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Abstract. Fock-Goncharov’s cluster varieties have gained much interest of mathematicians

and physicists since they appeared in the early 2000’s. In this talk, I will focus on certain

moduli spaces of local systems on Riemann surfaces, especially some versions of ordinary and

higher Teichmüller spaces. I will formulate some problems about these objects, present ideas

from physicists, discuss recent results and open problems. I will try to avoid spending too much

time on rigorous definitions, and instead try to convey the main ideas.
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Note. This is a lecture note for my two consecutive talks to be given at KIAS, Korea (April

2, 2021), under the same title and abstract, for an occasion of “A mathematician’s lecture for

the physicists.” This note and the talks will be somewhat informal instead of being rigorous, for

the main concern is to convey the ideas. As a disclaimer, I only present a particular viewpoint

on the subject, and do not try to give a comprehensive overview.

1. Classical aspect

Here we review some basic constructions of Fock and Goncharov [FG06].

Let S be a non-compact smooth surface, given as a compact oriented surface of genus g minus

n punctures. We will call such a surface a punctured surface. Let G be a split reductive algebraic

group over Q. In this talk,

G = SLm or PGLm (with m ≥ 2)
1
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Here G is being viewed as a scheme, which means that for any chosen field k, one obtains a

group G(k), which is the set of k points of G. Given a surface S and a group G, one can

define some versions of the so-called higher Teichmüller spaces, which we will review now. Some

versions of the ordinary Teichmüller spaces will be prototypical examples.

A G-local system L on S means a (right) principal G-bundle on S together with a flat G-

connection. To L is associated its monodromy (or, holonomy) representation

ρL : π1(S)→ G

which is a group homomorphism defined up to conjugation by an element of G. If we let

LG,S := the moduli space of G-local systems on S,

we have the natural identification

LG,S ↔ Hom(π1(S),G)/G

with the set of all group homomorphisms π1(S) → G defined up to conjugation action by G.

It turns out that it is a good idea to consider some modifications of LG,S obtained by adding

certain data at boundary.

Let Ŝ be obtained from the punctured surface S by removing some open neighborhood of

each puncture that is homeomorphic to the open unit disc minus the origin, i.e. a punctured

disc. So Ŝ is a surface with boundary, and can be viewed as a subspace of S.

S Ŝ

;

Let B be a Borel subgroup of G, e.g. the subgroup of all upper triangular matrices in G. Then

the flag variety B of G can be expressed as G/B. For a G-local system L on S, one can consider

the associated flag bundle (by modding out each fiber of L by B from the right)

LB := L ×G (G/B),

whose fiber at each point of S can be identified with the flag variety B = G/B. A framing on L
is a choice of a flat section β of LB restricted to the boundary ∂Ŝ. We call such a pair (L, β)

a framed G-local system on S. Let

XG,S := the moduli space of framed G-local systems on S.

A different version of enhancement uses the maximal unipotent subgroup U := [B,B] of G,

e.g. the subgroup of all upper triangular matrices with 1’s on the diagonal. When G is of type

A2k, E6, E8, F4 or G2, a decoration on a G-local system L on S is a choice of a flat section α

of the associated principal affine bundle LA := L ×G (G/U) restricted to ∂Ŝ; a pair (L, α) is
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called a decorated G-local system on S. Let

AG,S := the moduli space of decorated G-local systems on S.

For more general G, the definition of a decorated G-local system is slightly more complicated,

and involves bundles on the punctured tangent bundle or the unit tangle bundle of S.

A good thing about these boundary-enhanced moduli spaces XG,S and AG,S is that they

admit structures of cluster varieties, which we describe now. More precisely, we will review that

each of

ASLm,S and XPGLm,S

has a structure of a cluster A -variety and that of a cluster X -variety, respectively, where

m ≥ 2.

We first recall the notion of a cluster variety. Let Q be a quiver with n nodes; that is, it is a

collection of oriented edges between these n nodes, where we do not allow cycles of length 1 or

2. Call these oriented edges arrows. Denote

V(Q) = the set of all nodes of the quiver Q.

A seed A -torus is the pair (Q, (Gm)V(Q)), i.e. a quiver Q, together with the split algebraic torus

(Gm)V(Q) ∼= (Gm)n of dimension n, where the coordinate functions Ai are enumerated by the

nodes i of the quiver Q; so it is an affine scheme whose ring of regular functions is the ring

of Laurent polynomials in these coordinate variables Ai, i ∈ V(Q). At a node k of Q, one can

mutate the quiver Q at k, to get a new quiver µk(Q) as follows. For i, j ∈ V(Q), let

εij = #(arrows in Q from i to j)−#(arrows in Q from j to i)

i.e. ε = (εij) is the signed adjacency matrix of Q. If we write ε′ the signed adjacency matrix for

the mutated quiver Q′ = µk(Q), the formula for ε′ is

ε′ij =

{
−εij if k ∈ {i, j},
εij + 1

2(εik|εkj |+ |εik|εkj if k /∈ {i, j}.

We say two quivers are mutation-equivalent if they are related by a finite sequence of quiver

mutations. When Q′ = µk(Q), one defines a rational map, again denoted by µk, between the

corresponding tori

µk : (Gm)V(Q) 99K (Gm)V(Q′)

defined as

µ∗k : A′i 7→

{
Ai if i 6= k,

A−1
k (
∏
j|εkj>0A

εkj
j +

∏
j|εkj<0A

−εkj
j ) if i = k,

called the cluster A -mutation formula. In this setting, we say that the seed A -torus (Q′, (Gm)V(Q′))

is obtained from (Q, (Gm)V(Q)) by the process of mutation µk. Start from one seed A -torus
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(which is determined by a quiver Q), mutate to get more seed A -tori repeatedly. Glue all the

resulting seed A -tori together along the maps µk. The resulting scheme is called the cluster

A -variety. Since it essentially depends only on the mutation-equivalence class |Q| of a quiver

Q, we denote this scheme by A|Q|.

A cluster X -variety is defined similarly. A seed X -torus is a pair (Q, (Gm)V(Q)), where the

i-th coordinate is denoted by Xi, for each node i of Q. The mutation µk at a node k is defined

as before for the quiver Q, and as follows for the coordinate variables

µ∗k : X ′i 7→

{
X−1
k if i = k,

Xi(1 +X
−sgn(εik)
k )−εik if i 6= k,

where sgn(a) = 1 if a > 0 and sgn(a) = −1 if a < 0; this is called the cluster X -mutation

formula. The scheme obtained by gluing all seed X -tori related to an initial one by sequences

of mutations is called the cluster X -variety, which we denote by X|Q|. Note that the cluster

X -variety is equipped with a Poisson structure, which is given on each seed X -chart as

{Xi, Xj} = εijXiXj .

