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Abstract We prove that the area of a hypersurface � which traps a given volume
outside a convex domain C in Euclidean space Rn is bigger than or equal to the area
of a hemisphere which traps the same volume on one side of a hyperplane. Further,
when C has smooth boundary ∂C, we show that equality holds if and only if � is a
hemisphere which meets ∂C orthogonally.

Mathematics Subject Classification (2000) 58E35 · 49Q20

1 Introduction

Let Hn := {(x1, . . . , xn) ∈ Rn : xn � 0} be the closed upper half of Euclidean space
Rn. Given D ⊂ Hn, reflection across the boundary ∂Hn and the classical isoperimetric
inequality in Rn imply that

(
area (∂D ∼ ∂Hn)

)n �
1
2

nnωn (vol D)n−1,
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with equality if and only if D is a half ball and ∂D ∼ ∂Hn is a hemisphere. Here
area and vol (volume) denote, respectively, the (n − 1) and n dimensional Hausdorff
measures, ωn is the volume of the unit ball in Rn, and ∼ is the set exclusion operator.
In this paper we prove that the above inequality holds outside any convex set C ⊂ Rn

with interior points, i.e.,

(
area (∂D ∼ ∂C)

)n �
1
2

nnωn(vol D)n−1, (1)

for any D ⊂ Rn ∼ C. Further we show that when ∂C is smooth (C∞), equality holds
if and only if D is a half ball and ∂D ∼ ∂C is a hemisphere.

We call (1) the relative isoperimetric inequality of D with supporting set C. The
proof of this inequality for n = 2 is easy once one reflects the convex hull of D about
its linear boundary. For n � 3 some partial results were known: Kim [11] proved (1)
for C = U × R, where U is the epigraph of a C2 convex function, and Choe [2] proved
(1) when ∂D ∩ ∂C is a graph which is symmetric about (n − 1) hyperplanes of Rn.
More recently, Choe and Ritoré [4] have shown that (1) holds outside convex sets
in 3D Cartan–Hadamard manifolds, with equality if and only if D is a flat half ball
and � := ∂D ∼ ∂C is a hemisphere. The main ingredients of the proof in [4] are the
estimate (sup� H2) area � � 2π , and the analysis of the equality case, where H is the
mean curvature of �; however, the methods used in [4], which were inspired by the
work of Li and Yau [12], are valid only when n = 3.

We obtain inequality (1), and the characterization of its equality case presented
below, from the estimate

(
sup
�

Hn−1
)

area � �
cn−1

2
,

where cn−1 is the area of the unit sphere Sn−1 ⊂ Rn. This inequality follows from
the arithmetic–geometric mean inequality between H (the average of the principal
curvatures) and the Gauss–Kronecker curvature GK (the product of principal cur-
vatures) of �, once we show that the total Gauss-Kronecker curvature of the set of
regular points of ∂D ∼ ∂C with positive principal curvatures is larger than or equal to
cn−1/2. We proved the latter inequality in [3] assuming slightly more regularity than
is warranted in the present case; however, as we verify below, that proof essentially
works here as well.

2 Preliminaries: existence and regularity

Throughout this paper C ⊂ Rn denotes a proper convex set, which we define as a
closed convex set with interior points and nonempty boundary ∂C. Further, unless
noted otherwise we assume that ∂C is C∞, which is what we mean when we say that
C has smooth boundary. For any A ⊂ Rn, let AC := A ∼ C. The relative isoperimetric
profile of Rn

C is the function IC : R
+ → R

+ given by

IC(v) := inf
D

{
area(∂D)C : D � Rn, vol D = v

}
,

where D � Rn means that D is relatively compact in Rn. Note that

IHn(v) = n
(ωn

2

)1/n
v(n−1)/n.
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So the relative isoperimetric inequality (1) is equivalent to

IC(vol D) � IHn(vol D). (2)

