length of a Jacobi field. So (f) follows. Adding (e) to (f) gives (g).

Assume finally that K = k% > 0. As in the case of K < 0 above, one can show

that in M" of constant sectional curvature K
V- cos ki = —(k? cos kT)g
and
V°F = kcot ki(§ — VF @ VF),
from which (h) follows. And then

sin kr k k2 cos kr
NAlog —— =di = 2 A
%87 + cos kr Y Sinkr vr sin? kr Vi ankr
2k?2 k
> =21 |vr?) > 0.
sin“ kr
As in (f),
1 sin kr
= — 1 _
F(r) T i) 1+ coskr
is a fundamental solution of A on S?(K) since
1 1
- — Zgink
2rf'(r)  k ST

is the length of a Jacobi field. Thus (j) follows. For (i) we compute

kcoskr

Alogsin kr = div < Vr) = —k?csc? kr|Vr|? + k cot krAAr

sin kr
> k% esc? kr[2 cos® kr — (1 + cos? kr)|Vr|?] > —k2.
Note that

d
— log sin kr
: r _
}13(13 d sinkr 1

dr g 1+ coskr

7

which proves (i).

O

LEMMA 6.2. [C4] Let T' = pxC be the cone from p over a curve C in a
Riemannian manifold M of nonpositive constant sectional curvature K = —k? and

define 7(x) = dist(p,z),p € M. Then, on T,
(a) A2 =4 if K =0, while Alog(1 + cosh k) = —K if K < 0.
_ . . sinh k7
(b) Alog7 = afﬁ if K =0, while Alog TT coshior
a = Angle(C, p).

= adp if K < 0, where
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PRrROOF. On I' V7 is perpendicular to H , the mean curvature vector of I'; hence
Lemma 5.1 implies that for any function f of distance 7, Af = Af. Moreover
IV7| =1 on I'. It follows from (6-2) and (6-3) that all the inequalities in Lemma
6.1(a), (c), (e) and (f) become equalities. This proves the lemma except for the
constant «. The constant 27 that appears in the Laplacian of the fundamental
solution on R? and H? comes from the limit as a — 0 of the circumference of the
circle of radius a with center at p divided by a. Similarly, if ¥5(a) denotes the
geodesic sphere of radius a with center at p, « equals

lir% 1 Length(I' N X;5(a)),
a—0 Qa
which is called the angle of C viewed from p and denoted Angle(C, p). O

Now we have the main theorem as follows.

THEOREM 6.3. [C4] Let S be a minimal surface in a complete simply connected
Riemannian manifold M with sectional curvature bounded above by a nonpositive
constant K. If 0S is radially connected from a point of S, then S satisfies the
isoperimetric inequality

(6-5) 1A < L* + KA?,

where equality holds if and only if S is a geodesic disk in a surface of constant
Gaussian curvature K.

PRrOOF. First suppose K < 0. Integrate Lemma, 6.1(e) to get

ksinh kr Or
—KA < [ Alog(l h kr) = —_
rea($) < /S og(1 + cosh kr) /35 1+ cosh kr Ov

S/ k sinh kr Br_/ k sinh kr = (v,
o

o5 1+ coshkr o~ Jps 1+ coshkr

where v, 7 are as in the preceding sections and 7 is a unit tangent to 95.

Now the key step in the extension to the variable curvature case is to carry
the last integral above over to the simply connected space form M of sectional
curvature K. Let C1,...,C; be the components of 0S. Choose ¢; € C; for each
i=1,...,1, and take ¢i,...,q € M in such a way that r(g;) = 7(¢;). Suppose
that each curve C; is parametrized by c¢;(s) with arclength parameter s such that
¢ = ci(0) = ¢;(\;), \; = Length(C;). Then we construct a curve C; in M starting
from ¢; and parametrized by ¢;(s) with arclength parameter s € [0, A\;] and ¢;(0) = ¢;
such that the unit tangent vector ¢;(s) makes an angle of cos™'(Vr, c/(s)) with Vr.
Of course the curve C; is not unique; but given a two-dimensional infinite cone px C
containing g;, one can uniquely determine a curve C; on pxC with the prescribed
properties. Since px C is developable, one can also assume without loss of generality
that ¢;(0) = ¢;()\;), or equivalently, that C; is closed. Anyhow, r on C; coincides
with 7 on C; in the sense that

r(ci(s)) =7(ci(s)) and (Vr, ci(s)) = (VF, . (s)).
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Hence

k sinh kr
—K Area(S) < § 1— /(5))2
rea(S / T T coshior (Vr, ci(s))

k sinh k7
1 — (VF,&(s))2.
Z/ 1+ cosh k7 (vr,&is))

If 7 is the outward unit conormal to C; on pxC}, then

_ !
ksinh k¥ OF
< —— -
Area(9) < E / T+ cosh i 07 ;21 /pxc ——Alog(1 + cosh kr)

ZArea xC;) (by Lemma 6.2(a)) = Area(pxC),

with C = Uézl C;. Also it follows from the definition of C; that
Length(9S) = Length(C).

On the other hand, integrating Lemma 6.1(f) over S and Lemma 6.2(b) over
pxC as above, we get

27T</A1 sinh kr 7/ k Or </ k  Or
&7 1+ coshkr as sinh kr Ov = J5g sinh kr On

k or sinh k7 -
= == =5== Alog ———— = Angle(C, p).
/C smbkr o Joxe o 1tcoshkr e e(C.p)

Moreover, since 7|ss coincides with 7|5, C is also radially connected from p. Hence
from the cutting and pasting arguments and the approximation argument as in
[CG1, Lemma 4] it follows that

4rArea(px C) < Length(C)? + K Area(px C)>.

Therefore using the area comparison obtained above and the monotonicity of the
quadratic function 47A — K A? of A > 0, we obtain the desired isoperimetric in-
equality for S in case K < 0.

If equality holds in the isoperimetric inequality, then

Area(S) = Area(pxC)

and therefore equality should hold in Lemma 6.1(e). Consequently equality holds

in (6-1) and |Vr| = 1 on S as we easily see in the proof of Lemma 6.1(e). It follows

that S = pxdS and, by Index Lemma, S is constantly curved and hence totally

geodesic. Thus Schmidt’s theorem [Sm]| completes the proof in case K < 0.
Second, suppose K = 0. Lemma 6.1(a) and Lemma 6.2(a) imply

Area(S) < Area(pxC),
and Lemma, 6.1(c) and Lemma 6.2(b) imply
2m < Angle(C, p).

Thus the theorem follows from the arguments of Section 4. O
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In showing Area(S) < Area(pxC) in the proof of Theorem 6.3, the main idea
is to construct the cone pxC in M such that

/ ksinh kr Or / ksinh kr OF
o

s 1+coshkrdn  Ja 1+ coshkr dn’

in other words,

rlos = 7le and (9r/n)os = (97/0)
It is interesting to remark that this idea can be interpreted as giving a constant
curvature metric § to px S that preserves r, the length of 95 and the angle between

Vr and 0S. This new metric § plays a key role in the proof of the embeddedness
of a minimal surface in a Riemannian manifold in [CG3].

7. Varifolds and Flat Chains

Some minimal surfaces in R3, like compound soap films, contain singular curves.
They are not smooth but smooth almost everywhere. In some literature they are
called stationary varifolds or area minimizing currents. Here it is interesting to ask
whether the isoperimetric inequality 47 A < L? holds also for these surfaces with
singularities. In [C2] the author gave an affirmative answer; moreover he derived
a new type of optimal isoperimetric inequality for certain types of soap films with
singularities.

First we state sharp isoperimetric inequalities for domains in the plane where
only a specific part of the boundary counts toward the length.

LEMMA 7.1. [C2] Let l; and Iy be the rays emanating from a point O with an
angle of 6 < w. Let C be a curve from a point of Iy to a point of .
(a) Suppose that C lies in the smaller sector of the two formed by the rays (C

may lie in either sector if 6 = w). Define D as the domain bounded by
l1,l2, and C. Then

20 Area(D) < Length(C)?,

and equality holds if and only if C is a circular arc perpendicular to the
rQYs.
(b) If C lies in the larger sector, then

27 Area(D) < Length(C)?,

where equality holds if and only if C is a semicircle perpendicular to one
of the two rays.

DEFINITION 7.2. A compound Jordan curve is a one-dimensional rectifiable
connected set in R™ which is the union of finitely many Jordan curves (= homeo-
morphic images of a circle).

LEMMA 7.3. [C2] If C is a compound Jordan curve in R™ and p a point of C,
then
47 Area(px C) < Length(C)2.