We now describe the relevant quivers for the moduli stacks ASLm,S and XPGLm,S. First,

consider an ideal triangulation of a punctured surface S, i.e. a collection ∆ of disjoint unoriented

paths in S running between punctures of S dividing the surface S into (ideal) triangles. The

constituents of ∆ are called (ideal) arcs. Given an ideal triangulation ∆ of S, we consider a

special quiver Q
(m)
∆ called the m-triangulation quiver, embedded in the surface S, constructed

by gluing the quivers associated to the ideal triangles of ∆ as in the following pictures.

∆ Q
(2)
∆

Q
(3)
∆ Q

(4)
∆

Then, when m = 2, the set of nodes V(Q
(2)
∆ ) is in a natural bijection with ∆: one node of Q

(2)
∆

per each arc of ∆. When m = 3, Q
(3)
∆ has two nodes on each arc of ∆ and one node in the

interior of each ideal triangle of ∆. If two triangulations ∆ and ∆′ differ by exactly one edge,

say k, we say that they are related by a flip at k. In this case, it is observed in [FG06] that the

quivers Q
(m)
∆ and Q

(m)
∆′ are related by a certain sequence of (m− 1)2 quiver mutations, e.g.

· ·
· · ·
·

· · ·

· · ·

· ·
· · ·
·

· · ·

· · ·

µ4µ3µ2µ1

Q
(3)
∆ Q

(3)
∆′

1

23 4



QUANTIZATION OF ORDINARY AND HIGHER TEICHMÜLLER SPACES OF SURFACES 5

Further, it is proved in [FG06] that, for each ∆, there are birational isomorphisms

ASLm,S 99K (Gm)V(Q
(m)
∆ ) and XPGLm,S 99K (Gm)V(Q

(m)
∆ ),

forming charts on the moduli spaces, and for two charts for ∆ and ∆′ that are related by a flip

at k, the transition maps between these charts are exactly the sequences of cluster A -mutations

and cluster X -mutations respectively, associated to the sequence of quiver mutations relating

Q
(m)
∆ and Q

(m)
∆′ . So, one can say that there are birational isomorphisms

ASLm,S 99K A|Q(m)
∆ | and XPGLm,S 99KX|Q(m)

∆ |

between the moduli spaces and the cluster A - and X -varieties.

For any cluster varieties A|Q| and X|Q|, since the transition maps do not involve subtractions,

one can evaluate not only at a field, but also at a semi-field (P,⊕,�), which is like a field

without subtraction. As a set, A|Q|(P) is obtained by gluing PV(Q) by the tropical versions

of the cluster A -mutations, and likewise for X . Prominent examples of semi-fields are the

positive-real semi-field (R>0,+, ·), and the tropical integer semi-field Zt = (Z,max(·, ·),+). The

sets

ASLm,S(R>0) = A|Q(m)
∆ |(R>0) and XPGLm,S(R>0) = X|Q(m)

∆ |(R>0)

are what are called the higher Teichmüller spaces by Fock and Goncharov [FG06]. They are in bi-

jection with (R>0)V(Q
(m)
∆ ), and can be viewed as smooth manifolds this way. Note XPGLm,S(R>0)

is then a Poisson manifold. When m = 2, these spaces recover some versions of classical Te-

ichmüller spaces.

ASL2,S(R>0)↔ decorated Teichmüller space of S (of Penner),

XPGL2,S(R>0)↔ enhanced (or, holed) Teichmüller space (of Bonahon and collaborators).

As shall be seen at least partly, the tropical integer sets ASLm,S(Zt) and XPGLm,S(Zt) are

interesting objects of study, and play crucial roles in the quantization too.

2. Quantization: what to quantize?

Let S be a triangulable punctured surface. Let m ≥ 2. Per each ideal triangulation ∆ of S,

one has the cluster X -coordinate functions Xi on the moduli space XPGLm,S, enumerated by

the nodes i of the m-triangulation quiver Q
(m)
∆ . These coordinate functions Xi together with

their inverses X−1
i form a Poisson algebra, with the Poisson bracket given by

{Xi, Xj} = εijXiXj

where ε = (εij)i,j is the signed adjacency matrix for the quiver Q
(m)
∆ . A standard choice of a

non-commutative quantum algebra that deforms this Poisson algebra is the algebra generated



6 HYUN KYU KIM

by the symbols X̂±1
i mod out by the relations

X̂iX̂j = q2εijX̂jX̂i, ∀i, j ∈ V(Q
(m)
∆ ),

where q is the quantum parameter.

In the classical setting, the Poisson algebra for ∆ generated by X±1
i , i ∈ V(Q

(m)
∆ ), is related to

the Poisson algebra for ∆′ generated by (X ′i)
±1, i ∈ V(Q

(m)
∆′ ), via certain sequence of mutation

maps µ∗k which are rational, as seen before. For example, if m = 2 and ∆ and ∆′ are related

by the flip at an edge corresponding to the node k, then µ∗kX
′
k = X−1

k , µ∗kX
′
i = Xi(1 +Xk) if

εik = −1, µ∗kX
′
i = Xi(1 +X−1

k )−1 if εik = 1, etc.

One would seek for quantum versions µqk of these mutation maps µ∗k, relating the quantum

variables X̂±1
i , i ∈ V(Q

(m)
∆ ), to the quantum variables (X̂ ′i)

±1, i ∈ V(Q
(m)
∆′ ). We would require

that

(1) µqk should recover the classical map µ∗k if one puts q = 1 and remove hats from the

generators; and

(2) µqk should satisfy the consistency relations satisfied by its classical counterparts, e.g.

µqkµ
q
k = id should hold always, µqiµ

q
jµ

q
iµ

q
j = id should hold whenever εij = 0, and

µqiµ
q
jµ

q
iµ

q
jµ

q
i = (ij) should hold whenever εij = ±1 (where (ij) stands for the index

exchange i↔ j of two nodes)

Such an answer is found by Chekhov-Fock [CF99], Liu [L09] and Fock-Goncharov [FG09]; it

reads e.g. µqkX̂
′
k = X̂−1

k , µqkX̂
′
i = X̂i(1 + qX̂k) if εik = −1, µqkX̂

′
i = X̂i(1 + qX̂−1

k )−1 if εik = 1,

etc. So these maps µqk provide a consistent system of quantum observable algebras.

We consider the problem of constructing a deformation quantization map, which is a map

the classical observable algebra → the quantum observable algebra,

satisfying certain favorable conditions. One first needs to pin down precisely which classical

observable functions to be quantized. For several reasons, in this case, a good choice is the class

of functions on XPGLm,S that are universally Laurent, i.e. those that can be written as Laurent

polynomials in the cluster X -variables Xi, i ∈ V(Q
(m)
∆ ), for every ideal triangulation ∆. In

fact, what are better understood are those functions that are regular functions on the moduli

stack XPGLm,S, or that are Laurent polynomial functions for every cluster X -chart, not just for

every cluster X -chart associated to an ideal triangulation. It is not known in general whether

these two notions of universally Laurent coincide, but let us not go into this issue in this note.