An isoperimetric region D ⊂ Rn
C is one for which the equality area(∂D)C = IC(vol D)

holds. An isoperimetric region need not exist for a given volume.
Denote by C1

0(Rn
C, Rn) the set of C1 vector fields with compact support in Rn

C. For
any D ⊂ Rn, the perimeter of D relative to C is defined as

PC(D) := sup

{∫

D

div X : X ∈ C1
0(Rn

C, Rn), |X| � 1
}

,

where |X| is the supremum norm. The Stokes theorem implies that the perimeter of a
set and the area of its boundary coincide for sets whose boundary is a C1 hypersurface
(see Giusti’s book [6] for background on finite perimeter sets). In order to prove (1),
we need to minimize PC subject to a volume constraint, i.e., given v ∈ (0, vol E), we
wish to find �0 ⊂ E, with vol �0 = v, such that

PC(�0) � PC(�),

for any � ⊂ E with vol � = v. The existence of �0 is guaranteed by the boundedness
of E, see [6], and the regularity properties of �0 which we need may be summarized
as follows.

Lemma 2.1 Let E be the closure of a bounded domain with smooth boundary in Rn
C.

Then, for any v ∈ (0, vol E), there is a set �0 ⊂ E of volume v minimizing PC. More-
over

(i) ([7]) ∂�0 has constant mean curvature and is smooth in the interior of E except
for a singular set of Hausdorff dimension less than or equal to (n − 8).

(ii) ([9, p. 263]) (∂�0)C meets ∂C orthogonally except for a singular set of Hausdorff
dimension less than or equal to (n − 8). In fact (∂�0)C is smooth at every point
of (∂�0)C ∩ ∂C away from this singular set.

(iii) ([15, Thm. 3.6]) If (∂E)C is strictly convex then (∂�0)C meets (∂E)C tangentially
and it is C1,1 in a neighborhood of (∂E)C.

(iv) At every point x0 ∈ (∂�0)C there is a tangent cone obtained by blowing up the
set �0 about x0. If this tangent cone is contained in a half space of Rn, then it is
the half space and (∂�0)C is regular at x0 [6]. At points in (∂�0)C ∩ ∂C ∼ (∂E)C
we have the same result, as described in [9].

The C1,1 regularity of (∂�0)C near (∂E)C will be enough for our purposes here
since, by Rademacher’s Theorem, a C1,1 hypersurface has principal curvatures defined
almost everywhere, and thus we will be able to apply the integral curvature estimates
obtained in the next two sections.

3 The estimate for total positive curvature

First we recall the general definition for total positive curvature τ+ studied in [3]. Let
� = (� ∼ �0) ∪ �0 be the compact union of a C1,1 hypersurface � ∼ �0 with bound-
ary and a singular set �0 of Hausdorff dimension less than or equal to (n − 8) so that
�0 ⊂ � ∼ �0. The points in � ∼ �0 will be called regular points of �. A hyperplane
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� ⊂ Rn is called a restricted support hyperplane of � at a point p, if p ∈ � ∩ �, �

lies on one side of �, and � is tangent to � when p ∈ ∂� ∼ �0. An outward normal
of � is a normal vector to � which points towards a side of � not containing �. If �

is a restricted support hyperplane for an open neighborhood Up of p in �, then � is
called a restricted local support hyperplane; furthermore, p is a locally strictly convex
point of �, or p ∈ �+, provided that � ∩ Up = {p}. Let N(�+) ⊂ Sn−1 be the set of
outward unit normals to restricted local support hyperplanes of � at points of �+.
Then the total positive curvature τ+ of � is defined as the algebraic area (i.e., area
counted with multiplicity) of N(�+), where by area we mean the (n − 1)-dimensional
Hausdorff measure Hn−1. More formally, if for each u ∈ N(�+), we let �+

u ⊂ �+ be
the set of points where � has a restricted local support hyperplane with outward unit
normal u, then

τ+(�) :=
∫

u∈N(�+)

d Hn−1(�+
u

)

where integration is with respect to the volume element or the (n − 1)-dimensional
Hausdorff measure on Sn−1.

