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Abstract
The Clifford torus is a product surface in 𝕊3 and it is helicoidal. It will be shown that

more minimal submanifolds of 𝕊𝑛 have these properties.
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1 INTRODUCTION

The Clifford torus is the simplest minimal surface in 𝕊3 besides the great sphere. Similarly in higher dimension we have a

generalized Clifford torus 𝕊𝑝
(√

𝑝

𝑝+𝑞

)
× 𝕊𝑞

(√
𝑞

𝑝+𝑞

)
which is minimal in 𝕊𝑝+𝑞+1.

In Euclidean space there is an easy theorem that Σ1 × Σ2 is minimal in ℝ𝑛1+𝑛2 if Σ1 and Σ2 are minimal in ℝ𝑛1 and ℝ𝑛2 ,

respectively. While one cannot expect the same theorem to hold literally in 𝕊𝑛, we will prove an analogous theorem as follows:

If Σ𝑚1 is minimal in 𝕊𝑝 and Σ𝑛2 is minimal in 𝕊𝑞 , then
√

𝑚

𝑚+𝑛 Σ
𝑚
1 ×

√
𝑛

𝑚+𝑛 Σ
𝑛
2 is minimal in 𝕊𝑝+𝑞+1.

There is another way of proving the minimality of the Clifford torus Σ in 𝕊3. It is well known that Σ is (doubly) foliated by

great circles and Σ divides 𝕊3 into two congruent domains 𝐷1, 𝐷2. For every great circle 𝓁 in Σ consider the rotation 𝜌𝓁 of 𝕊3

about 𝓁 by 180◦. One can show that

𝜌𝓁(Σ) = Σ, 𝜌𝓁(𝐷1) = 𝐷2, 𝜌𝓁(𝐷2) = 𝐷1, 𝜌𝓁(𝑝) = 𝑝, for all 𝑝 ∈ 𝓁. (1.1)

More generally, if a hypersurface Σ𝑛−1 of a Riemannian manifold 𝑀𝑛 has an isometry 𝜌 (in place of 𝜌𝓁) satisfying (1.1) at every

point 𝑝 of Σ𝑛−1, Σ𝑛−1 is said to be helicoidal in 𝑀 . In Proposition 3.2 we show that the generalized Clifford torus 𝕊𝑝
(
1∕

√
2
)
×

𝕊𝑝
(
1∕

√
2
)

is helicoidal in 𝕊2𝑝+1. In Theorem 3.3 we will prove that every helicoidal hypersurface of 𝑀 is minimal.

Recently Tkachev [3] and Hoppe–Linardopoulos–Turgut [2] found algebraic minimal hypersurfaces 𝑁1 in 𝕊𝑛2−1 and 𝑁2 in

𝕊2𝑛2−𝑛−1, respectively:

𝑁1 =
{
(𝑥11, 𝑥12,… , 𝑥𝑛𝑛) ∈ ℝ𝑛2 ∶ (𝑥𝑖𝑗) is an 𝑛 × 𝑛 matrix with zero determinant

}
∩ 𝕊𝑛2−1;

𝑁2 =
{
(𝑥11, 𝑥12,… , 𝑥2𝑛2𝑛) ∈ ℝ4𝑛2 ∶ (𝑥𝑖𝑗) is a 2𝑛 × 2𝑛 skew-symmetric matrix with zero determinant

}
∩ 𝕊4𝑛2−1

is similar to a minimal hypersurface in 𝕊2𝑛2−𝑛−1. In this paper we give a new proof of their minimality, showing that they are

helicoidal.
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2 PRODUCT MANIFOLDS

Let Σ𝑚 be an 𝑚-dimensional submanifold of 𝕊𝑝 and let Σ𝑛 be an 𝑛-dimensional submanifold of 𝕊𝑞 . Denote by 𝑎Σ𝑚 and 𝑏Σ𝑛 the

homothetic expansions of Σ𝑚 ⊂ ℝ𝑝+1 and Σ𝑛 ⊂ ℝ𝑞+1 with factors of 𝑎 and 𝑏, respectively.

Theorem 2.1. If Σ𝑛11 is minimal in 𝕊𝑝 and Σ𝑛22 is minimal in 𝕊𝑞 , then
√

𝑛1
𝑛1+𝑛2

Σ𝑛11 ×
√

𝑛2
𝑛1+𝑛2

Σ𝑛22 is minimal in 𝕊𝑝+𝑞+1.