Even before considering the quantization problem, it is quite a nontrivial and interesting prob-

lem to identify all possible universally Laurent functions, and moreover to construct a basis of

the ring of all universally Laurent functions such that this basis satisfies certain nice proper-

ties. Once one constructs a basis, then one can try to quantize each basic universally Laurent
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function. A particular form of this problem of finding basic universally Laurent functions in the

classical setting is dubbed the Fock-Goncharov duality conjectures for cluster varieties, originally

proposed in [FG06].

A prototypical example is about the moduli space XPGLm,S, which is birational to the cluster

X -variety associated to the m-triangulation quivers Q
(m)
∆ of the ideal triangulations ∆ of a

punctured surface S. An answer in the case m = 2 is already given in the original paper

by Fock and Goncharov [FG06]. This answer is geometric, and at the same time provides a

straightforward algorithm to compute the basic universally Laurent functions. An analog of

such a geometric answer is extended to m = 3 only recently in the work [K20] of myself,

building up on some previous works of physicists and mathematicians. In fact, Gross, Hacking,

Keel and Kontsevich, in their seminal paper [GHKK18], constructed an answer to this duality

conjecture for much more general class of cluster varieties, which is found in [GS18] to include

these moduli spaces XPGLm,S. However, we note that the construction of [GHKK18] applied

to XPGLm,S would not involve geometry of surfaces, and the computation of Gross-Hacking-

Keel-Kontsevich’s basic universally Laurent functions are in general enormously complicated.

A natural and important unsolved problem is the equality (or a precise relationship) between

the Gross-Hacking-Keel-Kontsevich’s answer [GHKK18] and those of Fock-Goncharov [FG06]

for m = 2 and myself [K20] for m = 3.

What is most relevant to the present note is the case for XPGL2,S. The basis of the ring

O(XPGL2,S) of regular (i.e. universally Laurent) functions on XPGL2,S constructed by Fock

and Goncharov [FG06] is enumerated by ASL2,S(Zt), i.e. the set of tropical integer points of the

moduli space ASL2,S. Here Zt is the semi-field of tropical integers, which is Z as a set, equipped

with the tropical addition ⊕ given by a⊕ b := max(a, b) and the tropical multiplication � given

by a � b := a + b. Note that tropical division is possible, but not tropical subtraction. As a

set, ASL2,S(Zt) is obtained by gluing together the sets ZQ
(2)
∆ , for ideal triangulations ∆ of the

surface S, along the tropical versions of the cluster A -mutation formulas.

µ∗ka
′
i =

{
ai if i = k,

−ak + max(
∑

j|εkj>0 εkjaj ,
∑

j|εkj<0(−εkjaj)) if i 6= k,

where ε = (εij) is the signed adjacency matrix for the quiver Q
(2)
∆ . The Fock-Goncharov’s

duality map [FG06] in this setting is an injective map

I : ASL2,S(Zt)→ O(XPGL2,S),

such that the image of I forms a basis of O(XPGL2,S), the ring of all universally Laurent

functions on XPGL2,S.
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What is nice about the moduli space ASL2,S or the relevant cluster A -variety A|Q(2)
∆ |

is that

this set ASL2,S(Zt) has a geometric realization [FG06]

ASL2,S(Zt)↔ {even integral A -laminations in S}

An integral A -lamination ` in S is represented as a finite collection of mutually disjoint simple

loops in S with integer weights on the loops, such that the weight on a loop is non-negative

unless the loop is a peripheral loop, i.e. a small loop surrounding the puncture; zero-weight loop

can be removed, and homotopic loops can be combined with the weights added. An integral

A -lamination ` is said to be even if it satisfies a certain parity condition with respect to special

coordinate systems of the space of all integral A -laminations, but let us not go into this detail

now.

We partially recall Fock-Goncharov’s construction of I. Let ` be an integral A -lamination

represented by a single simple loop γ with weight 1, where γ is not a peripheral loop. The cor-

responding function I(`) is essentially the trace-of-holonomy (or trace-of-monodromy) function

on XPGL2,S, which has a natural geometric meaning. Moreover, for each triangulation ∆, I(`)
can be computed explicitly as a Laurent polynomial in the square-roots X

1/2
i of the cluster

X -variables for the nodes i of the 2-triangulation quiver Q
(2)
∆ , i.e. corresponding to edges i of

∆. We will denote by I∆(`) this Laurent polynomial expression for ∆. First, homotope γ so that

it meets ∆ at a minimal number of intersection points, and give an arbitrary orientation on γ;

then break γ into alternating concatenation γ1.γ2.γ3. . . . .γN of two kinds of small pieces γj , one

kind being small pieces passing through an edge of ∆, and the other kind being small pieces

inside triangles, either left turn or right turn. For each small piece γj , define a basic monodromy

matrix Mγj as

Mγj =


(
X

1/2
i 0

0 X
−1/2
i

)
if γj passes through the edge i of ∆;

( 1 1
0 1 ) if γj is a left turn piece in a triangle;

( 1 0
1 1 ) if γj is a right turn piece in a triangle.

Multiply these matrices while traveling along γ once around, and then take trace to get I∆(`):

I∆(`) = tr (Mγ1Mγ2 · · ·MγN )

For convenience, denote the square-root variables by

Zi := X
1/2
i , i ∈ ∆ (i ∈ V(Q

(2)
∆ )).

It is clear that I∆(`) computed this way is a Laurent polynomial in Zi = X
1/2
i , i ∈ ∆, with

non-negative integral coefficients. What is not so clear is the compatibility under flips

µ∗k(I∆′(`)) = I∆(`),
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which nevertheless indeed holds. When one write as

I∆(`) =
∑

(a1,...an)∈Zn

Ω∆(`; a1, . . . , an) ·
∏n
i=1Z

ai
i

with n = number of edges of ∆ and Ω∆(`; a1, . . . , an) ∈ Z≥0, these coefficients Ω∆(`; a1, . . . , an)

seem to correspond to the counting of the ‘framed BPS states’ in physics.

Here is an example when ` is a single loop γ in a once-punctured torus S with weight 1, with

some ideal triangulations ∆ and ∆′ of S related by a flip:

a b

c

a

c

γ γ1

γ2 γ3 γ4

a b

c

a

c

∆ ∆

a b

c

a

c

γ

∆′

The white circles are the nodes of Q
(2)
∆ , with their labels a, b, c indicated as above.

