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The space forms, the complex hyperbolic spaces and the quaternionic hyperbolic spaces
are characterized as the harmonic manifolds with specific radial eigenfunctions of the
Laplacian.
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1. Introduction

In the Euclidean space Rn, it is well-known that the Laplace operator ∆ is invariant under orthogonal transformations.
Hence Rn has the property that the Laplacian of a radial function (function depending only on the distance to the origin) is
still radial. Then, is a Riemannian manifoldM with this property necessarily isometric to Rn or the space form? In regard to
this interesting question, a harmonic manifold is introduced.

A complete Riemannian manifoldM is called harmonic if it satisfies one of the following equivalent conditions:

(1) For any point p ∈ M and the distance function r(·) := dist(p, ·), ∆r2 is radial for small r;
(2) For any p ∈ M there exists a nonconstant radial harmonic function in a punctured neighborhood of p;
(3) Every small geodesic sphere inM has constant mean curvature;
(4) Every harmonic function satisfies the mean value property [1];
(5) For any p ∈ M the volume density function ωp =

√
det gij in normal coordinates centered at p is radial.

Lichnerowicz conjectured that every harmonic manifoldMn is flat or rank 1 symmetric. This conjecture has been proved
to be true for dimension n ≤ 5 [2–6]. But Damek and Ricci [7] found that there are many counterexamples if dimension
n ≥ 7. Euh, Park and Sekigawa [8] provide a new proof of the Lichnerowicz conjecture for dimension n = 4, 5 in a slightly
more general setting using universal curvature identities.

In order to further characterize harmonic manifolds, Ranjan–Shah [9], Szabó [5] and Ramachandran–Ranjan [10] paid
attention to the volume density function ωp(r) as defined in the equivalent condition (5) above. Ranjan–Shah proved that
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a harmonic manifold with the same volume density as Rn is flat, Szabó showed that the compact harmonic manifold with
ωp(r) =

1
rn−1 sin

n−1r is locally isometric to Sn and Ramachandran–Ranjan showed that a noncompact simply connected
harmonic manifold Mn with ωp(r) =

1
rn−1 sinh

n−1r is locally isometric to Hn. Ramachandran–Ranjan also proved that a
noncompact simply connected Kähler harmonic manifold M2n with ωp(r) =

1
r2n−1 sinh

2n−1r cosh r is locally isometric to the
complex hyperbolic space. A similar theorem was proved for the quaternionic hyperbolic space as well. And in ‘‘Another’’
proof of Theorem 4 we give a new proof that the harmonic manifold with ωp(r) =

1
rn−1 sin

n−1r is locally isometric to Sn.
In this paper we remark the fact that the Laplacian of specific radial functions are very simple in space forms. It is well

known that in Rn

∆r2−n
= 0 and ∆r2 = 2n; (1.1)

in Sn and Hn [11],

∆ cos r = −n cos r and ∆ cosh r = n cosh r, respectively; (1.2)

and for some hypergeometric function f on CHn and QHn,

∆f = 4(n + 1)f and ∆f = 8(n + 1)f , respectively. (1.3)

Motivated by this fact, we characterize harmonicmanifolds in terms of these radial functions. It will be proved that if a radial
harmonic function defined in a punctured neighborhood of a harmonic manifoldM , as in the equivalent condition (2) above,
is the same as the radial Green’s function of a space form, CHn or QHn, then M is locally isometric to the space form, CHn

or QHn, respectively. We also prove that if a radial function on a harmonic manifold M satisfies (1.1), (1.2) or (1.3), then M
is locally isometric to one of the spaces Rn, Sn, Hn, CHn or QHn. Finally, we show that if the mean curvature of a geodesic
sphere in a harmonic manifold M is the same as that in a space form, CHn or QHn, then M is locally isometric to the space
form, CHn or QHn, respectively.

2. Laplacian

The radial Green’s function of Rn is 1
(2−n)nωn

r2−n if n > 2 and 1
2π log r if n = 2 where ωn is the volume of a unit ball. The

radial Green’s functions of Sn and Hn are G(r) such that G′(r) =
1

nωn
sin1−n r , G′(r) =

1
nωn

sinh1−nr , respectively.