Proof. Let 𝜑1,… , 𝜑𝑛1
be the local coordinates of Σ𝑛11 such that 𝐦𝟏 ∶

(
𝜑1,… , 𝜑𝑛1

)
∈ 𝐷1 ⊂ ℝ𝑛1 → 𝐦𝟏

(
𝜑1,… , 𝜑𝑛1

)
∈ Σ𝑛11 ⊂

𝕊𝑝 ⊂ ℝ𝑝+1 is a local immersion. Similarly, 𝜑𝑛1+1,… , 𝜑𝑛1+𝑛2 are local coordinates of Σ𝑛22 with a local immersion 𝐦𝟐 ∶
𝐷2 ⊂ ℝ𝑛2 → Σ𝑛22 ⊂ 𝕊𝑞 ⊂ ℝ𝑞+1. Clearly

√
𝑛1

𝑛1+𝑛2
Σ𝑛11 ×

√
𝑛2

𝑛1+𝑛2
Σ𝑛22 ⊂ ℝ𝑝+𝑞+2 is a submanifold of 𝕊𝑝+𝑞+1. Let's define a local

immersion �̂� ∶ 𝐷1 ×𝐷2 ⊂ ℝ𝑛1+𝑛2 → 𝕊𝑝+𝑞+1 ⊂ ℝ𝑝+𝑞+2 by

�̂�
(
𝜑1,… , 𝜑𝑛1+𝑛2

)
=

⎛⎜⎜⎜⎝
√

𝑛1
𝑛1+𝑛2

𝐦𝟏
(
𝜑1,… , 𝜑𝑛1

)
√

𝑛2
𝑛1+𝑛2

𝐦𝟐
(
𝜑𝑛1+1,… , 𝜑𝑛1+𝑛2

)
⎞⎟⎟⎟⎠ .

Then �̂� is an immersion into
√

𝑛1
𝑛1+𝑛2

Σ𝑛11 ×
√

𝑛2
𝑛1+𝑛2

Σ𝑛22 . The metric of �̂� is

𝑑𝑠2 =
𝑛1+𝑛2∑
𝐴,𝐵=1

�̂�𝐴𝐵𝑑𝜑𝐴𝑑𝜑𝐵,

where
(
�̂�𝐴𝐵

)
is the block matrix

(
�̂�𝐴𝐵

)
=

⎛⎜⎜⎝
𝑛1

𝑛1+𝑛2
𝑔𝑎𝑏 𝑂

𝑂
𝑛2

𝑛1+𝑛2
𝑔𝑎′𝑏′

⎞⎟⎟⎠
with

𝑎, 𝑏 = 1,… , 𝑛1, 𝑎′, 𝑏′ = 𝑛1 + 1,… , 𝑛1 + 𝑛2,

and

𝑔𝑎𝑏 =
𝜕𝐦𝟏
𝜕𝜑𝑎

⋅
𝜕𝐦𝟏
𝜕𝜑𝑏

, 𝑔𝑎′𝑏′ =
𝜕𝐦𝟐
𝜕𝜑𝑎′

⋅
𝜕𝐦𝟐
𝜕𝜑𝑏′

.

Moreover,

(
�̂�𝐴𝐵

)
=

⎛⎜⎜⎝
𝑛1+𝑛2
𝑛1

𝑔𝑎𝑏 𝑂

𝑂
𝑛1+𝑛2
𝑛2

𝑔𝑎
′𝑏′

⎞⎟⎟⎠
and

�̂� = det
(
�̂�𝐴𝐵

)
=

𝑛
𝑛1
1 𝑛

𝑛2
2

(𝑛1 + 𝑛2)𝑛1+𝑛2
𝑔𝑔′, 𝑔 = det(𝑔𝑎𝑏), 𝑔′ = det(𝑔𝑎′𝑏′ ).