I∆(`) = tr (Mγ1Mγ2Mγ3Mγ4)

= tr
((

Za 0

0 Z−1
a

)
( 1 1

0 1 )
(
Zb 0

0 Z−1
b

)
( 1 0

1 1 )
)

= ZaZb + ZaZ
−1
b + Z−1

a Z−1
b

Note that ∆′ is obtained from ∆ by flipping at the edge of ∆ corresponding to b. A similar

computation for ∆′ gives

I∆′(`) = Z ′aZ
′
b + (Z ′a)

−1Z ′b + (Z ′a)
−1(Z ′b)

−1

Then I∆(`) = X
1/2
a X

1/2
b +X

1/2
a X

−1/2
b +X

−1/2
a X

−1/2
b and I∆′(`) = (X ′a)

1/2(X ′b)
1/2+(X ′a)

−1/2(X ′b)
1/2+

(X ′a)
−1/2(X ′b)

−1/2 are related by the cluster X -mutation map µ∗k, which sends X ′a to Xa(1+Xb)
2

and X ′b to X−1
b .

3. Deformation quantization problem for cluster X -varieties

Coming back to the quantization problem, say for XPGL2,S, the question is now to figure out

how to quantize each basic universally (square-root) Laurent function I(`). For each triangula-

tion ∆, I(`) = I∆(`) is a Laurent polynomial in Zi, i ∈ ∆, with integer coefficients. We would

seek to construct its quantum version Iq∆(`), as a Laurent polynomial in the non-commutative

(square-root) quantum variables Ẑi, i ∈ ∆, with coefficients in Z[q±1/4], which satisfy

ẐiẐj = (q1/4)2εij ẐjẐi, ∀i, j ∈ ∆ (↔ V(Q
(2)
∆ )).

The first stipulation we impose on the sought-for quantized function Iq∆(`) is of course

(1) the classical limit, i.e.

I1∆(`) = I∆(`).
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As usual, one also would require the self-adjointness, or

(2) the ∗-invariance

∗Iq∆(`) = Iq∆(`),

where ∗ stands for the algebra anti-isomorphism s.t. ∗Ẑi = Ẑi, ∀i.

But these two conditions are too weak, and there are lots of solutions to Iq∆(`), i.e. the quantum

ordering problem has many solutions. One of the standard answer for Iq∆(`) is the term-by-term

Weyl-ordering, e.g. for the example from the last section when ` is a loop γ in a once-punctured

torus S with weight 1, we would consider

Iq∆(`) = q1/2ẐaẐb + q−1/2ẐaẐ
−1
b + q1/2Ẑ−1

a Ẑ−1
b .

In a more general situation, this means we consider Iq∆(`) being in the form of a sum of the

following Weyl-ordered Laurent monomials

[Ẑa1
1 Ẑa2

2 · · · Ẑ
an
n ]Weyl = q−

∑
i<j εijaiaj/4Ẑa1

1 Ẑa2
2 · · · Ẑ

an
n

In fact, this term-by-term Weyl-ordered Laurent polynomial does not provide a correct answer

to the deformation quantization problem of cluster X -varieties in general. This is because of

yet another condition that we require, namely

(3) the compatibility under the quantum coordinate change maps, i.e. the quantum muta-

tion maps µqk
µqk(I

q
∆′(`)) = Iq∆(`).

Indeed, the term-by-term quantum Laurent polynomials do not necessarily satisfy the above

compatibility equation.

In physics, there seems to be a solution of the form

Iq∆(`) =
∑

(a1,...an)∈Zn

Ω∆(`; a1, . . . , an; q) · [
∏n
i=1Ẑ

ai
i ]Weyl

where the coefficient Ω∆(`; a1, . . . , an; q) ∈ Z[q±1] is the quantity called the ‘framed protected

spin character’. It is not clear to me whether this Ω∆(`; a1, . . . , an; q) is a well-defined deter-

mined quantity in physics which we just have to compute the value of, or is some sought-for

undetermined quantity to be constructed in order for it to satisfy some conditions. In this talk,

we will regard them as undetermined quantity that we seek to construct, so that Iq∆(`) satisfies

the three conditions (1), (2) and (3). We will review a solution by mathematicians, and another

by physicists.
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4. SL2 quantum trace of holonomy

We first partially describe the solution by mathematicians. This solution for the quantum

functions Iq∆(`) uses the 3-dimensional space

S× (−1, 1),

called the thickened surface. For a point in S× (−1, 1), the second coordinate value in (−1, 1)

is called the elevation of this point.

A basic object is a framed link L in S×(−1, 1), which is a disjoint union of circles S1 embedded

in S × (−1, 1), equipped with a framing, i.e. a nowhere tangent continuous vector field on L

(i.e. per each x ∈ L, a vector in Tx(S × (−1, 1)) \ TxL is chosen, so that these choices are

continuous over L). So L can be visualized by something like a ribbon. Often, a framed link

is considered up to isotopy, i.e. homotopy within the class of framed links. A framed link L in

S×(−1, 1) is usually depicted by its projection onto the surface S, with the blackboard framing.

That is, before projecting to S, one isotope L so that the framing at every point of L is upward

vertical, i.e. parallel to the (−1, 1)-factor and pointing toward 1, and the only singularities of

the projection of L are transverse double intersections, called crossings, where one indicates the

strands in lower elevations by broken lines:

is not isotopic to

Given a punctured surface S and a quantum parameter q ∈ C×, one defines the (Kauffman

bracket) (SL2) skein algebra SqSL2
(S) as the C-vector space freely generated by the set of all

isotopy classes of framed links in S× (−1, 1), mod out by the (Kauffman bracket) (SL2) skein

relations

= q1/2 q−1/2+

and the trivial loop relations

= −(q + q−1)

Denote by [L] ∈ SqSL2
(S) the equivalence class represented by a framed link L. The product

structure on SqSL2
(S) is given by superposition, i.e.

[L1] · [L2] = [L1 ∪ L2]
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where L1, L2 are framed links in S×(−1, 1) such that L1 ⊂ S×(−1, 0) and L2 ⊂ S×(0, 1); that

is, you stack [L2] over [L1]. This skein algebra SqSL2
(S) was first considered by Turaev [T91],

Przytycki [P91], and others, since 1980’s, and was shown to be a quantum algebra deforming

the ring of functions on the SL2-character variety of S [PS00], which is closely related to the

Teichmüller space of S.

The main ingredient in the first solution to the quantum functions Iq∆(`) is the following map

connecting the skein algebra SqSL2
(S) and the algebra of (square-roots of) quantum cluster

X -variables, which was constructed by Bonahon and Wong.

