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1 I INTRODUCTION

The Clifford torus is the simplest minimal surface in S* besides the great sphere. Similarly in higher dimension we have a

generalized Clifford torus SP(, /L) XS4 ( . /i> which is minimal in SP*4+1.
ptq ptq

In Euclidean space there is an easy theorem that £; X X, is minimal in R"1*"2 if ¥, and ¥, are minimal in R™ and R"2,
respectively. While one cannot expect the same theorem to hold literally in S”, we will prove an analogous theorem as follows:

If " is minimal in S” and X is minimal in S, then | [ == X" X | [ —= X! is minimal in Spratl,
m+n 1 m+n 2
There is another way of proving the minimality of the Clifford torus ¥ in S3. It is well known that X is (doubly) foliated by

great circles and T divides S* into two congruent domains D,, D,. For every great circle # in  consider the rotation p, of S*
about Z by 180°. One can show that

pr(D) =%, p,(D) =Dy, p,(D)=Dy. p,(p)=p, forall pec. (L.1)

More generally, if a hypersurface £"~! of a Riemannian manifold M" has an isometry p (in place of p,) satisfying (1.1) at every
point p of "1, £"~! s said to be helicoidal in M . In Proposition 3.2 we show that the generalized Clifford torus S”(1/ \/5) X
N ( 1/ \/5) is helicoidal in S?”*!. In Theorem 3.3 we will prove that every helicoidal hypersurface of M is minimal.

Recently Tkachev [3] and Hoppe-Linardopoulos—Turgut [2] found algebraic minimal hypersurfaces N, in s”~! and N, in
s -n-l , respectively:

2 . S . 2_
N, = {(x“,xlz, e Xyy) € R™ 1 (x;;) is an n X n matrix with zero determmant} n s L
2 . . S . 2_
N, = {(x“,xlz, ey Xon) € R (x;;) is a 2n X 2n skew-symmetric matrix with zero determlnant} n s*-1

is similar to a minimal hypersurface in §27=n=1 Tn this paper we give a new proof of their minimality, showing that they are
helicoidal.
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2 | PRODUCT MANIFOLDS

Let ™ be an m-dimensional submanifold of S” and let X" be an n-dimensional submanifold of S?. Denote by aX” and bX" the
homothetic expansions of £ c R?*! and £ ¢ R4*! with factors of a and b, respectively.

Theorem 2.1. If ZT‘ is minimal in SP and E;z is minimal in $9, then | /%E;" X Z is minimal in SPtat+l,
1 2

n|+

Proof. Let @y, ..., @, be the local coordinates of 27‘ such that m, : ((pl, s (pnl) €D CR" - my ((pl, s (pnl) € 271 c
SP ¢ RP*! is a local immersion. Similarly, @ 415> P 1n, are local coordinates of 2"2 with a local immersion m, :

D, c R —» X € §Y c R¥*!. Clearly |/——=X|! x | /—2-%"> C RP*¥** is a submanifold of S”*¢*!. Let's define a local
172

ny+ny
immersion 1 : D; X D, C RM*" — Spta+l c Rp+at2 py

n
n1+n2

m(¢),....9, )
l’l\l((pl, ,§0n1+n2) =

n
n1+n2m2(¢"1+1’ s ¢n1+n2)
Then 1 is an immersion into , / —1—3" 2"2 The metric of m is
ny+ny 1 n1+
n1+n2
Z Eapd@pdep.
A.B=1
where (g A B) is the block matrix
n
A ny+n, Eab 0
(gAB) = 0
n1+n2 8a'ty
with
ab=1,...,n, a'b—n1+1 ny +ny,
and
om; om, om, om,
8ab &a'b
@ 9p, dp, “ 0Py Opy
Moreover,
nytny gab 1o}
(gAB) _| m . o
n 14
O ln zga b
2
and
m'ny , /
=det(g,5) = ng , g =det(g,), g =det(gyy).
LetA, A, A, 4, denote the Laplacians on E:ll , E;z and |+ - an , + —2-3, "2 respectively. Since E?l , E;z are minimal,
we have
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. 1 0 ~AB O 4
A}11+n2nj \/7 W (\/gg 0_m>
g AB A ?pB
b_0_
_nptny 1 2 0 \/gga n1+n2 "1+"2 z 0 o 00
- 7 T = 7ya'b _ 0 ny
n g 43 9% Ve & 00a \ V'8 5o ™
n 10}
m
= _(”l +n2)< ny+ny 1> - (nl +n2)( ny m )
(0 ny+ny 2
= —(nl + nz)lil.
ny n o .
Thus _n|+n221 X s 222 is minimal. O
Remark2.2. Evenif £1'  S"*!and £7? € S"*! are hypersurfaces, n"ﬁZ';‘ X4/~ + 2 has codimension 3 in S"1+72+3,
1 2 1
Butif ET' = §™ one can say that 2'11' is trivially minimal in §"1 and then , / n”ﬁS”I - + Z is minimal with codimension
172

. n n . o . . . .
2 in S"*t"2*2 Furthermore, , / —1—S™ x , /—2—S§" is minimal with codimension 1 in S"1t72+1
ni+n ni+n
1 2 1 2

3 | HELICOIDAL

Just as the Clifford torus is helicoidal in S?, so is the helicoid in R3. For a more general setting we introduce the following
definition.