Let Δ𝑛1
,Δ𝑛2

,Δ𝑛1+𝑛2 denote the Laplacians on Σ𝑛11 ,Σ𝑛22 and
√

𝑛1
𝑛1+𝑛2

Σ𝑛11 ×
√

𝑛2
𝑛1+𝑛2

Σ𝑛22 , respectively. Since Σ𝑛11 ,Σ𝑛22 are minimal,

we have

Δ𝑛1
𝐦𝟏 =

1√
𝑔

∑
𝑎,𝑏

𝜕

𝜕𝜑𝑎

(√
𝑔𝑔𝑎𝑏

𝜕

𝜕𝜑𝑏

𝐦𝟏

)
= −𝑛1𝐦𝟏,

Δ𝑛2
𝐦𝟐 =

1√
𝑔′

∑
𝑎′,𝑏′

𝜕

𝜕𝜑𝑎′

(√
𝑔′𝑔𝑎

′𝑏′ 𝜕

𝜕𝜑𝑏′
𝐦𝟐

)
= −𝑛2𝐦𝟐.
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Hence

Δ𝑛1+𝑛2�̂� = 1√
�̂�

∑
𝐴,𝐵

𝜕

𝜕𝜑𝐴

(√
�̂��̂�𝐴𝐵

𝜕

𝜕𝜑𝐵

�̂�
)

=
𝑛1 + 𝑛2
𝑛1

1√
𝑔

∑
𝑎,𝑏

𝜕

𝜕𝜑𝑎

⎛⎜⎜⎝
√
𝑔𝑔𝑎𝑏

𝜕

𝜕𝜑𝑏

√
𝑛1

𝑛1+𝑛2
𝐦𝟏

𝑂

⎞⎟⎟⎠ +
𝑛1 + 𝑛2
𝑛2

1√
𝑔′

∑
𝑎′,𝑏′

𝜕

𝜕𝜑𝑎′

(
𝑂√

𝑔′𝑔𝑎
′𝑏′ 𝜕

𝜕𝜑𝑏′

√
𝑛2

𝑛1+𝑛2
𝐦𝟐

)

= −(𝑛1 + 𝑛2)

(√
𝑛1

𝑛1+𝑛2
𝐦𝟏

𝑂

)
− (𝑛1 + 𝑛2)

(
𝑂√
𝑛2

𝑛1+𝑛2
𝐦𝟐

)
= −(𝑛1 + 𝑛2)�̂�.

Thus
√

𝑛1
𝑛1+𝑛2

Σ𝑛11 ×
√

𝑛2
𝑛1+𝑛2

Σ𝑛22 is minimal. □

Remark 2.2. Even if Σ𝑛11 ⊂ 𝕊𝑛1+1 and Σ𝑛22 ⊂ 𝕊𝑛2+1 are hypersurfaces,
√

𝑛1
𝑛1+𝑛2

Σ𝑛11 ×
√

𝑛2
𝑛1+𝑛2

Σ𝑛22 has codimension 3 in 𝕊𝑛1+𝑛2+3.

But if Σ𝑛11 = 𝕊𝑛1 one can say that Σ𝑛11 is trivially minimal in 𝕊𝑛1 and then
√

𝑛1
𝑛1+𝑛2

𝕊𝑛1 ×
√

𝑛2
𝑛1+𝑛2

Σ𝑛22 is minimal with codimension

2 in 𝕊𝑛1+𝑛2+2. Furthermore,
√

𝑛1
𝑛1+𝑛2

𝕊𝑛1 ×
√

𝑛2
𝑛1+𝑛2

𝕊𝑛2 is minimal with codimension 1 in 𝕊𝑛1+𝑛2+1.

3 HELICOIDAL

Just as the Clifford torus is helicoidal in 𝕊3, so is the helicoid in ℝ3. For a more general setting we introduce the following

definition.

Definition 3.1. Let 𝑀 be a complete Riemannian manifold and let Σ be an embedded hypersurface of 𝑀 . Assume that Σ divides

𝑀 into two domains 𝐷1 and 𝐷2. Suppose that at any point 𝑝 of Σ there is an isometry 𝜑 of 𝑀 such that

𝜑(𝑝) = 𝑝, 𝜑(Σ) = Σ, 𝜑(𝐷1) = 𝐷2, 𝜑(𝐷2) = 𝐷1.

Then we say that Σ is helicoidal in 𝑀 .

Proposition 3.2. The generalized Clifford torus Σ2𝑝 = 𝕊𝑝
(
1∕

√
2
)
× 𝕊𝑝

(
1∕

√
2
)

is helicoidal in 𝕊2𝑝+1.