Theorem 4.1 (Bonahon-Wong [BW11]; SL2 quantum trace map). There exists a family of

algebra homomorphisms

Trq∆ = Trq∆;S : SqSL2
(S)→ {(quantum) Laurent polynomials in Ẑi, i ∈ ∆}

for each triangulable punctured surface S and each ideal triangulation ∆ of S, satisfying fa-

vorable properties, including:

(1) if ` is a lamination in the surface S consisting of a single non-peripheral simple loop γ in

S with weight 1, and Lγ is a framed link in S× (−1, 1) obtained as a constant-elevation

upward-vertical lift of γ, then when q = 1 we have

Tr1
∆([Lγ ]) = I∆(`)

(with Ẑi corresponding to Zi);

(2) if ∆ and ∆′ are ideal triangulations of a surface S related by a flip at the edge k, and if

L is a framed link in S× (−1, 1), then the values of the quantum trace maps Trq∆([L])

and Trq∆′([L]) are related by the quantum mutation maps

µqk(Trq∆′([L])) = Trq∆([L]).

So, for a lamination ` in S consisting of a single non-peripheral simple loop γ with weight 1,

we set

Iq∆(`) := Trq∆([Lγ ]),

which is the sought-for quantum function satisfying all three conditions (1), (2) and (3) of the

previous section. Building on this basic case coming from the Bonahon-Wong quantum trace,

Allegretti and myself [AK17] were able to construct quantum functions Iq∆(`) for all (even)

integral A-laminations ` in S that satisfy several desirable properties.

In fact, the key point of Bonahon-Wong’s construction in [BW11] lies in the special property

of their maps Trq∆, namely the compatibility under cutting and gluing of the surface S along

an ideal arc of ∆. Cutting a punctured surface along an ideal arcs does not yield a punctured

surface, but a surface with boundary with ‘punctures’ on the boundary, called marked points.

Such a surface is called a generalized marked surface, or a decorated surface. One first needs to
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define a suitable version of a skein algebra for a generalized marked surface based on tangles

which can have endpoints over boundary arcs, in order to formulate the cutting/gluing axiom

for the quantum trace maps. When one cuts the surface S along all the edges of a triangulation

∆, the cutting/gluing property yields a state-sum type formula for Trq∆, and the value of Trq∆
are determined by those of Trqt for triangles t. The computation and the structure of Bonahon-

Wong’s quantum trace are thus quite algebraic and combinatorial in nature.

Anyhow, this solution Iq∆(`) to quantum functions enjoy several nice properties, as required

partially by the quantum Fock-Goncharov duality conjecture. Note first that Iq∆(`) is a Laurent

polynomial in the non-commutative variables Ẑi, i ∈ ∆, with coefficients in Z[q±1/4]. There are

two kinds of positivity properties, which are important both in mathematics and physics.

Theorem 4.2 (Cho-Kim-K.-Oh [CKKO20]; Laurent coefficient positivity). The coefficients of

Iq∆(`) are non-negative, i.e. lie in Z≥0[q±1/4].

A core of the proof of this theorem is a certain statement about combinatorics related to a

simple loop in S and an ideal triangulation ∆.

For the other positivity, first note the following property of Iq∆ = Iq.

Proposition 4.3 (Allegretti-K. [AK17]; product-to-sum). One has

Iq(`)Iq(`′) =
∑
`′′

cq(`, `′; `′′) Iq(`′′)

where the sum is over all laminations `′′, while the coefficients cq(`, `′; `′′) ∈ Z[q±1/4] are zero

for all but finitely many `′′.

The coefficients cq(`, `′; `′′) are called the structure constants of this quantized ‘basis’ consisting

of Iq(`).

Conjecture 4.4 (structure-constant positivity). cq(`, `′; `′′) are non-negative, i.e. lie in Z≥0[q±1/4].

This conjecture has been known for about 10 years at least, and for the quantum functions Iq(`)
currently in discussion, this conjecture is essentially equivalent to an analogous statement about

a corresponding basis of the skein algebra SqSL2
(S). The classical version q = 1 is proved in [T14].

The quantum version was not known even for a single surface (other than the three-punctured

sphere, for which the problem is trivial), until it was proved just for the once-punctured torus

and the four-punctured sphere in [B20]. Recently, Mandel and Qin announced that they proved

the quantum version for general surfaces (perhaps not for all possible punctured surfaces) in

their upcoming joint work, by showing that the Allegretti-Kim quantum functions Iq(`) [AK17]

which quantize the Fock-Goncharov functions I(`) [FG06] coincide with the Davison-Mandel’s

quantum theta functions [DM19] which quantize the Gross-Hacking-Keel-Kontsevich’s theta

functions [GHKK18]. By the way, as mentioned already, even in the classical setting, the equality
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of the Fock-Goncharov’s functions and Gross-Hacking-Keel-Kontsevich’s functions has not been

proved, again even for a single surface (maybe other than the three-punctured sphere). Even

with [B20] and the upcoming work of Mandel and Qin, their proof are somewhat indirect, and so

it would still be an interesting problem to seek for a more direct and elementary skein-theoretic

proof of this structure-constant positivity.

5. Ideas from physics

Although Bonahon-Wong’s quantum trace maps essentially provided one good answer to the

quantum functions Iq∆(`), the actual computation of the quantum Laurent polynomials Iq∆(`)

somewhat lacks geometric intuition, while being purely algebraic and combinatorial.

We now review another solution to the quantum functions Iq∆(`), constructed by physicists.

The basis of this solution is Gaiotto-Moore-Neitzke’s work [GMN13] on spectral networks and

the non-abelianization process, which gives a correspondence between GLK-bundles on a surface

S with GL1-bundles on some K-fold branched cover of S, referred to as a Seiberg-Witten curve.

Building on [GMN13], Galakhov, Longhi and Moore [GLM15] proposed how to quantize the

parallel transport maps along open paths, using the notion of ‘writhe’. Then Gabella [G17]

incorporated Bonahon-Wong’s idea [BW11] in order to close up the endpoints of an open path,

providing a candidate for a quantum function Iq∆(`) for closed curves `, i.e. loops `. Here we

briefly review these constructions for K = 2, slightly reformulated.

Let S be a punctured surface, with an ideal triangulation ∆. For each triangle t of ∆, choose

a point vt in the interior of t, which would be the branch points (denoted by � in the pictures

below). For each edge e of ∆, denote by t and s the two ideal triangles having e as a side.

Choose a simple path connecting vt and vs that meets ∆ exactly once transversally on e. These

paths will be the branch cuts (denoted by wiggly lines in the pictures below). Take two copies

of S, one called the sheet 1 and the other the sheet 2. Cut along all branch cuts, and glue the

two sheets along the cuts interchangeably, to obtain a branched double cover surface S̃; so, for

each branch cut, on one side of this cut there is sheet 1 and on the other side is sheet 2.