Theorem 1. Let Gp(r) be a nonconstant radial harmonic function on a punctured neighborhood of p in a simply connected
harmonic manifold Mn with r(·) = dist(p, ·). If Gp(r) is the same as the radial Green’s function of a space form, CHn or QHn at
every point p ∈ M, then M is locally isometric to the space form, CHn or QHn, respectively.

Proof. Let δp be the Dirac delta function centered at p ∈ M . Integrate ∆Gp(r) = δp over a geodesic ball Dr of radius r with
center at p:

1 =

∫
Dr

∆Gp(r) =

∫
∂Dr

G′

p(r).

Hence

vol(∂Dr ) =
1

G′
p(r)

and vol(Dr ) =

∫ r

0

1
G′
p(r)

=

∫
exp−1

p (Dr )
ωp(r).

Then M has the same volume density ωp(r) as a space form, CHn, or QHn. Therefore by Ranjan–Shah [9], Szabó [5],
Ramachandran–Ranjan [10],M is locally isometric to Rn, Sn,Hn, CHn or QHn, respectively. □

Corollary 2. If ∆r2 = 2n for r(·) = dist(p, ·) at any point p of a harmonic manifold Mn, then M is flat.

Proof. It is known that

∆f k = k(k − 1)f k−2
|∇f |2 + kf k−1∆f .

Setting f = r2 and k = 1 − n/2, n ̸= 2, one can compute that

∆r2−n
= 0.

Hence M has a radial harmonic function 1
(2−n)nωn

r2−n which is the same as Green’s function of Rn. Therefore the conclusion
follows from Theorem 1. The proof for n = 2 is similar. □

The condition (3) in Section 1 says that themean curvature of a small geodesic sphere in a harmonicmanifold is constant.
The following theorem characterizes a harmonic manifold in terms of the mean curvature.
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Theorem 3. Let H(r) be the mean curvature of a geodesic sphere of radius r in a simply connected harmonic manifold M. If H(r)
is the same as that in a space form,CHn or QHn for any point p ∈ M with r(·) = dist(p, ·), then M is locally isometric to the space
form, CHn or QHn, respectively.

Proof. Let γ be a geodesic from p parametrized by arclength r with γ (0) = p in a Riemannian manifoldMn. Let {e1, . . . , en}
be an orthonormal frame at γ (0) with e1 = γ ′(0) and extend it to a parallel orthonormal frame field {e1(r), . . . , en(r)} along
γ (r) with ei(0) = ei. Define Yi(r), i = 2, . . . , n, to be the Jacobi field along γ (r) satisfying Yi(0) = 0 and Y ′

i (0) = ei. If M is
harmonic, then

ωp(r) =
1

rn−1

√
det⟨Yi(r), Yj(r)⟩ :=

1
rn−1 Θ(r). (2.1)

In other words, the volume form dV ofM in normal coordinates x1, . . . , xn becomes

dV = ωp(r)dx1 · · · dxn = Θ(r) dr dA,

where dA is the volume form on the unit sphere in Rn. Since the volume of a geodesic sphere ∂Dr is
∫
S Θ(r) (S: unit sphere

in Rn), the first variation of area on the geodesic sphere ∂Dr yields

H(r) =
Θ ′(r)
Θ(r)

. (2.2)

As H(r) is the same as that of a space form, Θ(r) must be the same as that of the space form, and so ωp(r) is the same as the
volume density function of the space form. Similarly for CHn andQHn with n replaced by 2n and 4n, respectively. Therefore
Ranjan–Shah, Szabó and Ramachandran–Ranjan’s theorems complete the proof. □

3. Eigenfunctions

In (2.1) Yi(r) has the following Taylor expansion:

Yi(r) = ei(r)r −
1
6
R(ei(r), e1(r))e1(r)r3 + o(r3).

Hence

⟨Yi(r), Yj(r)⟩ = r2(δij −
1
3
⟨R(ei(r), e1(r))e1(r), ej(r)⟩r2 + o(r2))

and

det⟨Yi(r), Yj(r)⟩ = r2n−2 det
(
In−1 −

1
3
Ri11j(γ (r))r2 + o(r2)

)
.