Definition 3.1. Let M be a complete Riemannian manifold and let X be an embedded hypersurface of M. Assume that X divides
M into two domains D, and D,. Suppose that at any point p of X there is an isometry @ of M such that

o) =p. ¢X) =X, @(D)=D,, ¢(D,)=D
Then we say that X is helicoidal in M .

Proposition 3.2. The generalized Clifford torus **P = SP (1 / \/5) X SP ( 1/ \/5) is helicoidal in S*P*!.
Proof. Let & be the reflection of R**+? defined by

5(X1,...,X2p+2) = (xp+2,xp+3,...,x2p+2,x1,x2,...,xp+1) .

If D, D, are the domains of S2r+! divided by 2P then
E(Z%) =3%, &D))=D,, &D,) =D,
and &(p) = p if and only if
p= (xl, ey X s X s e ,xp+1).
For any g € X??, there exists an isometry 5 of S?**! mapping g to p such that
() =¥, n(Dy) =Dy, n(D,) =D,
Hence

n'ogon(q) =g, n~'o&on(¥) =12,
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and
nlo&on(D) =D, n'o&onD,=D,.

So 7! o & o 5 is the desired isometry. O

Theorem 3.3. Every helicoidal hypersurface ¥ of a Riemannian manifold M" is minimal in M wherever X is twice
differentiable.

Proof. Let H be the mean curvature vector of T at a point p € X, that is,

. n—1 _ n
H = (Ve’_el) ,
i=1
where V is the Riemannian connection on M and ey, ..., e,_; are orthonormal vectors of T at p. Since ¢(X) = X and p is a fixed
point of ¢, one sees that @ (e;), ..., ¢,(e,_;) are also orthonormal on X at p. Hence
. n—1 B 1 n—1 B 1 ~
0. (0) =Y (Vo o)) =X (Vo) =H. G3.1)

i=1 i=1

On the other hand, the condition ¢(D,) = D, implies that if H points into D, then ¢, (H ) points into D,. Likewise, if H
points into D,, then @, (H ) should point into D;. Therefore @, (H) = —H, which together with (3.1) implies H = 0 at p. As
p is arbitrarily chosen, one concludes that X is minimal. O

Incidentally, S! <1/\/§) x S! (1/\/5) is congruent in 3 to

$3n {(xl,xz,x3,x4) ER*: det<x1 x3> =0}.

Xy X4
Also §2<1/\/5> X §2<1/\/§) is congruent in S° to

0 X1 X X3
—Xx 0 bY x
S5 N (xps.nnsxg) €RE : det] ! a0
—Xy —X4 0 X6
—X3 —X5 —Xg 0
When is the zero determinant set minimal? With regard to this question, the following two theorems have been recently proved.

Theorem 3.4 (Tkachey, [3]). X = {(xll, X195 ee s Xpy) € R™ : (x,-j) is an n X n real matrix with zero determinant} is a minimal

hypercone in R".

Theorem 3.5 (Hoppe-Linardopoulos—Turgut, [2]).
T = {(xll, X125 .ee s X0y0,) € R4 (xij) is a 2n X 2n skew-symmetric matrix with zero determinant}
is congruent to a minimal hypercone in R27-",

They obtained these theorems from the harmonicity of x;; on Z. Here we will give a new proof by showing that X is helicoidal.

Proof of Theorem 3.4. Let M, be the set of all real n X n matrices. One can identify M, with R" . Define
Z={XeM,:detX =0}.
Then X is an (n2 - 1)-dimensi0nal algebraic variety in R". X divides R" into two domains D . and D_ with

D, ={XeM,:detX >0}, D_={XeM,:detX <0}
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Let's introduce an inner product { , ) in M,, by

(X.Y)=u(X"Y), X.Y €M,.
Given A € O(n), define ¢, : M, - M, by ¢ ,(X) = AX. Then ¢, is an isometry on M, because
(04X, (V) = (AX,AY) = tr (XTATAY) = tr (X"Y) = (X, Y).
Clearly

ps(Z)=Z.
Moreover, if A € SO(n), then

os(D)=D, and @, (D_)=D_,

and if A € O(n) \ SO(n), then
ou(D,)=D_ and ¢,D_)=D,.