As we are assuming that � ∼ �0 is a C1,1 hypersurface, the principal curvatures
are defined for almost every point of � ∼ �0 and so the Gauss–Kronecker curvature
GK, the product of all principal curvatures, may be integrated on � ∼ �0. Moreover,
in case there are no restricted local support hyperplanes of � at points of �0, the area
formula [5, Thm 3.2.3] yields that

τ+(�) =
∫

�+∼�0

GK.

As remarked in the introduction, the main ingredient in the proof of the relative
isoperimetric inequality is the following estimate. We state below the version for
convex sets with smooth boundary we shall need. The proof of this result is a slight
modification of the one given in the appendix of [3].

Lemma 3.1 Let � = (� ∼ �0) ∪ �0 ⊂ Rn be the union of a C1,1 embedded hyper-
surface � ∼ �0 and a singular set �0 such that ∂� ∼ �0 is a C2 submanifold that lies
on the boundary of a convex set C ⊂ Rn with C2 boundary ∂C. Suppose that there are
no restricted local support hyperplanes of � at points of �0, and that, at each point
p ∈ ∂� ∼ �0, the inward conormal σ(p) of ∂� is the outward unit normal to C at p.
Then

τ+(�) �
cn−1

2
, (3)

and equality holds if and only if ∂� lies in a hyperplane.

Proof Let ∂�r := ∂� ∼ �0 be the regular part of the boundary of �,

U∂�r := {
(p, u) | p ∈ ∂�r, u ∈ Sn−1, u ⊥ Tp∂�r

}

be the unit normal bundle of ∂�r, and ν : U∂�r → Sn−1, given by

ν(p, u) := u,
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be its Gauss map. Define Ir ⊂ Jr ⊂ U∂�r by

Ir := {
(p, u) ∈ U∂�r | 〈x − p, u〉 � 0, ∀x ∈ �

}
,

Jr := {
(p, u) ∈ U∂�r | 〈x − p, u〉 � 0, ∀x ∈ ∂�

}
.

Note that if (p, u) ∈ Jr ∼ Ir, then the height function x �→ 〈x − p, u〉 achieves its
maximum in the interior of �, and thus � has a restricted support hyperplane with
outward normal u. By hypothesis, the point p must then lie in the regular part � ∼ �0
of �. Hence

τ+(�) � area ν(Jr ∼ Ir),

since almost every support hyperplane of � intersects � at a single point [14, Thm.
2.2.9]. So to prove (3) it suffices to show that

area ν(Jr ∼ Ir) �
cn−1

2
.

The proof of the last inequality is virtually identical to the proof of the corresponding
inequality (9) in the appendix of [3] to which we refer the reader. �

4 The mean curvature estimate

As we will see in the next section, in order to prove (1), we need to construct a bounded
region E outside C in Rn, and minimize the perimeter PC under a volume constraint
inside E. We shall see in our next result that the boundary of any isoperimetric region
so obtained satisfies the hypotheses of Lemma 3.1. In particular, the lower curvature
bound (3) holds for such regions, which in turn yields the following estimate for mean
curvature.

Proposition 4.1 Let C ⊂ Rn be a proper convex set, p0 ∈ ∂C, E := B(p0, r)C, � ⊂ EC
be a set minimizing the perimeter PC under a volume constraint, and H� be the (con-
stant) mean curvature of the regular part of � := (∂�)C. Then

Hn−1
� PC(�) �

cn−1

2
.

Equivalently, if H0(a) denotes the mean curvature of a hemisphere of area a, then

H� � H0
(PC(�)

)
.

Equality holds in these inequalities if and only if � is a half ball and � meets ∂C
orthogonally.

Proof It is enough to show that, if � is a support hyperplane of � at p ∈ �, then p is
a regular point of �.

If p ∈ � ∩ int(E) then the minimal tangent cone of � at p is contained in a half
space. By [6, Thm. 15.5], it must be a half space and so � is regular at p.