1

1

2

2

cut

1

1
2

2

glue

glue

Take an oriented simple loop γ in the original surface S, considered up to isotopy in S. We

will consider lifts γ̃ in the branched double cover surface S̃, considered up to isotopy in S̃. Note
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that isotopic loops in S yield non-isotopic lifts in S̃ if their relative positions with respect to

the branch points are different, as seen in the picture below.

isotopic paths

in S

lift to S̃

sheet 1

sheet 1

1

2

2

1

non-isotopic in S̃

Suppose γ is presented as concatenation of left turn or right turn segments in triangles, each

of which is a simple path connecting two distinct sides of a triangle, not passing through the

branch point. A lift γ̃ is non-admissible if there is an occurrence of one of the following 8 cases

(where 1 and 2 are sheet numbers), and admissible otherwise.

2

1
1

2

non-admissible lifs in S̃

2

1

2

1

2

1
1

2

1

2
2

1

1

2

1

2

1

2
2

1

The non-abelianization process gives the correspondence (roughly)

GL2 (or SL2) parallel transport along γ ↔
∑

admissible lifts
γ̃ of γ

GL1 parallel transport along γ̃

For the case when γ is a (simple) loop, each admissible lift γ̃ corresponds to a Laurent monomial

Z γ̃∆ = Za1
1 Za2

2 · · ·Z
an
n

where a1, . . . , an ∈ Z are certain coordinates of γ̃ associated to edges of ∆, defined as follows.

Each intersection of γ̃ and a lift in S̃ of an edge of ∆ can be assigned a sign∈ {+,−}, indicating

which sheet it is located at; + means γ̃ is entering the lifted edge of ∆ on its left at sheet 1, or

on its right at sheet 2, and − means otherwise. Then, for each edge i of ∆, ai is the net sum of

these signs of the intersections of γ̃ and the lifts of i, where the signs +,− are counted as the

numbers +1,−1. Note that, different lifts γ̃ may yield a same Laurent monomial. Anyhow, the
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classical setting is

I∆(γ) =
∑
γ̃

Z γ̃∆,

where the sum is over all admissible lifts γ̃ in S̃ of γ, considered up to isotopy in S̃.

An interesting story begins in the quantization of each of this Laurent monomial Z γ̃∆. Galakhov,

Longhi and Moore [GLM15] proposed that the classical Laurent monomial Z γ̃∆ be quantized by

(coefficient for γ̃) · [Ẑ γ̃∆]Weyl

where [Ẑ γ̃∆]Weyl = [Ẑa1
1 · · · Ẑann ]Weyl, and the (coefficient for γ̃) ∈ Z[q±1] is defined as follows.

Note first that, even though γ is a simple loop in S, i.e. has no self-intersection, its lift γ̃ can

have self-intersections, which we call crossings.

simple path

in S

a lift to S̃

1

2

2

1
1

21

2

not a crossing

in S̃

a crossing

in sheet 2

sign +

sign −

To each crossing we associate a sign∈ {+,−} as above, at the right; the natural way to

distinguish these two kinds of crossings is by putting the curve γ̃ into the 3d space S̃× (−1, 1),

so that the picture as above indicate the over or under-crossing. In the original paper [GLM15],

the authors used the ‘always going up’ elevations for the curve in S̃ × (−1, 1), in which case

one does not need to refer to the third dimension and just use the ordering coming from the

parameter values of points of the oriented path γ̃; the smaller parameter means the earlier point

of γ̃ and hence the ‘lower’ strand. Anyhow, define

wr(γ̃) ∈ Z

be the writhe of γ̃, i.e. the net sum of signs of its crossings. The quantization of Z γ̃∆ suggested

in [GLM15] is

qwr(γ̃) · [Ẑ γ̃∆]Weyl

This construction in [GLM15] using the always-going-up elevations works fine for an open path

γ. In case when γ is a closed path, the resulting quantum Laurent polynomial∑
γ̃

qwr(γ̃) · [Ẑ γ̃∆]Weyl

may depend on the choice of a basepoint of γ. In the 3d space S̃× (−1, 1), the always-going-up

path cannot close up!
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To remedy this problem, Gabella proposed [G17] a quantization of Z γ̃∆ in the form

(correction factor for γ̃) · qwr(γ̃) · [Ẑ γ̃∆]Weyl

where the (correction factor for γ̃) ∈ Z[q±1] is defined as follows, inspired by [BW11]. Suppose

that we chose a basepoint of γ among the intersection points of γ and the edges of ∆. Say

we chose the basepoint x of γ lying in the edge e of ∆. Consider a lift γ̃ in S̃, and embed it

into the 3d space S̃ by giving it the always-going-up elevations; so, as one travels from the

starting basepoint of γ̃ til the terminal endpoint, the elevation is strictly increasing. In order

to close up to get a (framed) knot in S̃ × (−1, 1), one needs to add a ‘going-down’ path in

the end. Following [BW11], Gabella arranges this situation as follows. First, fatten each edge

of ∆ to an ideal biangle, by adding one more ideal arc per each edge of ∆, so that the added

arc is isotopic to the relevant original arc. When choosing the always-going-up elevations of γ̃

in S̃ × (−1, 1), we require that the elevations strictly increase along the segments of γ̃ lying

over biangles, while they stay constant along the segments lying over triangles. Now, over the

biangle corresponding to the above special edge e of ∆ over which the initial basepoint of γ̃

lies, we have some r segments of γ̃, where r − 1 of them are ‘going up’ and the remaining one

of them is ‘going down’.

1

2
3

2 3

1
4

elevation ordering
at the left triangle

e elevation

at the right

1

2

3

2

1

4

tangle in biangle×(−1, 1)

ordering

triangle

e.g.

high high

low low

high low

low high

7→ identity matrix

7→ R matrix q−1 0 0 0

0 0 1 0

0 1 q−1−q 0

0 0 0 1


(for edge e ∈ ∆)

To such an r-segment diagram data in a thickened biangle, Gabella considers certain composi-

tion of r−1 number of ‘R-matrices’ of (the standard K-dimensional representation of) Uq(glK),

which is a certain linear transformation between (certain) vector spaces. To r = 1 is associated

the identity transformation, to r = 2 is associated a certain twisted version of the R-matrix

of Uq(glK), and for r ≥ 2 one cuts the r-segment diagram into ‘composition’ of r − 1 number

of 2-segment diagrams (joined with parallel r − 2 segments), and associate the corresponding

composition of R-matrices. Gabella’s correction factor is then defined as the matrix elements

of this composition of R-matrices. It is partially proved in [G17] that the sum∑
γ̃

(correction factor for γ̃) · qwr(γ̃) · [Ẑ γ̃∆]Weyl

does not depend on the choice of a basepoint of γ. This is Gabella’s quantum holonomy, pro-

viding a candidate for the sought-for quantum function Iq∆(γ).
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Theorem 5.1 (K.-Lê-Son; [KLS18]; the equality of the two solutions to quantum regular func-

tion). Gabella’s solution to the quantum function Iq∆(`) using his quantum holonomy coincides

with Bonahon-Wong(-Allegretti-Kim)’s solution for Iq∆(`) using the Bonahon-Wong quantum

trace.