Equality holds if and only if pxC can be developed, by cutting and inserting, one-
to-one onto a disk.
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DEFINITION 7.4. (a) Suppose V is an m-dimensional varifold of locally
bounded first variation in R™, and that Z is the generalized boundary of V
with the generalized boundary measure 0. Assume Z is (m — 1)-rectifiable.
Let

: o(Ba(p))
V@) = I e 70 B, ()
Then define the varifold boundary OV of V' to be the varifold v(Z,v). In
other words, OV is the (m—1)-dimensional rectifiable varifold with support
Z and multiplicity ¢. Clearly psy = o.
(b) For an m-varifold V = v(M,0), the varifold cone px V' from p over V is
the (m +1)-varifold v(px M, 0), where 6(y) = 0(x) whenever y lies on the
line segment from p to x € M.

T € Z.

PROPOSITION 7.5. [C2] Let V' be an m-varifold of locally bounded first variation
in R™. If the generalized boundary Z of V is rectifiable and V is stationary in
R™ ~ Z, then for any p € R"

M(V) < M(pxdV).

PROOF. By the first variation formula for the mass of V' with the variation
field Y,

SV(Y) = /Z v, Y) do.

Take Y to be the radial vector field defined by Y (x) = x—p. Then Y is the initial
velocity vector field of the 1-parameter family of homothetic expansions {¢;} given
by ¢¢(x) = (1 +t)(x—p) + p. Hence

M(¢pyV) = (1 +t)"M(V),
and so

SV(Y) = %(1 MV o = mM(V),

On the other hand, since Z is rectifiable, Z has tangent spaces almost every-
where and v is normal to Z. Let n(z) be a unit vector which is perpendicular to Z
at x € Z and lies in the subspace of R" spanned by Y (x) = 2—p and the tangent
space to Z at x. Taking the negative of 7 if necessary, one may assume (7,Y) > 0.
It is not difficult to see that

(1Y) < (n,Y).

Let r(z) = |[Y(x)|. Then dr is the 1-form dual to the unit radial vector field Y/|Y|.
Hence

mM(V) = /

Z<V7Y>d0'§/z<777Y>dJ:/ZYJ (dr Ndo) = mM(pxdV),

where J denotes the interior multiplication. O

LEMMA 7.6. [C2] Let W = u(Z, %) be a rectifiable 1-varifold in R"™ with ) > 1
and let p be a point in Z. If Z is a compound Jordan curve, then

4rM(px W) < M(W)2.
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THEOREM 7.7. [C2] Suppose that V is a 2-varifold of locally bounded first
variation in R™, the generalized boundary Z of V is rectifiable, and V is stationary
in R™ ~ Z. If the multiplicity of OV is > 1 and Z is a compound Jordan curve,
then

4r M(V) < M(9V)2.
PrOOF. Use Proposition 7.5 and Lemma 7.6. O

The inequality of Theorem 7.7 resembles the classical isoperimetric inequality.
But here we shall see a new optimal isoperimetric inequality for some specific soap
films as follows.

DEFINITION 7.8. Let Y* C R® be the union of k great semicircles on a sphere
meeting at the north and south poles at equal angles of 2r/k. Define Y5 C 15 to
be the set of 2-dimensional flat chains T mod k in R™ with multiplicity 1 almost
everywhere such that sptOT is homeomorphic to Y* and the associated varifold
V' = u(sptT, 0) is locally of bounded first variation in R™.

THEOREM 7.9. [C2] Suppose that T is a 2-dimensional area minimizing flat
chain mod k in Y5, If C1,Cy, ..., Cy are the curves that constitute sptOT and have
common end points, then

k
2 M(T) < ) _ Length(C;)?.
i=1
And equality holds if and only if spt T is the union of k flat half-disks meeting each
other along the common diameter.

Let Y be the union of three half-disks meeting each other along their common
diameter at equal angles of 120 degrees. Let T be the intersection with the unit
ball B, (1) of an infinite cone from p through the 1-skeleton of a regular tetrahedron
whose center of mass is p. In [Ta] J. Taylor proved that the disk, Y and T are
the only three cones that are area minimizing under Lipschitz maps leaving the
boundary fixed. In view of this fact and Theorem 7.9, we would like to propose the
following problem.

OPEN PROBLEM 7.10. Suppose that V is a 2-varifold with multiplicity 1 almost
everywhere and is locally of bounded first variation in R™ such that V is stationary
outside the rectifiable boundary spt OV . Suppose also that sptV is homeomorphic to
T. Let C1,Cs,...,Cs C sptdV be the curves that constitute spt OV and lie between
4 junctions of spt V. Show that

6
2cos ' (—5) M(V) < Z Length(C;)?,

i=1
where equality holds if and only if sptV is a homothetic expansion (or contraction)
of T.
8. Higher-Dimensional Minimal Submanifolds

So far we have considered two-dimensional minimal surfaces only. In this section
we study the isoperimetric inequality of higher-dimensional minimal submanifolds.



344 JAIGYOUNG CHOE

Given a domain D in R™ it is well known that if w,, is the volume of a unit
ball in R™, then

(8-1) m™w,, Vol(D)™ 1 < Vol(dD)™

and equality holds if and only if D is a ball. In view of Open Problem 1.1 it is
tempting to conjecture

OPEN PROBLEM 8.1. Any m-dimensional minimal submanifold N of R" sat-
isfies the classical isoperimetric inequality

m™wm, Vol(N)™ 1 < Vol(ON)™,
where equality holds if and only if N is a ball in an m-plane of R™.

This problem is far less settled than Open Problem 1.1. The only two cases that
are known to hold are i) when ON lies on the (n — 1)-dimensional sphere centered
at a point of N (by monotonicity) and (ii) when N is area minimizing (by Almgren
[Al]).

8.1. Monotonicity. Closely related to the isoperimetric inequality of a min-
imal submanifol N is the monotonicity property: the volume of N N By (r) divided
by the volume of the geodesic ball of radius r is a nondecreasing function of r.
This property has been proved for R” and H" [An], but not for S” (but see [GS],
p. 353).

LEMMA 8.2. (Monotonicity) Let N be an m-dimensional minimal submanifold
in R™ and r the distance in R™ from p € R™. Then Vol(N N B,(r))/r™ is a
monotonically nondecreasing function of r for 0 < r < dist(p, ON).

PROOF. Write N, = N N By(r). Integrate (3-1) (Ar? = 2m) to obtain

1
(8-2) mVol(N,) = - Nr? = / r|Vr].
2 JN, ON,
Denote the volume forms on N and N by dv and dS,., respectively. Then we have
1
dv = ——dS,dr.
v |V7~| T
Then p
— |Vr|*dv :/ |Vr|dSy.
dr Jy, ON,
Hence
Vol(N,.) = d/ |Vr|* dv = dVl(N) d/(l |Vr?) dv < dVl(N)
mVo T_rdrNTT v =r--Vol(Ny TdTNT r v < ro-Vol(N:).
In the inequality above we used the fact that |Vr| <1 on N. Hence
d Vol(N,) > 0. 0
dr ™

THEOREM 8.3. Let N be an m-dimensional minimal submanifold of R™. If ON
lies in a sphere centered at a point p of N then

m™w, Vol(N)™ ™1 < Vol(ON)™.
Equality holds if and only if N is a ball.
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ProOOF. Let R be the radius of the sphere. Applying |Vr| <1 to (8-2) gives

mVol(N) = / FIVr| < R-Vol(ON).
ON

Since lim,._,g Vol(N,)/r™ = wy,, from Lemma 8.2 we get
wm < Vol(N)/R™.

Hence
mVol(N) < w /™ Vol(N)Y™Vol(dN),

which gives the desired inequality. Equality holds if and only if N is a cone with
density at the center equal to 1 if and only if NV is a ball. O

8.2. Almgren’s Proof. We have seen at the end of Section 1 that Open
Problem 1.1 is true for area minimizing surface. Likewise it is shown by Almgren
[Al] that Open Problem 8.1 is true for area minimizing submanifolds in R™. A
submanifold is said to be area minimizing if its volume is less than or equal to the
volume of every other submanifold having the same boundary.

THEOREM 8.4. [Al] If N is an m-dimensional area minimizing submanifold of
R™, then

m™wm Vol(N)™ 1 < Vol(ON)™
with equality if and only if N is a ball.

Although the proof involves some complicated technicalities, the basic idea is
very elegant and not hard to understand. So we shall introduce the argument
sketched by B. White in [Wh] for the special case of 2-dimensional surfaces in R3
which generalizes to higher dimension.