If M is harmonic, then

d2

dr2
|r=0 ωp(r) =

d2

dr2
|r=0

(
1

rn−1

√
det⟨Yi(r), Yj(r)⟩

)
= −

1
3
Ric(p), (3.1)

which is called the first Ledger formula ([2], p. 161). This formula implies that harmonic manifolds are Einstein.

Theorem 4. (a) If ∆ cos r = −n cos r on a complete simply connected harmonic manifold Mn at any point p ∈ M with
r(·) = dist(p, ·), then M is locally isometric to Sn.

(b) If ∆ cosh r = n cosh r on a complete simply connected harmonic manifold Mn at any point p ∈ M with r(·) = dist(p, ·),
then M is locally isometric to Hn.

Proof. (a) Since ∆ cos r = −n cos r , it is not difficult to show

∆r = (n − 1) cot r. (3.2)

Let Gp(r) be the radial function onM such that G′
p(r) =

1
nωn

sin1−n r . Then

∆Gp(r) = div∇Gp(r) = div(
1

nωn
sin1−nr∇r)

=
(1 − n)
nωn

sin−nr cos r|∇r|2 +
1

nωn
sin1−n r∆r

= 0. (by (3.2))

Theorem 1 completes the proof.
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(Another proof ) It is easy to show that for a radial function f on a harmonic manifoldM

∆f =
d2f
dr2

+ H(r)
df
dr

, (3.3)

where H(r) is the mean curvature of ∂Dr . Hence from (2.2) and (3.2) one gets for f (r) := r

Θ ′(r)
Θ(r)

= H = (n − 1) cot r.

Therefore

Θ(r) = sinn−1r and ωp(r) =
1

rn−1 sin
n−1r.

Then

ω′

p(r) = (n − 1)
(
sin r
r

)n−2( sin r
r

)′

,

ω′′

p (r) = (n − 1)(n − 2)
(
sin r
r

)n−3((
sin r
r

)′)2

+ (n − 1)
(
sin r
r

)n−2( sin r
r

)′′

.

Hence Ledger’s formula (3.1) implies

Ric(p) = −3
d2

dr2
|r=0 ωp(r) = n − 1

for any p ∈ M . Using the Riccati equation for the second fundamental form h on the geodesic sphere, one obtains

Ric(M) = −trh′
− trh2

≤ (n − 1) csc2 r − (n − 1)cot2r (∵ trh2
≥

1
n − 1

(trh)2)

= n − 1.

Since equality holds above, one has trh2
=

1
n−1 (trh)

2. Hence the linear operator h is a multiple of the identity, meaning
that every geodesic sphere is umbilic. So the sectional curvature is constant on the geodesic sphere. Therefore M is locally
isometric to Sn as M is Einstein.

Proof of (b) is similar to that of (a). □

Theorem 5. (a) Let f (r) := 1+
n+1
n sinh2r be a radial function on a complete simply connected Kähler harmonic manifold M2n.

If ∆f = 4(n + 1)f at any point p ∈ M with r(·) = dist(p, ·), then M is locally isometric to the complex hyperbolic space CHn.
(b) Let f (r) := 1 +

n+1
n sinh2r be a radial function on a complete simply connected quaternionic Kähler harmonic manifold

M4n. If ∆f = 8(n+1)f at any point p ∈ M with r(·) = dist(p, ·), then M is locally isometric to the quaternionic hyperbolic space
QHn.

Proof. (a) (2.2) and (3.3) yield

∆f = f ′′
+

Θ ′

Θ
f ′

= 4(n + 1)f .

Hence for f (r) = 1 +
n+1
n sinh2r one can compute

Θ ′(r)
Θ(r)

= (2n − 1) coth r + tanh r.

Therefore

Θ(r) = sinh2n−1 cosh r and ωp(r) =
1

r2n−1 sinh
2n−1 cosh r.

Thus the theorem follows from Ramachandran–Ranjan’s theorem [10].
(b) For f (r) = 1 +

n+1
n sinh2r

Θ ′(r)
Θ(r)

= (4n − 1) coth r + 3 tanh r and Θ(r) = sinh4n−1r cosh3 r.

Hence ωp(r) =
1

r4n−1 sinh
4n−1r cosh3 r , which is the same as the volume density of QHn. □
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