To be more precise, the equality does not hold on the nose; we had to modify and slightly

correct Gabella’s construction. For example, in his original proposal Gabella avoided using

the (quantum) square-root variables, and in his answer, the factor [Ẑ γ̃∆]Weyl is replaced by a

certain relevant Laurent monomial in the usual quantum variables X̂i = Ẑ2
i . We note that

the quantum function originally proposed by Gabella this way is not compatible under the

quantum mutation maps for flips. Another important aspect of [KLS18] is its full treatment on

what happens over biangles, which Gabella explained only partially. In particular, we established

an explicit connection to the Reshetikhin-Turaev operator invariants of (framed) tangles over

biangles [RT90], associated to the standard 2d representation of Uq(sl2), which also explains

why the R-matrices appear. This complete treatment for biangles is a key step toward the proof

of the main theorem of [KLS18], namely the above theorem. In addition, we tried to interpret

the language used in [G17] into a mathematical one as much as possible.

6. Future directions : higher rank

So far we only discussed the quantization problem for the moduli space XPGL2,S, i.e. how to

quantize the Poisson algebra O(XPGL2,S). To recall again, a basic ingredient in the solution of

this problem is a canonical basis of O(XPGL2,S), built essentially out of the trace-of-holonomy

(or, trace-of-monodromy) functions along simple loops in S.

A natural and important future research direction is a higher rank generalization, i.e. the

quantization problem for the space XPGLm,S, or the Poisson algebra O(XPGLm,S). One might

try approaching this problem as in the case of m = 2, i.e. to begin with searching for a canonical

basis of O(XPGLm,S) to be quantized. As mentioned before, such a nice basis is found in

[GHKK18], called the theta basis, enumerated by the set ASLm,S(Zt), and its quantized version

is constructed in [DM19]. However, the theta bases and their quantization are almost purely

combinatorial, involving only the combinatorics related to the relevant quivers Q
(m)
∆ , i.e. the

m-triangulation quivers of the ideal trianglations of S. That is, they do not use the geometry

of the surface S and the moduli space XPGLm,S almost at all, and the computation of each

individual basic regular function, i.e. the theta function, is notoriously heavy, since it involves

counting of combinatorial objects in high dimensional Euclidean spaces (roughly of dimension

being the number of nodes of Q
(m)
∆ , or twice that). So, what had been missing for m ≥ 3 is the

geometric model for the duality map

ASLm,S(Zt)→ O(XPGLm,S),
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as well as that for its quantization, which are as geometric and computationally straightforward

as Fock-Goncharov’s [FG06] and Allegretti-Kim’s [AK17] answers for m = 2.

This task is accomplished for m = 3 by a recent work of myself [K20], building on the works of

other people on the subject and the theory of SL3 skein algebras. The most crucial ingredient

is the notion of an SL3-web in a surface S, which is a union of oriented loops and oriented

tri-valent graphs on S, so that each vertex is either a source or a sink; besides these vertices,

we also allow transverse double self-intersections, called crossings. When S has a boundary,

we allow a component graph of an SL3-web to have 1-valent endpoints lying in the boundary.

The SL3-web living in an n-gon (i.e. a closed disc with n marked points on the boundary) first

appeared in Kuperberg’s work [K96] on the theory of invariants of representations of SL3 as

well as those of other Lie groups and algebras. Later it was generalized to a surface version by

Sikora [S01].

example of an SL3-web in a surface S with boundary

(red points are the punctures and marked points on the boundary)

Sikora defined the (commutative) SL3-skein algebra SSL3(S;R) of the surface S, where R is

any ring with unity, as the free R-module generated by all SL3-webs in S considered up to

isotopy and Reidemeister moves, mod out by the SL3-skein relations

= 3Ø = = + = −2 = +

which are local relations which already appeared in [K96], where the product is given by super-

position, i.e. stacking, i.e. union. Sikora [S01] proved the isomorphism

SSL3(S;Q)→ O(LSL3,S)

between the SL3-skein algebra and the SL3-character variety of S, sending an oriented loop to

the trace-of-holonomy function along that loop. This isomorphism is the first bridge between

the world of topology and the world of moduli spaces, and hence is a starting point of work

[K20]. Sikora and Westbury [SW07] proved that SSL3(S;Q) has a basis consisting of non-elliptic

SL3-webs, i.e. SL3-webs without crossing and without a contractible region bounded either by

a loop, a 2-gon, or a 4-gon (as appearing in the SL3-skein relations). So, the works [S01] and

[SW07] together yield the following baby version of the ‘duality’ map

{non-elliptic SL3-webs in S} → O(LSL3,S)
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which is an injective map whose image forms a basis of O(LSL3,S).

In [K20] I introduced the notion of an SL3-lamination in S, which is a non-elliptic SL3-web in

S with integer weights on its components, subject to the following condition and equivalence

relation: assuming that S is a punctured surface (i.e. without boundary),

(1) the weight of a component is non-negative, unless the component is a peripheral loop

(i.e. a small loop surrounding a puncture);

(2) the weight of a component involving a 3-valent vertex is 1;

(3) the component of zero weight can be removed;

(4) homotopic components can be combined by summing the weights.

1

2

3−2

example of an SL3-lamination in a punctured surface (red dots are punctures)

Extending Sikora and Westbury’s ‘duality’ map, I constructed another ‘duality’ map

{SL3-laminations in S} → O(XSL3,S)

which is an injective map whose image forms a basis of O(XSL3,S). The peripheral loops should

be treated a bit differently than before.

For a triangulable punctured surface S, Frohman and Sikora [FS20] constructed a certain

coordinate system on the set of all non-elliptic SL3-webs in S, where the coordinate system

depends on the choice of an ideal triangulation ∆ of S; in fact, they also worked on generalized

marked surfaces (i.e. surfaces with boundary). Douglas and Sun [DS20a] considered a modified

version, inspired by the work of a physicist Xie [X13] on the Fock-Goncharov duality map:

{non-elliptic SL3-webs in S} → (1
3Z)V(Q

(3)
∆ ), ` 7→ (av;∆(`))

v:nodes of Q
(3)
∆

;

in particular, there is a 1
3Z-valued coordinate av;∆(`) per each node v of the 3-triangulation

quiver Q
(3)
∆ of ∆. Under the change of ideal triangulations ∆ ; ∆′, it is shown [DS20b] that the

Douglas-Sun coordinates transform precisely by the tropical version of the sequence of cluster

A -mutations as mentioned in §1, in particular corresponding to the sequence (of length 4) of

quiver mutations relating Q
(3)
∆ and Q

(3)
∆′ .