PROPOSITION 8.5. |Al], [Wh] If S is an area minimizing surface in R® with
area T, then its perimeter is greater than or equal to 2w, with equality if and only
if S is a disk.

PRrROOF. Among all area minimizing surfaces with area m, let S be the one
whose perimeter is as short as possible. It follows that S minimizes the ratio

Length(9.9)?
Area(S)

among all area minimizing surfaces (because the ratio is invariant with respect to
dilations). Of course since a disk of area 7 and circumference 27 is area minimizing,
0S must have length < 27; our goal is to show that it has length exactly 2.

Let C; be a 1-parameter family of curves with Cy = 0.5, and for each C; let S
be a surface of least area with boundary 9S; = C;. Because Length(C})?/Area(S;)
attains its minimum at ¢ = 0 we have

0 ( d ) Length(C;)?

dt/i=0 Area(S;)

and therefore

2 d 1 L/ d
(8-3) 0= = Length(Co) (E)tZOLength(Ct) = Length(Cp) (E)t:OArea(St).
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Now if in the 1-parameter family of curves C, the initial velocity of each point
x € Cp is v(z), then

0
where (z) is the curvature vector of Cy at = and v is the outward unit conormal
to 0S. The first of these formulas is the first variation formula for the length of the
curves C; and the second is the first variation formula for the area of the minimal
surfaces S;. Combining these formulas with (8-3) gives

0= / (v, 27k + Length(Co)v).
Co

Because this holds for every vector field v, it follows that 27« + Length(Cop)r must
be identically 0. That is, the curve C has constant curvature 5-Length(Cp).
Recall that Length(Cp) < 27 (we are trying to prove equality), so Cy has curvature
everywhere less than or equal to 1. The proposition then follows from the following
result.

PROPOSITION 8.6. [Al], [Wh] If C is a closed k-dimensional submanifold in
R™ with mean curvature everywhere less than or equal to k, then the volume of C
is greater than or equal to the volume of the unit k-sphere, with equality if and only
if C is congruent to the unit k-sphere.

PROOF FOR k =1, m = 3. Let K be the convex hull of C. Let n : 0K — S?
be the Gauss map, which assigns to each z € K the outward unit normal n(z) to
K at z. Note that at a corner of K there are many outward unit normals so the
map n is multivalued.

The first observation is that n maps K ~ C to a set of zero area in S?. To see
this, consider for example the case where C consists of two congruent circles with
one above the other so that K is a cylinder. Then n maps the sides of the cylinder
to a great circle and the top and bottom to a pair of points.

On the other hand, the image of K under n is all of S?, so the image of CNOK
under n must have area 4m. It is not too hard to see that an infinitesimal piece of
C at zx of length ds is mapped to a set of area at most

2 |k(x)| ds,
which is less than or equal to 2 ds because |«(x)| < 1. Thus
Area(n(C)) <9
Length(C) —
But the area of n(C) is 4, therefore the length of C is at least 2. O
The key ingredients in the proof of Proposition 8.5 are the existence of the area
minimizing surface S; and the continuity of Area(S;) to Area(S) as t — 0, both

of which would not be valid if S were a general (not necessarily area minimizing)
minimal surface.

9. The Calibration Method

There are numerous proofs for the original problem of Dido; among these we
will introduce the most recent one given by Hélein [He| in 1994. His proof, in fact,
holds even for curves on a sphere and on a hyperbolic plane as follows.
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THEOREM 9.1. Let S be a surface of Gaussian curvature K (=1 or —1). If a
closed curve C on S has length L and encloses a domain of area A, then

4rA < L? + KA?,
where equality holds if and only if C is a geodesic circle.

PrOOF [He]. Let D be the domain enclosed by the smooth curve C on S.
(z,y) denotes a point in D x dD. For fixed y € 9D, cover D with the set of all
circular arcs emanating from y and perpendicular to 9D at y. Let V(z,y) be the
unit tangent vector to the arc pointing away from y. Then V(z,y) is a unit vector
field on D x 0D. One can easily compute

1 /
divV = 1+ /) (v, V)
f(r)
where v is the unit inward normal to 9D at y, r = dist(x, y) and f(r) =7, sinr or
sinhr depending on whether K =0, K = +1 or K = —1. Moreover one can show
that if r = dist(z, 2), 2,2 € D, then
/
diVLf(T)V’I’ =47, — K.
fr)

Let w,dl be the volume forms of D, 0D, respectively. Then we have a two-form
a =V wAdl where 1 denotes the interior multiplication such that

1+ f'(r)

da=divVw Adl =
f(r)

(v, Vryw Adl.

Therefore

Joao™ = o, i e [ ([ (5557 7))
z/D(/jjdiv(%{é”Vr)w)wz/D(/DMﬂém—K)w)w

= / (4r — KA)w = 41A — KA%
D

On the other hand

(9-1) / da:/ a < / di Adl = L2
Dx0D 0D x0D 0D x0D

Thus we get 47A < L? + KA?. In (9-1) inequality becomes equality if and only if
V' is perpendicular to 0D at the end # y of the circular arc, which occurs if and
only if 0D is a circle. O

10. Weak Isoperimetric Inequalities

It would be beautiful if Hélein’s argument generalized to minimal surfaces as
well. But various attempts made by the author ended up with no results. In
this section, however, we will exploit Simon’s argument which resembles Hélein’s
(see [CG2], p. 181) and obtain an isoperimetric inequality which is not sharp but
which holds for all minimal surfaces. We will also present Ros’s argument which
improves Simon’s inequality, and derive Sobolev-type inequalities related with the
weak isoperimetric inequalities.
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10.1. Weak Inequalities.

THEOREM 10.1. [C4], [CG2] Let S be a minimal surface in a complete simply
connected Riemannian manifold M with sectional curvature bounded above by a
constant K. If K <0, then

(10-1) 2mA < L? + KA.

In case K >0, (10-1) holds under the additional assumption diam(S) < 5

&

ProOF. (i) K = —k? < 0. Integrating Lemma 6.1(g) for fixed p € S, we get

(10-2) 2r — KA < / Alogsinh kr < / k coth kr.
S as

Recall that r(z) = dist(p, ) for fixed p € M. Since (10-2) holds for any p € S
we can let p vary on S and integrate (10-2) over S and apply Fubini’s theorem to

obtain
2mA — KA?% < // k coth kr :/ /kcothkr
a8 a8

/ /Ar (by Lemma 6.1(d))

s

(ii) K = 0. Integrate Lemma 6.1(c) twice and apply Lemma 6.1(b) as above.
(iii) K > 0. Integrate Lemma 6.1(i) twice and apply Lemma 6.1(h). O

THEOREM 10.2. [CG2] Let N be an m-dimensional minimal submanifold of
a complete simply connected Riemannian manifold M™ with sectional curvature
bounded above by a negative constant —k*. Then

k(m — 1)Vol(N) < Vol(ON).

PROOF. On a space form M" of sectional curvature —k2, V’r = kcoth kr(g —
dr ® dr), where g is the metric tensor of M. Hence the Hessian comparison (6-1)
and Lemma 5.1 imply that on N

(10-3) Ar > k(m — |Vr|?) coth kr.
Therefore
sinh kr k2 sinh kr
Al hkr = div ( k = 24k A
og cosh kr iv ( P r) ol hr |Vr| + cosh or r

> k*(m — |Vr|?) > k*(m —1).

Hence

1 sinh kr
k(m—1)Vol(N) < — Al hkr < < Vol(ON). (|
(m — 1)Vol(N) < k/N og cosh kr < /aN g < Vol(dN)
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10.2. Simon’s and Ros’s Methods. The weak isoperimetric inequality
oA < L?

for all minimal surfaces in R" was originally proved by L. Simon (see [Bm, p. 318] or
[02, p. 1210]). We review Simon’s argument briefly. As in (3-1), we have Ar? =4
on a minimal surface S C R™. Hence

2
(104) Alogr = r_2(1 —|Vr?) > 274,
and

1 1

Integrating (10-4) over S yields

1 Orz(y) 1
10-6 27T§/ Alogr.(y g/ g/ —_
( ) yeSs ( ) yedS rm(y) v yeos rm(y)

where r,.(y) = dist(x, y) for some fixed x € R™ and v is the outward unit conormal
to 0S. Integrating (10-5) over S gives

(10-7) /zES Tytfﬂ) = ~/ac€S Ary(w) = /xeas 87};’5@'

Let  vary over S, integrate (10-6) over S and use Fubini’s theorem and (10-7) to

get
N
zeS JyedS ri(y) yedS JzeS ri(y) yedS JzeS T'y(l')

(10-8) S/ / Mg/ / 1=1L2
yeds Jxeds ov yeds Jzeds

Recently A. Ros improved this inequality by the factor of v/2. His idea goes as
follows. First, note that one can write

ory(a) _ (o—y,v(@))

I 2=yl

Note also that the roles of x and y can be interchanged in (10-8). Hence by adding
up each expression (10-8) for x and y, we get

was [ [ lmwrev)
= Jycos Jecos lz—y
Therefore

1rA < / N / @) =)

1/2
<L (/ / lv(x) — z/(y)|2> (by the Holder inequality)
yeodsS JxedS

1/2
-t (/ / 2) (since [, v(x) =0 on minimal S)
y€oS Ja€dS
= V2L
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Thus:
THEOREM 10.3. (Ros) For any minimal surface in R™,
2V2mA < L2
The author has recently heard that A. Stone also obtained this result [St].