If p ∈ ∂� ∼ (∂E)C then we consider the integer multiplicity rectifiable current
∂[�]. Reflecting it [8, Remark 3.1] with respect to ∂C and blowing up about p we
get an area-minimizing oriented tangent cone T [8, Thm. 3.5], [9]. Let H be the tan-
gent hyperplane of ∂C at p, and H+ the closed half space determined by H whose
interior does not meet C. Assuming there is a support hyperplane � of � at p,



426 J. Choe et al.

we get that the support of T, supp(T), is contained in a region of Rn bounded by
H1 ∪ H2, where H1 = � ∩ H+ and H2 is the reflection of H1 with respect to H. Let
S = H1 ∩ H = H1 ∩ H2. We have that S is an (n − 2)-dimensional linear submanifold
of Rn which is contained in H.

Rotating H1, H2 with respect to S until they first touch supp(T) ∼ S, using the
maximum principle, and a connectedness argument, we get that supp(T) = H1 ∪ H2,
which is not area-minimizing unless H1 ∪ H2 is a hyperplane orthogonal to H. Hence
� is regular at p.

Observe that ∂� ∩ ∂C ∩ (∂E)C = ∅: if x0 ∈ ∂� ∩ ∂C ∩ (∂E)C, then the outer normal
ν to ∂C and the outer normal ν̃ to ∂B(p, r) satisfy 〈ν, ν̃〉 (x0) > 0. Reasoning as in
the two previous paragraphs, reflecting and blowing up about x0 we get a cone which
minimizes area in a wedge of angle less than π , thus getting a contradiction.

So we can apply Lemma 3.1 to conclude that
∫

�+∼�0

GK = τ+(�) �
cn−1

2
.

By [15, Thm. 3.7], H� , the constant mean curvature of the regular part � ∼ �0 of
� in the interior of E, is an upper bound for the mean curvature of �. So we have

Hn−1
� PC(�) �

∫

�+∼�0

Hn−1
� �

∫

�+∼�0

GK �
cn−1

2
,

which establishes the first desired inequality. To obtain the second inequality note
that, if r is the radius of a hemisphere of area PC(�), then

(
H0

(PC(�)
))n−1

PC(�) =
(

1
r

)n−1 cn−1rn−1

2
= cn−1

2
� Hn−1

� PC(�).

If equality holds then � ∼ �0 = �+, and Hn−1
� = GK, which implies that � ∼ �0

is totally umbilical and so �0 is empty. Further ∂� lies in a hyperplane by Lemma 3.1,
and so � is a half ball and � intersects ∂C orthogonally. �

5 Proof of the relative isoperimetric inequality in Rn
C

With the aid of Proposition 4.1 we are now in a position to prove the main result of
this paper.

Theorem 5.1 Let C ⊂ Rn be a proper convex set (with smooth boundary). For any
bounded set D ⊂ Rn

C with finite perimeter,

(
area(∂D)C

)n �
1
2

nnωn(vol D)n−1,

with equality if and only if D is a half ball and (∂D)C is a hemisphere.

Remark 5.2 If C is bounded then, from the results in [13], it can be proved that any
perimeter minimizing sequence of sets in Rn

C of given volume has a subsequence con-
verging to an isoperimetric region. In this case the proof of Theorem 5.1 can be slightly
simplified. However, when C is unbounded, we have to deal with the possibility of
nonexistence of minimizers in Rn

C.
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Proof of Theorem 5.1 First we construct an exhaustion of Rn
C. Fix p0 ∈ ∂C, and let

{rm}m∈N be a diverging sequence of positive increasing numbers. In case C is bounded
we require that C ⊂ B(p0, rm). We define Em := B(p0, rm)C.

Since Em is bounded, isoperimetric regions exist in Em for any given volume
v ∈ (0, vol Em). Let � ⊂ Em be an isoperimetric region minimizing PC in Em under a
volume constraint, and let � := (∂�)C.