Proof. Let 𝜉 be the reflection of ℝ2𝑝+2 defined by

𝜉
(
𝑥1,… , 𝑥2𝑝+2

)
=

(
𝑥𝑝+2, 𝑥𝑝+3,… , 𝑥2𝑝+2, 𝑥1, 𝑥2,… , 𝑥𝑝+1

)
.

If 𝐷1, 𝐷2 are the domains of 𝕊2𝑝+1 divided by Σ2𝑝, then

𝜉
(
Σ2𝑝) = Σ2𝑝, 𝜉(𝐷1) = 𝐷2, 𝜉(𝐷2) = 𝐷1

and 𝜉(𝑝) = 𝑝 if and only if

𝑝 =
(
𝑥1,… , 𝑥𝑝+1, 𝑥1,… , 𝑥𝑝+1

)
.

For any 𝑞 ∈ Σ2𝑝, there exists an isometry 𝜂 of 𝕊2𝑝+1 mapping 𝑞 to 𝑝 such that

𝜂
(
Σ2𝑝) = Σ2𝑝, 𝜂(𝐷1) = 𝐷1, 𝜂(𝐷2) = 𝐷2.

Hence

𝜂−1◦𝜉◦𝜂(𝑞) = 𝑞, 𝜂−1 ◦ 𝜉 ◦ 𝜂
(
Σ2𝑝) = Σ2𝑝,
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and

𝜂−1 ◦ 𝜉 ◦ 𝜂(𝐷1) = 𝐷2, 𝜂−1 ◦ 𝜉 ◦ 𝜂(𝐷2) = 𝐷1.

So 𝜂−1 ◦ 𝜉 ◦ 𝜂 is the desired isometry. □

Theorem 3.3. Every helicoidal hypersurface Σ of a Riemannian manifold 𝑀𝑛 is minimal in 𝑀 wherever Σ is twice
differentiable.

Proof. Let �⃗� be the mean curvature vector of Σ at a point 𝑝 ∈ Σ, that is,

�⃗� =
𝑛−1∑
𝑖=1

(
∇̄𝑒𝑖

𝑒𝑖

)⟂
,

where ∇̄ is the Riemannian connection on 𝑀 and 𝑒1,… , 𝑒𝑛−1 are orthonormal vectors of Σ at 𝑝. Since 𝜑(Σ) = Σ and 𝑝 is a fixed

point of 𝜑, one sees that 𝜑∗(𝑒1),… , 𝜑∗(𝑒𝑛−1) are also orthonormal on Σ at 𝑝. Hence

𝜑∗
(
�⃗�

)
=

𝑛−1∑
𝑖=1

(
∇̄𝜑∗(𝑒𝑖)𝜑∗(𝑒𝑖)

)⟂
=

𝑛−1∑
𝑖=1

(
∇̄𝑒𝑖

𝑒𝑖

)⟂
= �⃗�. (3.1)

On the other hand, the condition 𝜑(𝐷1) = 𝐷2 implies that if �⃗� points into 𝐷1 then 𝜑∗
(
�⃗�

)
points into 𝐷2. Likewise, if �⃗�

points into 𝐷2, then 𝜑∗
(
�⃗�

)
should point into 𝐷1. Therefore 𝜑∗

(
�⃗�

)
= −�⃗� , which together with (3.1) implies �⃗� = 0 at 𝑝. As

𝑝 is arbitrarily chosen, one concludes that Σ is minimal. □

Incidentally, 𝕊1
(
1∕

√
2
)
× 𝕊1

(
1∕

√
2
)

is congruent in 𝕊3 to

𝕊3 ∩
{
(𝑥1, 𝑥2, 𝑥3, 𝑥4) ∈ ℝ4 ∶ det

(
𝑥1
𝑥2

𝑥3
𝑥4

)
= 0

}
.

Also 𝕊2
(
1∕

√
2
)
× 𝕊2

(
1∕

√
2
)

is congruent in 𝕊5 to

𝕊5 ∩

⎧⎪⎪⎨⎪⎪⎩
(𝑥1,… , 𝑥6) ∈ ℝ6 ∶ det

⎛⎜⎜⎜⎜⎝
0

−𝑥1
−𝑥2
−𝑥3

𝑥1
0

−𝑥4
−𝑥5

𝑥2
𝑥4
0

−𝑥6

𝑥3
𝑥5
𝑥6
0

⎞⎟⎟⎟⎟⎠
= 0

⎫⎪⎪⎬⎪⎪⎭
.