10.3. Sobolev-type Inequalities. Due to the analytic nature of the proofs
of Theorem 10.1 and 10.2 we can derive, applying the same argument, the Sobolev-
type inequalities corresponding to the above isoperimetric inequality. As is well
known, one can recover the isoperimetric inequality from the Sobolev-type inequal-
ity using characteristic functions as test functions. For more Sobolev-type inequal-
ities, see [CG2].

PROPOSITION 10.4. [CG2| Let f be a compactly supported smooth nonnega-
tive function on a minimal surface S in a complete simply connected Riemannian
manifold M™ with sectional curvature bounded above by a constant K = +k%. If
K = k2, assume also that diam(S) < 7/(2k). Then

o = (o) +x (1)

ProOF. For K = k? we have from Lemma 6.1(i)
div(fVlogsinkr) > (Vf, kcotkrVr) — Kf + 2nf §,.
Integrating both sides, we see that for a fixed p =y € S

27 f(y) < k / IV £ (@) cot kry () + K / @

zes
where r,(x) = dist(y, z). Moreover by Lemma 6.1(h)
div(fVr) > (Vf,Vr) + Ekf cot kr.
So
bttt < [ Vi

yeS yeS
Therefore

0 [ 1< / g (k[ v@letin@ vk [ f)
:/m Vi@ (/ F(y) cot kra(y )>+K(/Sf>2
(e ()

A similar proof is valid for K = —k2. O

PROPOSITION 10.5. [CG2] Let f be a nonnegative smooth function with com-
pact support on an m-dimensional minimal submanifold N in a complete simply
connected Riemannian manifold of sectional curvature bounded above by a negative

constant —k%. Then
bm=1) [ 1< [ (91
N N
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ProOF. From (10-3) we have
div(fVr) > (Vf,Vr)y + k(m—1)f.
Integrate both sides over N. O

11. Modified Volume
Unlike the isoperimetric inequalities 47 A < L? and k*wj, Vol(D)*~1 < Vol(9D)*
in space (see (1-1) and (8-1)), the inequality (6-5) 47A < L? + K A? for minimal
surfaces in space forms of curvature K has a correction term. In this section,
however, we introduce a modified volume M,(N) of a k-dimensional minimal sub-
manifold N of a space form and obtain an isoperimetric inequality like (8-1) with
no correction term:

kFwi M, (N)*=1 < Vol(aN)*.

DEFINITION 11.1. Let p be a point in S™ and let r(x) be the distance from p to
x in S™. Given a k-dimensional submanifold N of S™, the modified volume M,(N)
of N with center at p is defined to be

Mp(N):/Ncosr.

Similarly for N C H", define

Mp(N):/ coshr.
N

Obviously M,(N) < Vol(N) for N C 5™, and M,(N) > Vol(INV) for N C H".
Suppose that S™ is embedded in R"*! with p the north pole (0,...,0,1) and that
H™ is embedded as the hypersurface X,z 4+ --- + 22 — 22, = —1,2,41 > 0, of
R™*! with the Minkowski metric ds* = dz? +- - -+da? —da? | such that p becomes
the point (0,...,0,1) € X. Note that cosr is the Jacobian of the projection of S™
into x,4+1 = 0 and that in the Minkowski space

dx; = coshrdr, 1 =1,... n.
Therefore we have the following.

LEMMA 11.2. [CG2] M,(U),U C S™ or H", is the Euclidean volume of the
orthogonal projection of U into the horizontal hyperplane x, 11 = 0, counting ori-
entation.

It is well known that sinr and sinhr are the lengths of Jacobi fields in S? and
H?, respectively. Hence it is easy to show that
V- cosr = —(cosT)g on S, V’ coshr = (coshr)g on H"

(see [CG2, Lemma 3]). Hence by Lemma 5.1, if N C S™ or H" is a k-dimensional
minimal submanifold or a cone, then

(11-1) Acosr = —kcosr, Acoshr = kcoshr,

where the vertex of the cone should be the point p from which the distance function
r is measured. Integrating (11-1) and following the proof of Proposition 4.3 or
Proposition 5.6, we get the following.
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PROPOSITION 11.3. [CG2] For any minimal submanifold N in S™ or H" and
any point p in S™ or H™,

(11-2) M,(N) < M,(pxdN).

We now have the comparison formulas that we need: Proposition 5.4 and Propo-
sition 11.3. With these in our hands we can use the arguments of developing and
cutting and pasting as in Section 4 and prove

THEOREM 11.4. [CG2]| Let S be a minimal surface in S™ and p a point of S.
Assume that v < w/2 on S. If 3S is radially connected from p, that is, {s : s =
dist(p, q), q € OS} is a connected interval, then 47M,(S) < Length(dS)?. Equality
holds if and only if S is a totally geodesic disk with center at p.

The same inequality is false for minimal surfaces in H”. In fact, among domains
in H? with prescribed boundary length, the modified area has no upper bound.
Moreover, our proof fails in H™ because the projection in Minkowski space R™*+!
from H™ onto the hyperplane z,,.1 = 0 is a length-increasing map. In Theorem
11.6 below, however, it will be shown that the same inequality holds, even in higher
dimension, in case 0S lies in a sphere of H™ centered at p.

As we have seen in Section 8, the monotonicity of the volume of a minimal
submanifold is closely related to the isoperimetric inequalities. The monotonicity
has been proved for R” and for H™ [An], but not for S™ (see however [GS], p. 353).
The next proposition shows that modified volume enjoys the monotonicity in all
three cases.

PROPOSITION 11.5. [CG2] Let N be a k-dimensional minimal submanifold
in S™ (H", respectively) and r the distance in S™ (H", respectively) from p.
Then M,(N N B,(r))/sin®r (M,(N N B,(r))/sinh* r, respectively) is a mono-
tonically nondecreasing function of r for 0 < r < min(w/2,dist(p,ON)) (0 <r <
dist(p, ON), respectively).

PROOF. Define N, = N N B,(r) C S™. Then

1 1 1

Mp(NT):——/ Acosr:—/ sinrg:—sinr/ [Vr].
k N, k N, aV k N,

Denote the volume forms of N and ON, by dv and dS,, respectively. Then dv =
—=—dS,dr. Hence

Vr|
d , d ["
— cosr|Vr|®dv = — cosr|Vr|dS,dr = cosr [Vr|.
dr Jn, dr Jo Jon, AN,

Therefore

sinr sinr d 9
M,(N,) = 5 cosr/aM |Vr| = p— . cosT|Vr|

sinr d sinr d
cosT

M, (N,.).

~ kcosrdr [y, kcosrdr 7

Hence

dii log[M,,(N,.)/ sin" 7] > 0.

Thus M,(N,)/sin” r is nondecreasing; similarly for N C H". O
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A very special case of the radially connected boundary occurs when ON lies in
a geodesic sphere. In this case the conclusion of Theorem 11.4 may be extended to
hyperbolic space, and the minimal submanifold may have any dimension.

THEOREM 11.6. [CG2| Let N be o k-dimensional minimal submanifold in S™
or H™. Assume that ON lies in a geodesic sphere centered at a point p of N and

that r is the distance in S™ or H™ from p. Furthermore, in case of N C S™, assume
r <m/2 on N. Then

EFwi M, (N)* =1 < Vol(aN)*.
Equality holds if and only if N is a totally geodesic ball centered at p.

PrROOF. Assume N C H" and let R be the radius of the geodesic sphere in

which ON lies. Then
1 1 ) or
M,(N)=— [ Acoshr=— sinhr—
k N k ON 81/
or

1 1

Since lim, o M,(N N B,(r))/sinh* = wy, we obtain from Proposition 11.5
M,(N)/sinh* R > wy..
Hence )
M,(N) < Ew;” "M, (N)YEVOl(ON)
and so the desired inequality follows. Obviously equality holds if and only if NV is a

cone with density at the center equal to 1, or equivalently, N is a totally geodesic
ball. A similar proof holds for N C S™. O

12. Relative Isoperimetric Inequality

By the classical isoperimetric inequality (8-1) for D C R™ we have
(12-1) n"w, Vol(D)"~! < Vol(dD)".