Choose any X € X. Then the column vectors of X are linearly dependent. Let P be an (n — 1)-dimensional hyperplane of R”
containing all the column vectors of X and let v € R” be a nonzero normal vector of P. Then there exists A € O(n) \ SO(n)
such that P is an eigenspace of A with eigenvalue 1 and v an eigenvector of A with eigenvalue —1. Hence

psX)=X and @u(D,)=D_, @4 D_)=D,.
Therefore ¥ is helicoidal in R and so by Theorem 3.3 it is minimal in R away from its singular set. X is a cone since det X
is a homogeneous polynomial. O

It is known that the determinant of a 2n X 2n skew-symmetric matrix A can be written as the square of the Pfaffian of A. The
Pfaffian pf(A) of A = (a;;) is defined as follows. Let @ be a 2-vector

w = Zaijei/\ej,
i<

where {e, ..., e,,} is the standard basis of R2". Then pf(A) is defined by

1
;w” =pf(A)e; A Aey,.

One computes

n
1
pf(A) = Y sen(@) [ 2oiz1o0n-
i=1

2"n! cesy,
Moreover,
pf (BT AB) = det(B) pf(A) (3.2)

for any skew-symmetric matrix A and any 2»n X 2n matrix B.

Proof of Theorem 3.5. Define

0 X1 X2 Xon—1
—X1 0 X2n : : X4p-3
—-X —X 0 . . Xe,_
N=3XeEM,, :X= . n on=6 18
0 Xon2—p
—Xop—1  TX4p-3 “Xen—6 ° TX2p2—p 0 ]
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and
Y = {X is a 2n X 2n skew-symmetric marix with det X = 0}.
Then X is a hypersurface in the (2n2 - n)—dimensional subspace N of R4’ Let
D, = {X is a2nX2n skew-symmetric matrix with pf(X) > 0},
D_ ={X is a2n X 2n skew-symmetric matrix with pf(X) < 0}.
For any A € O(2n) define y, : M,, — M,, by
wa(X)=ATXA.
One sees that y4(X) is skew-symmetric if X is. Hence
Yy : N> N and y, ) =2.
w4 1S an isomety since
(WaX),y () = (ATXA,ATYA) =tr(ATXTAATY A) =tr (AT XTYA) =tr (AATXTY) = (X,Y).

Every skew-symmetric matrix can be reduced to a block diagonal form by a special orthogonal matrix. In particular, every
2n X 2n skew symmetric matrix X with zero determinant can be transformed by an orthogonal matrix Q to the form

0 4 00 0 0 00
-A 0 - - . .
0
o'xo=| Y ' = A (3.3)
0 0 A ’
0 ~d 0 :
0 : 00
0 00

where A, ..., 4, are real.
Define a 2n X 2n block matrix

_ (I O
J_<O K )’

where I, _, is the (2n — 2) X (2n — 2) identity matrix, O is the 2 X (2n — 2) zero matrix and K = (9 !). Then for any X € X we

have an orthogonal matrix Q such that
OTX0 =A and JAJ = A.
Hence
JO'™X0J =0"x0.
Therefore
(0J0")x(0J0") =X, QIQ" #1, det(QJQ")=-1.

0JOT is orthogonal because

(070" )(0s0")" =00 0J0" = 0JJ0" = Q0" =1.
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Let B = QJQ". Then by (3.2)

pfyp(Y)) =—pf(Y)

for any skew-symmetric matrix Y and hence

WB(X) =X, lI/B(Z) =2, l1113(1)4.) =D_, WB(D_) = D+-

Therefore X is helicoidal and thus minimal in N everywhere it is twice differentiable.
Lety : N — R27~" be the map defined by

1
M(X) = —(XI,X2, ceey xzn2_n)7
2

where

0 X1 o) ) ) X2n-1

=X 0 Xop : X4p-3

x=| X2 X U : X6n-6

0 Xon2—n

—Xon-1 ~X4n-3 —Xen-6 = ~Xo2—p 0
. . . . . 2

Then y is an isometry. Therefore x(Z) is a minimal hypercone in R2" " [l

Questions 3.5.

1. A generalized helicoid is defined in [1] to be the locus of the minimal cone Ox (S"(1/ \/5) xS"(1/ \/5)) when the multi-
screw motion in R?"*3 is applied to the cone. That generalized helicoid is minimal. Instead of S”, let's consider its minimal

submanifold M. Then the cone O X <%M X %M > is minimal in R?"+2, If we apply the multi-screw motion in R?"*3 to

the cone, is its locus minimal?

2. In the proof of Theorem 3.4 the hyperplane P is assumed to contain all the column vectors of the matrix X. The minimal
hypercone X of the theorem may have a singularity other than the origin. Is it true that the rank of X is related with the
Hausdorft dimension of the singular set of X?
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