When is the zero determinant set minimal? With regard to this question, the following two theorems have been recently proved.

Theorem 3.4 (Tkachev, [3]). Σ =
{
(𝑥11, 𝑥12,… , 𝑥𝑛𝑛) ∈ ℝ𝑛2 ∶

(
𝑥𝑖𝑗

)
is an 𝑛 × 𝑛 real matrix with zero determinant

}
is a minimal

hypercone in ℝ𝑛2 .

Theorem 3.5 (Hoppe–Linardopoulos–Turgut, [2]).

Σ =
{
(𝑥11, 𝑥12,… , 𝑥2𝑛 2𝑛) ∈ ℝ4𝑛2 ∶

(
𝑥𝑖𝑗

)
is a 2𝑛 × 2𝑛 skew-symmetric matrix with zero determinant

}
is congruent to a minimal hypercone in ℝ2𝑛2−𝑛.

They obtained these theorems from the harmonicity of 𝑥𝑖𝑗 on Σ. Here we will give a new proof by showing that Σ is helicoidal.

Proof of Theorem 3.4. Let 𝑀𝑛 be the set of all real 𝑛 × 𝑛 matrices. One can identify 𝑀𝑛 with ℝ𝑛2 . Define

Σ = {𝑋 ∈ 𝑀𝑛 ∶ det𝑋 = 0}.

Then Σ is an
(
𝑛2 − 1

)
-dimensional algebraic variety in ℝ𝑛2 . Σ divides ℝ𝑛2 into two domains 𝐷+ and 𝐷− with

𝐷+ = {𝑋 ∈ 𝑀𝑛 ∶ det𝑋 > 0}, 𝐷− = {𝑋 ∈ 𝑀𝑛 ∶ det𝑋 < 0}.
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Let's introduce an inner product ⟨ , ⟩ in 𝑀𝑛 by

⟨𝑋, 𝑌 ⟩ = tr
(
𝑋𝑇 𝑌

)
, 𝑋, 𝑌 ∈ 𝑀𝑛.

Given 𝐴 ∈ 𝑂(𝑛), define 𝜑𝐴 ∶ 𝑀𝑛 → 𝑀𝑛 by 𝜑𝐴(𝑋) = 𝐴𝑋. Then 𝜑𝐴 is an isometry on 𝑀𝑛 because

⟨𝜑𝐴(𝑋), 𝜑𝐴(𝑌 )⟩ = ⟨𝐴𝑋,𝐴𝑌 ⟩ = tr
(
𝑋𝑇𝐴𝑇𝐴𝑌

)
= tr

(
𝑋𝑇𝑌

)
= ⟨𝑋, 𝑌 ⟩.

Clearly

𝜑𝐴(Σ) = Σ.

Moreover, if 𝐴 ∈ 𝑆𝑂(𝑛), then

𝜑𝐴(𝐷+) = 𝐷+ and 𝜑𝐴(𝐷−) = 𝐷−,

and if 𝐴 ∈ 𝑂(𝑛) ⧵ 𝑆𝑂(𝑛), then

𝜑𝐴(𝐷+) = 𝐷− and 𝜑𝐴(𝐷−) = 𝐷+.

Choose any 𝑋 ∈ Σ. Then the column vectors of 𝑋 are linearly dependent. Let 𝑃 be an (𝑛 − 1)-dimensional hyperplane of ℝ𝑛

containing all the column vectors of 𝑋 and let 𝑣 ∈ ℝ𝑛 be a nonzero normal vector of 𝑃 . Then there exists 𝐴 ∈ 𝑂(𝑛) ⧵ 𝑆𝑂(𝑛)
such that 𝑃 is an eigenspace of 𝐴 with eigenvalue 1 and 𝑣 an eigenvector of 𝐴 with eigenvalue −1. Hence

𝜑𝐴(𝑋) = 𝑋 and 𝜑𝐴(𝐷+) = 𝐷−, 𝜑𝐴(𝐷−) = 𝐷+.