An immediate consequence of this inequality is that if H is a closed half space of
R™ and D is a subset of H then

2 n"w, Vol(D)"~! < Vol(dD ~ 0H)"

and equality holds if and only if D is a half ball with the flat part of its boundary
contained in 9H. This follows if one applies (12-1) to the union of D and its mirror
image across 0H. Then a natural question to ask is the following.

OPEN PROBLEM 12.1. If C C R" is a convexr domain and D is a subset of
R™ ~ C, does D satisfy the isoperimetric inequality

(12-2) 2 n"w, Vol(D)"~! < Vol(dD ~ dC)"?

Does equality hold if and only if C = H and D is a half ball with the flat part of its
boundary lying in OH ?

Inequality (12-2) is called the relative isoperimetric inequality, C is called the
supporting set of D, and Vol(9D ~ 9C) is called the relative volume of 9D. For
n = 2 it is easy to prove (12-2): just reflect the convex hull of D about its linear
boundary.
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A partial answer for n > 3 was obtained by I. Kim [K2]; he showed that if
U= {(z,y) € R? : y > f(z),f" > 0}, then (12-2) holds for C = U x R""2. In
this section we shall first see that the relative isoperimetric inequality holds if C
is a graph which is symmetric about n — 1 hyperplanes of R™ [C5]. In particular,
(12-2) holds when C is a ball. The tools of [C5] are Gromov’s method of using the
divergence theorem and Steiner’s method of symmetrization. Then we shall give an
outline of the proof of the relative isoperimetric inequality which has been obtained
recently by the author and Ritoré [CRY].

12.1. Gromov’s Method. In [Gr| Gromov gave a new proof of the classical
isoperimetric inequality. As F. Morgan pointed out to us, Knothe [Kn| and Berger
[Bg] also used the same method as Gromov. His proof is based on a volume-
preserving map whose divergence is bigger than or equal to the dimension of space.
Here we shall see how Gromov’s method can be adapted for our purpose and why
the convexity of the supporting set is necessary.

THEOREM 12.2. [C5] Let C' be a convex domain in R"™ and D a subset of
R" ~ C with piecewise C' boundary. Suppose that every normal vector n to 0D N
OC' toward the exterior of D does not point upward, that is, (n,0/0z™) < 0 for
the unit vertical vector 0/0xz™. Suppose also that there exist vertical hyperplanes
114, ..., II,—1 which are mutually perpendicular such that C' and D are symmetric

about each of them. Then
1 n"w, Vol(D)"~! < Vol(0D ~ 9C)™,

where equality holds if and only if D is a half ball.

PARTIAL PROOF. First define a C! map ¢p : D — [0,1]" by

o
¢D($17-..7$n):(d)l,...,gbn), ¢Z:,U_Z7
3
vi =L (0, an) € Diag =wy, 1< j<i—1, —0Sap o0, i <k <n,
5i:Lnfi+1{(a,17...,CLn)GD:aj:;Cj71§j§i_17 —0 < a; < i,

—oo<ap<oo,i+1<k},

where L is k-dimensional Lebesgue measure. Then ¢; = ¢; (21,...,z;) and the Ja-
cobian matrix of ¢p, (0¢;/0x;), is lower triangular with diagonal entries 0¢;/0z; =
Vit+1/v; and O¢y,/0x,, = 1/v,. Therefore

det (8@-) = i
al'j U1
Similarly, define ¢ : B — [0, 1]™ where B is the half ball
(12-3) {(171, ) ERM iz, 20,) af < (2w;1Vol(D))2/"}.

Note that Vol(B) = Vol(D) = v;. Like ¢p the Jacobian determinant of ¢5 equals
1/vi. Let ¢ : D — B be defined by 1 = ¢3' o ¢p. Then the Jacobian determinant
of 1 equals 1. In other words, v is a volume-preserving map.

Now consider a vector field V on D defined by V(z) = the position vector of
¥(z),z € D. Since the Jacobian matrix of ¢ is also lower triangular, it follows from
the arithmetic-geometric mean inequality that

(12-4) n = n(det Dip)Y/™ < divV.
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Let II,, be the horizontal hyperplane {z,, = 0} and let Uy, ..., Usn—1 be the congru-
ent subsets of I1,, separated by the vertical hyperplanes 11y, ..., II,,_;. Translating
C and D in a suitable way we may assume that each II; contains (0, ...,0). Define
the projection p : R™ — II,, by p(x1,...,2,) = (21,...,Zn-1,0). By the divergence
theorem applied to (12-4)

(12-5) o)< [ o [ v,
o0D~OC oDnNoC

where 7 is the outward unit normal to dD. By (12-3) we have

(12-6) V] < (2w 'Vol(D))Y™ on 8D ~ AC.

By the symmetry of C' and D about II;,...,II,,_; and by the convexity of C, we
get

(12-7) (V,m) <0 on 0D NIC.

This is because if z € 9D N JC and p(z) € Uy,1 < k < 2”71, then both 1 (x) and
—p(gy) lie in Uy, where g, € R™ is the point whose position vector is 7). Therefore
it follows from (12-5), (12-6), and (12-7) that

nVol(D) < (2w, *Vol(D))/"Vol(dD ~ 9C),

which implies (12-2).
See [C5] for the case of equality. O

12.2. Steiner’s Symmetrization. One of the oldest and most powerful meth-
ods in isoperimetric inequalities is Steiner’s symmetrization [S2]. The key idea of
this method is that given k functions

Tn = f1(x1, - Tn-1), vy Tn=fr(z1,. ..., Tpn_1),

the volume of the graph of the average function of f1,..., fir is not bigger than the
average of the volumes of the graphs of f1,..., fx. This volume estimate is based
on the simple inequality for k vectors in R™: |vy + -+ +vg| < |v1|+-- -+ |vg|. Here,
using the symmetrization method, we shall improve Theorem 12.2.

THEOREM 12.3. [C5] Let C' be a convex domain in R"™, D a subset of R" ~ C
with piecewise C' boundary, and 11,, a horizontal hyperplane {x, = 0}. Suppose
that both 0D ~ OC and 0D N OC are graphs over a closed set A C II,,. If A
is symmetric about n — 1 wertical hyperplanes 111, ..., 11,1 which are mutually
perpendicular, then

1 n"w, Vol(D)"~! < Vol(0D ~ 9C)",

where equality holds if and only if D is a half ball.
PARTIAL PROOF. Let fy, g0 : A — R be the functions defined by

:En = fo(xlu' '-7xn—1)7‘rn = go(xlu' . 7xn—l)

such that 0D ~ 0C,0D N JC are the graphs of foy, gg, respectively. Let G be the
group of isometries of R™ generated by n — 1 horizontal reflections which leave
II,,...,II,_; fixed, respectively. G consists of 2! elements, say, r1,...,7on—1.

Define f; = fo,olri and g; = goori,i =1,...,2" L. Also define f = 21" 212:;1 fi,
g=2t—" Z?:l g;- Since fo > go on A and fy = go on OA, we have f > g on A
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and f = g on OA. Hence graph(f) and graph(g) enclose a domain D, and it is easy
to see that

(12-8) Vol(D) = Vol(D).

Note also that D is symmetric about IIy, ..., II,_; and graph(g) C 9D is a subset
of 0C for some convex doamain C'. Moreover

Vol(dD ~ 8C') = Vol(graph(f)) = /

—n 8f1 n 8fz
. (21 ;6—:51’ 91— Zaxnl >‘
afi Ofi  on_
(E g Z )
[~ |(0fi 0
§21 ‘/14;‘(856177817”171)‘

2n71
=2'"" ) " Vol(graph(f;)) = Vol(graph(fo)) = Vol(dD ~ aC).
i=1
This plus (12-8), together with Theorem 12.2 applied to C,D, gives the desired
inequality.
See [C5] for the proof of the equality case. O

Although the symmetry assumption is required in Theorems 12.2 and 12.3, it
is not necessary in case the convex set C is a ball:

THEOREM 12.4. [C5] If C is a ball in R™ and D is a subset of R™ ~ C with
rectifiable boundary, then

2 n"w, Vol(D)"~! < Vol(dD ~ aC)"
with equality if and only if D is a half ball.

It is easy to prove this theorem once we know that the isoperimetric region of
the complement of a ball is rotationally symmetric about a line through the center
of the ball.