I first extended the Douglas-Sun coordinates to SL3-laminations, called the tropical coordinates,

and identified the image set as a certain subset of (1
3Z)V(Q

(3)
∆ ). As a consequence, I showed that

the SL3-laminations whose tropical coordinates are all integers (instead of lying in 1
3Z), which

I called congruent, are in bijection with the integral lattice:

{congruent SL3-laminations in S} 1:1−→ ZV(Q
(3)
∆ ) ⊂ (1

3Z)V(Q
(3)
∆ )
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Combining with the result [DS20b] on the transformation formula, this provides a geometric

model for the set ASL3,S(Zt) of tropical integer points of the moduli space ASL3,S, or of the

cluster A -variety A|Q(3)
∆ |

:

ASL3,S(Zt) = A|Q(3)
∆ |

(Zt)↔ {congruent SL3-laminations in S},

which is in the style of Fock-Goncharov’s work on m = 2.

The first main result of [K20] is the duality map

I : ASL3,S(Zt) = {congruent SL3-laminations in S} −→ O(XPGL3,S).

For each congruent SL3-lamination ` on S, I constructed a regular function I(`) on XPGL3,S.

Per each ideal triangulation ∆ of S, this function I(`) can be written as a Laurent polynomial

I∆(`) in the cluster X -coordinates associated to the nodes of Q
(3)
∆ with integer coefficients. The

computation of this Laurent polynomial is relatively straightforward. For a loop, it is essentially

the trace of holonomy along the loop, where the 3 × 3 holonomy matrix can be obtained as

a product of basic monodromy matrices, like in the case of XPGL2,S; these basic monodromy

matrices for small pieces of loops are essentially already in [FG06], and we just need to suitably

normalize them. For an SL3-web having 3-valent vertices, we either use SL3-skein relations to

express it using only loops; for example, in a once-punctured torus, see below:

e

e

ff

=

e

e

ff

·
e

e

ff

−
e

e

ff

Another way to compute the function for an SL3-web is to first fatten each edge of ∆ to a biangle,

then push all 3-valent vertices of the SL3-web to biangles through isotopy, and use the state-

sum type formula developed in [K20] which boils the computation down to computations in the

triangles and biangles; for each triangle it’s just about the basic monodromy matrices mentioned

above, and for each biangle the computation is about the Reshetikhin-Turaev invariants for

tangles associated to the standard 3d representation of U(sl3) [RT90].

One of the crucial statements about this duality map I is that, for each congruent SL3-

lamination `, the corresponding function I∆(`) has a unique highest degree term given by∏
v∈V(Q

(3)
∆ )

X
av;∆(`)
v , where av;∆(`) are the tropical coordinates of ` at the nodes v of the 3-

triangulation quiver Q
(3)
∆ . This highest term statement was already predicted in [X13], and is

only fully formulated and proven in [K20], with the help of the computational machinery de-

veloped in [K20], namely the state-sum type formula. This highest term statement is a major

step toward the proof that the image of I forms a basis of O(XPGL3,S).
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Moreover, in [K20] a quantum version Iq∆ of this duality map I∆ is also constructed. For this,

I first established an SL3 version of the quantum trace map, which is a map from the non-

commutative SL3-skein algebra SqSL3
(S) [S05] to a suitable ring of non-commutative Laurent

polynomials, generated by the ‘cube-roots’ of the quantum variables X̂±1
v , v ∈ V(Q

(3)
∆ ).

We end this note by mentioning several future problems about this SL3-PGL3 duality.

(1) (Laurent coefficient positivity) In the Laurent polynomial expression I∆(`) ∈ O(XPGL3,S),

the coefficients are integers. Are these coefficients non-negative?

(2) (structure constant positivity) From the first main theorem of [K20], for two congruent

SL3-laminations `, `′ ∈ ASL3,S(Zt) we know that the product-to-sum formula

I(`)I(`′) =
∑
`′′

c(`, `′; `′′)I(`′′)

holds for some integer structure constants c(`, `′; `′′) ∈ Z, where the sum is a finite sum.

Are these structure constants c(`, `′; `′′) positive? Or, is there a natural way to modify

I a little bit (like, replacing bangles by bracelets), so that these constants are positive?

(3) Does this duality map I∆ coincides with Gross-Hacking-Keel-Kontsevich’s theta basis

duality map for the quiver Q
(3)
∆ [GHKK18]?

(4) Same questions for the quantum duality map Iq∆, with (3) for Davison-Mandel’s quantum

theta basis duality map [DM19].

(5) Does the value of the quantum duality map Iq∆ (or the SL3 quantum trace) at a simple

oriented loop coincide with Gabella’s quantum holonomy (for K = 3) [G17], perhaps

after some modification?

(6) Construct higher rank generalization, i.e. the SLm-PGLm duality, for m ≥ 4.
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[KLS18] H. Kim, T.T.Q. Lê, and M. Son, SL2 quantum trace in quantum Teichmüller theory via writhe,

arXiv:1812.11618v2

[K96] G. Kuperberg, Spiders for Rank 2 Lie Algebras, Commun. Math. Phys. 180 (1996), 109–151.

arXiv:q-alg/9712003

[P91] J.H. Przytycki, Skein modules of 3-manifolds, Bull. Pol. Acad. Sci. Math. 39 (1991), 91–100.

[PS00] J. Przytycki and A. Sikora, On the skein algebras and Sl2(C)-character varieties, Topology 39 (2000),

115–148.

[RT90] N.Y. Reshetikhin and V.G. Turaev. Ribbon graphs and their invariants derived from quantum groups,

Comm. Math. Phys. 127(1) (1990), 1–26.

[S01] A.S. Sikora, SLn-character varieties as spaces of graphs, Transactions of the AMS 35 no.7 (2001),

2773–2804. arXiv:math/9806016

[S05] A.S. Sikora, Skein theory for SU(n)-quantum invariants, Algebraic & Geometric Topology 5 (2005),

865–897. arXiv:math/0407299

[SW07] A.S. Sikora and B.W. Westbury, Confluence theory of graphs, Alg. Geom. Topol. 7 (2007), 439–478.

arXiv:math/0609832

[T14] D.P. Thurston, Positive bases for surface skein algebras, Proc. Natl. Acad. Sci. 111(27) (2014), 9725–

9732. arXiv:1310.1959

[T91] V.G. Turaev, “Algebra of loops on surfaces, algebra of knots, and quantization” in Braid group,

knot theory and statistical mechanics, Adv. Ser. Math. Phys. 9, World Sci. Publ., Teaneck, NJ, 1989.

pp59–95.

[X13] D. Xie, Higher laminations, webs and N = 2 line operators, arXiv:1304.2390

E-mail address: hyunkyukim@ewha.ac.kr, hyunkyu87@gmail.com

Department of Mathematics, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul

03760, Republic of Korea