Therefore Σ is helicoidal in ℝ𝑛2 and so by Theorem 3.3 it is minimal in ℝ𝑛2 away from its singular set. Σ is a cone since det𝑋
is a homogeneous polynomial. □

It is known that the determinant of a 2𝑛 × 2𝑛 skew-symmetric matrix 𝐴 can be written as the square of the Pfaffian of 𝐴. The

Pfaffian 𝑝𝑓 (𝐴) of 𝐴 =
(
𝑎𝑖𝑗

)
is defined as follows. Let 𝜔 be a 2-vector

𝜔 =
∑
𝑖<𝑗

𝑎𝑖𝑗𝑒𝑖 ∧ 𝑒𝑗 ,

where {𝑒1,… , 𝑒2𝑛} is the standard basis of ℝ2𝑛. Then 𝑝𝑓 (𝐴) is defined by

1
𝑛!

𝜔𝑛 = 𝑝𝑓 (𝐴) 𝑒1 ∧⋯ ∧ 𝑒2𝑛.

One computes

𝑝𝑓 (𝐴) = 1
2𝑛𝑛!

∑
𝜎∈𝑆2𝑛

sgn(𝜎)
𝑛∏
𝑖=1

𝑎𝜎(2𝑖−1)𝜎(2𝑖).

Moreover,

𝑝𝑓
(
𝐵𝑇𝐴𝐵

)
= det(𝐵) 𝑝𝑓 (𝐴) (3.2)

for any skew-symmetric matrix 𝐴 and any 2𝑛 × 2𝑛 matrix 𝐵.

Proof of Theorem 3.5. Define

𝑁 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑋 ∈ 𝑀2𝑛 ∶ 𝑋 =

⎛⎜⎜⎜⎜⎜⎜⎝

0
−𝑥1
−𝑥2
⋅
⋅

−𝑥2𝑛−1

𝑥1
0

−𝑥2𝑛
⋅
⋅

−𝑥4𝑛−3

𝑥2
𝑥2𝑛
0
⋅
⋅

−𝑥6𝑛−6

⋅
⋅
⋅
⋅
⋅
⋅

⋅
⋅
⋅
⋅
0

−𝑥2𝑛2−𝑛

𝑥2𝑛−1
𝑥4𝑛−3
𝑥6𝑛−6
⋅

𝑥2𝑛2−𝑛
0

⎞⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎬⎪⎪⎪⎭
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and

Σ = {𝑋 is a 2𝑛 × 2𝑛 skew-symmetric marix with det𝑋 = 0}.

Then Σ is a hypersurface in the
(
2𝑛2 − 𝑛

)
-dimensional subspace 𝑁 of ℝ4𝑛2 . Let

𝐷+ = {𝑋 is a 2𝑛 × 2𝑛 skew-symmetric matrix with 𝑝𝑓 (𝑋) > 0} ,

𝐷− = {𝑋 is a 2𝑛 × 2𝑛 skew-symmetric matrix with 𝑝𝑓 (𝑋) < 0} .

For any 𝐴 ∈ 𝑂(2𝑛) define 𝜓𝐴 ∶ 𝑀2𝑛 → 𝑀2𝑛 by

𝜓𝐴(𝑋) = 𝐴𝑇𝑋𝐴.

One sees that 𝜓𝐴(𝑋) is skew-symmetric if 𝑋 is. Hence

𝜓𝐴 ∶ 𝑁 → 𝑁 and 𝜓𝐴(Σ) = Σ.

𝜓𝐴 is an isomety since

⟨𝜓𝐴(𝑋), 𝜓𝐴(𝑌 )⟩ = ⟨
𝐴𝑇𝑋𝐴,𝐴𝑇 𝑌 𝐴

⟩
= tr

(
𝐴𝑇𝑋𝑇𝐴𝐴𝑇 𝑌 𝐴

)
= tr

(
𝐴𝑇𝑋𝑇 𝑌 𝐴

)
= tr

(
𝐴𝐴𝑇𝑋𝑇 𝑌

)
= ⟨𝑋, 𝑌 ⟩.

Every skew-symmetric matrix can be reduced to a block diagonal form by a special orthogonal matrix. In particular, every

2𝑛 × 2𝑛 skew symmetric matrix 𝑋 with zero determinant can be transformed by an orthogonal matrix 𝑄 to the form

𝑄𝑇𝑋𝑄 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
−𝜆1
0
0
0
0
0
0

𝜆1
0
⋅
⋅
⋅
⋅
⋅
⋅

0
⋅
⋅
⋅
⋅
⋅
⋅
⋅

0
⋅
⋅
⋅
⋅
⋅
⋅
⋅

0
⋅
⋅
⋅
0

−𝜆𝑘
⋅
⋅

0
⋅
⋅
⋅
𝜆𝑘
0
⋅
⋅

0
⋅
⋅
⋅
⋅
⋅
0
0

0
⋅
⋅
⋅
⋅
⋅
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∶= Λ, (3.3)

where 𝜆1,… , 𝜆𝑘 are real.