LEMMA 12.5. [C5] Outside a ball C C R" there exists a set D whose boundary
has the least relative volume Vol(D ~ 8C) among all sets outside C' with the same
volume as D. In fact, 0D ~ OC is a spherical cap perpendicular to dC' and dDNHC
lies in an open hemisphere of 0C.

PROOF. The existence of D can be obtained by following the compactness
argument in [Sp], pp. 441-444. Obviously D ~ dC has constant mean curvature
and makes 90° with 9C. We claim that D is rotationally symmetric about a line.
Suppose not. Then there exists an (n — 3)-dimensional great sphere S in 9C such
that D is not symmetric about any hyperplane containing S. Choose a hyperplane
II containing S that devides D into D; and D, of equal volume. Suppose without
loss of generality that Vol(dD; ~ (9C'UTI)) < Vol(§Dy ~ (dC UIL)). Let D be the
mirror image of D; across IT and define D13 to be the union of the closures of D;
and Ds. If D ~ AC intersects IT at 90°, then the unique continuation property
of the constant mean curvature hypersurfaces implies that D is symmetric about
II, contradicting our hypothesis. Therefore some part of dD15 ~ C' should be not
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C" along II. Then we can slightly perturb D;5 along this singular part to get a set
D’ C R™ ~ C such that
Vol(D') = Vol(Ds3) = Vol(D),
and 3 y
Vol(dD' ~ 8C) < Vol(0D13 ~ 0C) < Vol(dD ~ d0).

But this contradicts the least relative volume property of (?D. Hence D must be
rotationally symmetric about a line I. Now let {¢} = (9D ~ 0C) N [ and take
a spherical cap A through ¢ which is rotationally symmetric about [ and has the
same mean curvature as 0D ~ 9C. Since 9D ~ 0C' is tangent to A at g, we can

apply the maximum principle and conclude that D ~ OC itself is a spherical cap.
Then 0D NOC is a subset of an open hemisphere of 9C. O

12.3. Dimensions Three and Four. The author and M. Ritoré have re-
cently proved (12-2) in case n = 3 [CR]. Here we give an idea of the proof.
Given a convex set C C R", define the relative isoperimetric profile of R" ~ C,
Ic : RT — R, by

Ic(v) = irj:l)f{Area(aD ~8C):DCR"~C, Vol(D) =V}.

Let Ht = {(x1,...,2,) € R" : 2,, > 0} be the upper half space of R”. Then the
relative profile of R® ~ H™ is given by

Iy+ (V) =n (“’_2")1/" yn=1/n
and the relative isoperimetric inequality (12-2) is equivalent to

(12-9) I6(Vol(D)) > I+ (Vol(D)),

with quality if and only if D is a half ball. How can one prove (12-9)? The idea is
the following. First we shall take the first variation of (12-9) to get
(12-10)

sup {H(p): H(p) is the mean curvature of 9D at p} > Hy(Area(dD ~ 9C))
pEAD~IC
where Hy(Area(0D ~ OC)) is the mean curvature of the hemisphere of area
Area(0D ~ 9C) in R™.

Then (12-10) follows from

(12-11) / H? > 2.
OD~OC

We prove this inequality by using a method of conformal geometry: If k; and ko
are the principal curvatures of 0D ~ 9C, then [, . (ki — k2)? is invariant under
the conformal change of metric in R?. Note that
TS E B AR )

4 Jop~oc 8D~OC

where K is the Gaussian curvature. Then (12-11) can be obtained by conformally
blowing up 0D ~ 9C' around its boundary point and by using the convexity of 9C.

In [CR] a new type of relative isoperimetric inequality is also proved:

Let Oy, Cy be conver domains in R3 and D a subset of R® ~ (C; UCy). If 9C4
and 0Cs make an angle of at least 6, then

186Vol(D)? < Area(dD ~ 9(Cy U Cy))?
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with equality if and only if C1 and Cy are half spaces with an angle of 6 and 0D ~
9(Cy UCy) is part of a sphere perpendicular to the planes 9C1 and 9Cs.

The author also proved the relative isoperimetric inequality (12-2) in R* [C7].
Croke’s arguments in [Cr]| work nicely in the relative setting as well due to the
following observation: The distance between two rays in R™ emanating from a
point grows linearly, while the distance between two rays in D grows faster after
than before the rays hit and bounce off 0C.

To be precise, the relative isoperimetric inequalities of [CR] and [C7] hold
in a Riemannian manifold M™ (n = 3,4) of nonpositive curvature. These results
partially answer the Open Problem 12.6 below.

It would be interesting if one could derive a version of the relative isoperimetric
inequality for minimal surfaces. Therefore, combining Open Problems 8.1 and 12.1,
one can propose the following.

OPEN PROBLEM 12.6. Given a convex domain C in R™ and an m-dimensional
minimal submanifold N outside C such that N is orthogonal to OC along O0CNON,
prove that

2 m™wy, Vol(N)™ ™ < Vol(ON ~ 8C)™,

where equality holds if and only if N is a half ball.

I. Kim [K1] obtained a partial result for this open problem when N is two-
dimensional. He proved that if S is a minimal surface in a Riemannian manifold
M of constant sectional curvature K < 0, S lies outside a convex set C' in M and
is orthogonal to 0C, and 95 ~ OC'is connected or radially connected from a point
of 95 N OC, then

21 Area(S) < Length(dS ~ 9C)? + K Area(S)?

and equality holds if and only if S is a totally geodesic half disk. For the proof of
this, he first showed that

Area(S) < Area(px(0S ~ 9C)) for any p € C

and
Angle(9S ~ 9C,p) > 7 for any p € SN OC.

Then he used the method of developing and cutting and pasting as in Section 4.
Kim also extended Kiister’s linear isoperimetric inequality; Kiister [Ku] proved

Vol(N) < %VOI((?N)

for an m-dimensional minimal submanifold N of R™ contained in a closed ball of
radius R. Kim obtained a linear isoperimetric inequality for a minimal submani-
fold N™ in a complete simply connected Riemannian manifold M™ with sectional
curvature bounded above by a nonpositive constant K:

Oém)K(R)
oz;n) x(R)
where N is contained in a geodesic ball of radius R in M and o, x(R) denotes the

volume of the geodesic ball of radius R in the m-dimensional space form of sectional
curvature K.

Vol(N) < Vol(9N),
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13. Negatively Curved Surfaces

As we have seen in Section 1, it was Carleman [Ca] who first showed that the
classical isoperimetric inequality 47A < L? still holds for some curved surfaces:
disk type minimal surfaces in space. Then in 1926 Weil [We| obtained the same
result for disk type surfaces of negative Gaussian curvature. Thereafter a variety of
different methods were employed by a dozen mathematicians to prove the same or
more general inequalities; Bol [Bo] used parallel curves and Alexandrov [Ax] used
the method of polyhedral approximation. Huber [Hu] improved the inequality of
Carleman and its generalization to subharmonic functions by Beckenbach and Radé
[BR]. In this section we give a new simple proof of 47A < L? for nonpositively
curved surfaces using the maximum principle: Given a disk type nonpositively
curved surface S, we construct a domain S in R? with area larger than that of S
and perimeter equal to that of S. Then the inequality for S follows immediately
from the classical isoperimetric inequality for S.

THEOREM 13.1. If S is a simply connected nonpositively curved surface, then
AT A < L2,

Here we will give two proofs of this theorem. One is a geometric proof given in
[BZ], and the other is more analytic in nature.

GEOMETRIC PROOF (OUTLINE). Consider the following special case. Suppose
that S has connected smooth boundary all of whose parallel curves I; = {x € S :
dist(x, 0S) = t}, except the furthest one ., are smooth simple closed curves. Denote
by A(t) the area of the set S; = {x € S : dist(z,dS) < t}. Under these assumptions
A'(t) = I(t), where [(t) is the length of I;. But the first variation formula for I(t)

says
di
P ka
di /l 5

where k is the geodesic curvature of I; with respect to the inward normal to ;.
Assume that A”(t) = I’(t) also exists and is continuous in [0,r). By the Gauss—
Bonnet formula for S;, we have

A”(t):—/ kds=— [ KdA — / kds.
It St as

Since K < 0, the Gauss—Bonnet formula for S implies
(13-1) A'(t) < —/ KdA — / kds = —2m.
s as

Assume here that r = sup{t : I} # ¢}. Multiplying (13-1) by 2A4’(¢) > 0 and
integrating from 0 to r, we get

A'(r)? — A(0)? < —4x[A(r) — A(0)).
Since A’(0) = L, A(0) =0, A(r) = A, this yields
L? —4xA > A'(r)? >0,

which is the desired inequality.

In general, the assumptions on the structure of the parallel curves [; and the
differentiability of A(t) do not hold. Nevertheless it is possible to obtain a rigorous
proof along these lines. Such a proof is presented in [BZ], pp.20-27. In order to
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overcome the technical difficulties, the argument is carried out for polyhedra. The
general case follows by passing to the limit. (|

ANALYTIC PROOF. Let x and y be isothermal coordinates on S. Then the
metric and the Gaussian curvature K of S can be written as

(13-2) ds? = e*(dx® + dy?), K=—e2AN
By the curvature assumption we have

(13-3) AX>0onS.

Let h be the solution to the Dirichlet problem

(13-4) Ah=0ons, h=X\on d8S,

and introduce a surface S which is S equipped with the flat metric g = e (dx? +
dy?). Actually S is the image of S in the complex plane under the holomorhic
map ¢(z) such that log|¢/(z)| = h(z,y),z = x + iy. Define A = Area(S), L =
Length(85). Note that the boundary condition (13-4) implies L = L. From (13-3),
(13-4) and the maximum principle we get A > A. But we have 47A < L2 for
S c R%. Hence

ATA <ArA < L? =L O

In the analytic proof we used the Dirichlet boundary value problem. By solving
the mixed boundary value problem, instead, we can get a relative isoperimetric
inequality:

THEOREM 13.2. [C5] Let S be a disk type surface of nonpositive Gaussian
curvature. Suppose that 0S is the disjoint union of 'y and I's such that Ty is
connected and concave, i.e., if c(s) is an arclength parametrization of T'1, then
"' (s) vanishes or points outward from S. Then
(13-5) 2w Area(S) < Length(I'y)?
and equality holds if and only if S is a flat half-disk.

PROOF. The proof is similar to the analytic proof of the preceeding theorem.
The difference is that here we solve the mixed boundary value problem

h
Ah=0onS, h=AonTs, g—:()onf‘l
v
and that the concavity of the free part I'; implies
o\
— <0
o~ "’
where v is the outward unit normal to I'y. This is because
o 0 o0 o0
> - -2 0 7>\_>:_< -2 0 - 7A_>
O_<Ve 0/dye 8y,e . e g’ Ve e g

0 0 0 0
__ -/ ON_ _ /9 9
- ¢ <8y’v6/ay3z> € <8y’v8/8x8y>
O a0
Oy oxr  Ov’

Then, by the maximum principle, h > A on .S and hence A> A Clearly Length(T'2)
remains the same under the new metric § and I'; is a line segment in S. Therefore

)
2 ox
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(13-5) follows from the relative isoperimetric inequality for S C R2. See [C5] for
more details. U

In this section we have seen that nonpositively curved two-dimensional surfaces
satisfy the same isoperimetric inequality as R?. In regard to higher dimensional non-
positively curved Riemannian manifolds, Aubin conjectured that in the sense of the
isoperimetric inequality, R™ is more efficient than any complete simply connected
Riemannian manifold M™ of nonpositive sectional curvature. More precisely, he
conjectured that for any domain D in M"

n"w, Vol(D)"~* < Vol(dD)"

and equality holds if and only if D is a Euclidean ball. Recently Kleiner [K1] and
Croke [Cr] proved this inequality in M?® and M*, respectively; but this conjec-
ture is still open for n > 5. Extending Aubin’s conjecture to the case of relative
isoperimetric inequality, we would like to propose the following;:

OPEN PROBLEM 13.3. Let C be a convex domain in a complete simply connected
Riemannian manifold M™ of nonpositive sectional curvature and D a subset of
M ~ C'. Prove that

2 n"w, Vol(D)" ™! < Vol(0D ~ 9C)",

where equality holds if and only if D is a Euclidean half ball.

As mentioned in the preceding section, this open problem has been solved for
n =3 in [CR] and for n =4 in [C7].

14. Isoenergy Inequalities

So far we have studied many isoperimetric inequalities that relate the volume of
a domain with that of its boundary. In this last section, however, we shall consider
a map from a domain into a manifold and derive an inequality that relates the
interior energy of the map with its boundary energy.

Consider a C? harmonic map u from a closed unit ball B € R” to R¥, n > 2.
Define E(u) and E(ul|sp) to be the energy of the map w and of the restriction of u
to OB, respectively. Then is there any relationship between E(u) and E(u|sp) that
resembles the isoperimetric inequality? Here we answer this question affirmatively;
we obtain a relationship in a sharp form, called the isoenergy inequality, for a
general target manifold N* as well as R*. First, if N is a nonpositively curved
k-dimensional Riemannian manifold, then we show

(n =1 E(u) < E(ulap),

where equality holds when N = R* and u is a homothety or an orthogonal projection
composed with a homothety. Second, when N* is any Riemannian manifold, we
prove

(n = 2)E(u) < E(ulap),

where equality holds if N = S"~! C R" and u(x) = z/|z|.

In Subsection 14.2, the method of the isoenergy inequality will enable us to
estimate an upper bound for the first eigenvalue of the Laplacian on a minimal
submanifold in the sphere.
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14.1. Isoenergy Inequality via Monotonicity. Assume that M", N* are
Riemannian manifolds with N* isometrically embedded in R™. We look at a
bounded map u : M — N whose first derivatives are in L?; such a map is thought

of as amap u = (uy,...,um) : M — R™ having image almost everywhere in N.
Then the energy E(u) of u is defined by
Bw = [ |vu,
M

where |Vu|? = Y7 | |Vu;|?, Vu; being the gradient of u; on M. |Vu|? is called the
energy density of u. The critical points of E(u) on the space of maps are referred
to as harmonic maps. Thus u € C? is harmonic if and only if

(14-1) Ay u L T,N.

A harmonic map w is stationary if its energy is critical with respect to variations
of the type u o F}, where F; : M — M is a smooth path of diffeomorphisms of M
fixing the boundary. It can be shown that stationary harmonic maps satisfy the
monotonicity property for the scale invariant energy in balls. We state an equivalent
form of the monotonicity in the following lemma.

LEMMA 14.1. Let B, = {z € R" : |z| < p} and B = By. Ifu: Bi4c — N¥, e >
0, is a stationary harmonic map, we have
du 2)
— |, r=|x|.

(14-2) (n—Q)/B|Vu|2=/aB(|Vu|2—2 -

ProoOF. The monotonicity formula [Pr], [Sc] says

p27n/ |Vu|2—027”/ |Vu|2 — 2/ T27n
B B, B,—Bs

P

ou|?

ar

3

for 0 < o < p <1+ e Noting that [, g, f= d% 1) p, [ for almost all p, differentiate
the formula with respect to p and set p = 1. O

The first isoenergy inequality of this section holds for a stationary harmonic
map of B, into an arbitrary target manifold.

THEOREM 14.2. [C3] Let n > 3 and suppose that u : By, — N¥, ¢ >0, is a
stationary harmonic map into a Riemannian manifold N. Then

(n—2)E(u|p) < E(ulas),
where equality can be attained if N = S"' C R" and u(z) = z/|x|.

PROOF. Let Vu; denote the gradient of u; on 9B. Observe that

— oul?
E(u :/ VuiQZ/ (VU2— — )
(ulop) aBZi:| | - |Vl 5

It follows from (14-2) that

2

ou
or
which gives the desired inequality. If u(z) = z/|z|, then |Ou/0r] = 0 and hence
equality holds. O

(14-3) (n— 2)E(ulp) = E(ulos) — /6 )
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Remark 1. (i) Lemma 14.1 and Theorem 14.2 fail to hold for nonstationary har-
monic maps. See [Po][Ri] for such maps.

(if) We should remark, in relation to Theorem 14.2, J.C.Wood’s theorem that
any smooth harmonic map u (n > 2) which is constant on 0B is constant [Wo]
(see also [KW]); the case for weakly harmonic maps is still open (see [Sc] for the
definition of weakly harmonic maps).

(iii) When n = 3,4, 5,6, there is a sequence {¢;} of C? harmonic maps ¢; : B —
S™ C R™*1! (see [SY?2]) such that ¢;(x) = (x,0) for z € OB, E(¢;) < E(¢i+1), and

E(¢;
n — 2 =inf El9ilon) |8B).

E(¢:)

Now we prove the isoenergy inequality for a harmonic map from B into RF.
Although it is a special case of the isoenergy inequality for harmonic maps into a
nonpositively curved space (Theorem 14.4), we state it independently because the
proof of the Euclidean case is different and interesting in its own right.