Define a 2𝑛 × 2𝑛 block matrix

𝐽 =
(
𝐼2𝑛−2
𝑂

𝑂𝑇

𝐾

)
,

where 𝐼2𝑛−2 is the (2𝑛 − 2) × (2𝑛 − 2) identity matrix, 𝑂 is the 2 × (2𝑛 − 2) zero matrix and 𝐾 =
(0 1
1 0

)
. Then for any 𝑋 ∈ Σ we

have an orthogonal matrix 𝑄 such that

𝑄𝑇𝑋𝑄 = Λ and 𝐽Λ𝐽 = Λ.

Hence

𝐽𝑄𝑇𝑋𝑄𝐽 = 𝑄𝑇𝑋𝑄.

Therefore (
𝑄𝐽𝑄𝑇

)
𝑋

(
𝑄𝐽𝑄𝑇

)
= 𝑋, 𝑄𝐽𝑄𝑇 ≠ 𝐼, det

(
𝑄𝐽𝑄𝑇

)
= −1.

𝑄𝐽𝑄𝑇 is orthogonal because (
𝑄𝐽𝑄𝑇

)(
𝑄𝐽𝑄𝑇

)𝑇 = 𝑄𝐽𝑄𝑇𝑄𝐽𝑄𝑇 = 𝑄𝐽𝐽𝑄𝑇 = 𝑄𝑄𝑇 = 𝐼.
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Let 𝐵 = 𝑄𝐽𝑄𝑇 . Then by (3.2)

𝑝𝑓 (𝜓𝐵(𝑌 )) = −𝑝𝑓 (𝑌 )

for any skew-symmetric matrix 𝑌 and hence

𝜓𝐵(𝑋) = 𝑋, 𝜓𝐵(Σ) = Σ, 𝜓𝐵(𝐷+) = 𝐷−, 𝜓𝐵(𝐷−) = 𝐷+.

Therefore Σ is helicoidal and thus minimal in 𝑁 everywhere it is twice differentiable.

Let 𝜇 ∶ 𝑁 → ℝ2𝑛2−𝑛 be the map defined by

𝜇(𝑋) = 1√
2
(𝑥1, 𝑥2,… , 𝑥2𝑛2−𝑛),

where

𝑋 =

⎛⎜⎜⎜⎜⎜⎜⎝

0
−𝑥1
−𝑥2
⋅
⋅

−𝑥2𝑛−1

𝑥1
0

−𝑥2𝑛
⋅
⋅

−𝑥4𝑛−3

𝑥2
𝑥2𝑛
0
⋅
⋅

−𝑥6𝑛−6

⋅
⋅
⋅
⋅
⋅
⋅

⋅
⋅
⋅
⋅
0

−𝑥2𝑛2−𝑛

𝑥2𝑛−1
𝑥4𝑛−3
𝑥6𝑛−6
⋅

𝑥2𝑛2−𝑛
0

⎞⎟⎟⎟⎟⎟⎟⎠
.

Then 𝜇 is an isometry. Therefore 𝜇(Σ) is a minimal hypercone in ℝ2𝑛2−𝑛. □

Questions 3.5.

1. A generalized helicoid is defined in [1] to be the locus of the minimal cone 𝑂××
(
𝕊𝑛

(
1∕

√
2
)
× 𝕊𝑛

(
1∕

√
2
))

when the multi-

screw motion in ℝ2𝑛+3 is applied to the cone. That generalized helicoid is minimal. Instead of 𝕊𝑛, let's consider its minimal

submanifold 𝑀 . Then the cone 𝑂××
(

1√
2
𝑀 × 1√

2
𝑀

)
is minimal in ℝ2𝑛+2. If we apply the multi-screw motion in ℝ2𝑛+3 to

the cone, is its locus minimal?

2. In the proof of Theorem 3.4 the hyperplane 𝑃 is assumed to contain all the column vectors of the matrix 𝑋. The minimal

hypercone Σ of the theorem may have a singularity other than the origin. Is it true that the rank of 𝑋 is related with the

Hausdorff dimension of the singular set of Σ?
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