THEOREM 14.3. [C3] Suppose that u is a smooth harmonic map from B C
R"™ n > 2, into R*. Then we have the isoenergy inequality

(n—=1)E(u) < E(ulap),
where equality holds if and only if u is a linear map from R™ to RF.

ProOOF. (14-1) implies

Hence
1 u. 1/2 ou |2\ /2
oo [, T < () (L)
2/ Zl: aBzi: or aBzi: o | Or
where, without loss of generality, we assume faB u; = 0 for ¢ = 1,...,k. Using

(14-3) and the fact that n — 1 is the first eigenvalue of the Laplacian on 0B, one
sees that the right-hand side of the preceding display is at most

<n i 1 /83 ZZ: sz)l/z (E(ulpp) — (n — 2)E(u))"/?.

Hence by combining the inequalities above one gets

E(u)2 <

E(ulop)(E(ulap) — (n — 2)E(u)),

n—1
which gives the desired isoenergy inequality. Moreover equality holds if and only if
u; is a constant multiple of du;/0r and

A@Bui—l—(n—l)ui:Q i=1,...,k,
which holds if and only if u is a linear map from R" to R™. O

THEOREM 14.4. [C3] If u is a smooth harmonic map from B C R",n > 2, to
a k-dimensional Riemannian manifold N of nonpositive sectional curvature, then

(n— 1)E(u) < E(ulo)-
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Proor. The Bochner formula [EL] says that if u : M™ — N k is harmonic then
(144)
TAVul? = ||V dul]® — ZRN(u*ea,u*eg,u*em useg) + ZRiCM(u*Hi,u*HZ—),
a,B i

where V' is the pullback connection from T'N, e, ..., e, is an orthonormal basis for
TM and 6y, ...,0) is orthonormal for 7*N. Hence for M = B and N nonpositively
curved, |Vu|? is subharmonic. Since the mean value of a subharmonic function
on a sphere of radius 7 centered at the origin is monotonically nondecreasing as a
function of r, one can deduce that

)

By o 1 |Vu|2=%((n—2)E(u)+2/aB

Wn, nwn JoB n

Ju
or

where equality follows from (14-2). So

2

ou
(14-5) Bw< [ |2
OB (97‘

Then adding (14-3) to (14-5) gives the isoenergy inequality. O

Remark 2. In case v is a harmonic map from a ball B, of radius p into IV, one
obviously has

(n = 1)E(u) < pE(ulos,).

When the target manifold N is nonpositively curved we have an extension
theorem by Eells—Sampson [ES| and Hamilton [Ha]: Given ¢ € C3(B, N), there is
a harmonic map u € C?(B, N) such that v = ¢ on B, and u is homotopic to ¢.
Since this theorem allows us to impose a condition on u|sp, €.g. conformality, one
can obtain a mixture of the isoenergy inequality and the isoperimetric inequality
as follows.

COROLLARY 14.5. [C3] Suppose N* is nonpositively curved and let B" = {x €
R™: |z| <1}, n=2,3.

(a) If u: B> — N is harmonic and u|sp is a constant speed map, then
4rArea(u(B)) < 2nE(u) < Length(u(0B))?.
(b) If u: B®> — N is harmonic and u|sp is conformal, then
E(u) < Area(u(dB)).
(¢) Ifu: B® — N is harmonic and u|sp is conformal, then
(nw,)* " E(u)" " < Vol(u(dB))?.

ProOF. The first inequality in (a) is well known. For the second, use the
constant speed condition and Theorem 14.4. Part (b) is a special case of (c). For
(c), let k? be the conformal factor of u|sz. Then

1 (n=3)/(n—1) 2/(n-1)
s gtyson - ([, ()
n— oB )] oB

1
= (nwy )"/ =D yol(u(dB))? (Y, O
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14.2. Eigenvalue Estimate. Given an (n—1)-dimensional minimal subman-
ifold ¥ in S’ ¢ R, Ox ¥ is the cone from the origin O of R!*! over ¥, that is,
the union of the unit line segments from O to the points of . It is well known that
OxY is an n-dimensional minimal submanifold of R!*!. In this section we want
to consider the isoenergy inequality of a harmonic map u from Ox¥ into R*. In
the proof of the isoenergy inequality of Theorem 14.3 we used the fact that n — 1 is
the first eigenvalue of the Laplacian on S"~!. However, we do not know the exact
value of the first eigenvalue \;(X) of the minimal submanifold > C S!. Therefore,
instead of deriving an isoenergy inequality, we obtain, by reversing the argument,
an upper bound of the first eigenvalue in terms of the energy of the harmonic map
and its boundary energy. To do this, we need the following monotonicity on Ox 3.

LEMMA 14.6. Let ¥ be an (n—1)-dimensional submanifold of S' C R, Ifu is
a harmonic map from Ox X into R* which is C? up to and including the boundary

Y, then
ou
n—2 vu2_/(vu2—2 )
(=2 [ (vup= [ (12|53

PRrROOF. Let ¥, = {z € OxX : |z| < p}. Note that the quantity

(14.6) o) =" [ Vuf

P

is invariant under scaling. More precisely, if we denote u”(z) = u(px), then

o) = [ [vurP
P
So at p = 1 we see that

—@ _22/ <Vul, >—22/xVul

Since (z, Vu;) = duf /dp, du?/dp = du/Or on ¥ and Au; =0 on El, we get

Aul

d ou?
14-7 —0 =2
(147) (Few) =2 [ |5
Thus (14-6) and (14-7) complete the proof. O

THEOREM 14.7. Let ¥ be an (n — 1)-dimensional submanifold of S' C R!*!
and let u : OxX — RF be a harmonic map which is C? up to and including the
boundary X. Then

. E(uls) (E(ls)
(14-8) A (D) < ) <E(u) +2>.

PROOF. We follow the proof of Theorem 14.3 and use Lemma 14.6. So

03 [ Tt [ 2= ([2) (L)

K3

1/2
Vu,|? ulyg) — (n — w) 2.
< (W / ;ww) (E(uls) — (n - 2)E(w)

@
or
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Hence
M (D)E(u)? + (n — 2)E(u)E(uls) — E(uln)? <0,
which gives (14-8). O

COROLLARY 14.8. Let ¥ be an embedded minimal hypersurface in S™. If u :
Ox Y — R* is harmonic and C? up to and including the boundary, then

(n—1)E(u) < (—n+2+ vn? —2n+2)E(ulx).
Proor. Combine (14-8) with Choi-Wang’s estimate [CW]:
n—1

2

Remark 3. In a sense (14-8) is similar to Chavel’s estimate [Ch]:

n—1) A2
A(9) < ( 2 )Wa
where V is the volume of an n-dimensional minimal submanifold S of an m-
dimensional complete simply connected nonpositively curved Riemannian manifold
M and A is the volume of 9S. Chavel’s estimate, when applied to S = OxX C
M = R""! with ¥"~! minimal in S" C R""! implies \;(¥) < n — 1, which is
nothing new. Also our estimate (14-8), when applied to u = identity, draws the
same conclusion because (n—1)E(id) = E(id|x). But should there exist a harmonic
map u : Ox Y — RF satisfying

<A (X). O

(14-9) (n—=1)E(u) > E(uly),
then one would be able to conclude from (14-8) that
(14-10) M) < n—1,

which would disprove Yau’s conjecture [Ya, Problem 100]. In fact, since Ricpx s
is nonpositive, one could deduce from the Bochner formula (14-4) that |Vu|? is
strictly superharmonic provided

||V dul|? +ZRiCOXE(U*9i7U*9i) < 0.

Then the argument of the proof of Theorem 14.4 would imply (14-9).

OPEN PROBLEM 14.9. Does there exist a harmonic map u: OxX — R* satis-
fying (14-9)?

OPEN PROBLEM 14.10. Let ¥ be an (n — 1)-dimensional embedded minimal
hypersurface of S™. A map u : ¥ — S™ C R"! is said to be balanced if fz u equals
the zero vector in R"T1. Does there exist a balanced energy minimizing map of ¥
into S™ which is different from the identity? If it exists, is its energy smaller than
that of the identity?

If the answer to Open Problem 14.10 is affirmative, then one gets (14-10) since

A1(Z)Vol(%) = Al(z)/EmF < /E |Vu? < E(id) = (n — 1)Vol(¥).

For a minimal surface of codimension > 2, that case really occurs. Let ¢ :
S%(v/3) — S% be the two-to-one locally isometric minimal immersion whose im-
age is the Veronese surface V diffeomorphic to the projective plane. Let V' be the
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double covering of V and define u: V — S* by u = %1/}’1. Then u is a balanced
harmonic map satisfying
E(u) = LE(id).

Indeed \; (V) = 2.
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