By Proposition 4.1, for every component �′ of � touching the boundary of C, with
�′ := (∂�′)C, we have

Hn−1
�′ PC(�′) �

cn−1

2
,

with equality if and only if �′ is an open half ball and �′ is an open hemisphere. Observe
that, for a component �′′ of � not touching the boundary of C, with �′′ := (∂�′′)C,
one easily obtains

Hn−1
�′′ PC(�′′) � cn−1,

with equality if and only if �′′ is a ball and �′′ a round sphere.
Breaking � into components touching ∂C and components in the interior of Rn

C
we get

Hn−1
� PC(�) �

cn−1

2
,

and equality holds if and only if � consists of one connected component which is a
half ball, and � an open hemisphere.

Let Im be the isoperimetric profile of Em. From standard arguments, see [10, p. 170–
172], it follows that (i) Im is continuous and increasing, (ii) if Im is smooth at v0, then
I′

m(v0) = (n − 1)H, where H is the constant mean curvature in the interior of Em of
any isoperimetric region of volume v0, and (iii) left and right derivatives of Im exist
everywhere. When (i), (ii) and (iii) hold it is then known that Im is an absolutely
continuous function. For a proof of (i), (ii) and (iii) we refer the reader to [4].

Let Jm be the restriction of the isoperimetric profile of a half space of Rn to the
interval (0, vol Em), and f , g be the inverse functions of Im, Jm, respectively. We know
that

g′(a) = 1
J′

m(g(a))
= 1

(n − 1)H0(a)
,

where H0(a) is the mean curvature of the hemisphere of area a. We also know that,
when f ′ exists,

f ′(a) = 1
I′

m(f (a))
= 1

(n − 1)H
,

where H is the mean curvature in the interior of Em of any isoperimetric region of vol-
ume f (a). From Proposition 4.1 we obtain that g′(a) � f ′(a) a. e. As f , g are absolutely
continuous then g(a) � f (a). Since Jm is increasing it easily follows that Im � Jm.

If equality holds for some v0, then for a0 = Jk(v0) = Ik(v0) we have g(a0) = f (a0).
Since g′ � f ′ we obtain that f ≡ g in the interval (0, a0) and so H0(a0)

−1 = H(a0)
−1.

If �0 is any isoperimetric region of volume v0 then Proposition 4.1 implies that �0 is
isometric to a half ball in Rn of volume v0.
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Finally let � ⊂ Rn
C be relatively compact with smooth boundary. Then � ⊂ Em,

for some m, and

PC(�) � Im(vol �) � IHn(vol �).

If equality holds then � is an isoperimetric region in Em and Im(vol �) = IHn(vol �).
By the discussion in the above paragraph, � is isometric to a half ball in Rn of volume
vol �. �

Finally we show that the relative isoperimetric inequality (1) also holds outside
any convex domain in Rn, with no additional assumptions on the regularity of its
boundary.

Theorem 5.3 If C ⊂ Rn is any closed convex set with interior points and D ⊂ Rn
C is a

bounded set with finite perimeter, then

(
area(∂D)C

)n �
1
2

nnωn(vol D)n−1.

Proof Using standard results on the Hausdorff metric, we can find a sequence of
convex sets with smooth boundary Cm ⊂ Rn, and with C ⊂ Cm for all m ∈ N,
converging locally in the Hausdorff distance to C. Let D ⊂ Rn

C be a bounded set
with (∂D)C smooth. Define Dm := D ∩ (Rn)Cm . Then limm→∞ vol Dm = vol D and
PC(D) � PCm(Dm). Since, by Theorem 5.1, the relative isoperimetric inequality (1) is
satisfied in (Rn)Cm , we have

(
area(∂D)C

)n �
(

area(∂Dm)Cm

)n �
1
2

nnωn(vol Dm)n−1.

Taking limits when m → ∞, we get (1). �
Remark 5.4 Reasoning as in [4], one can easily see that equality is never attained if C
is strictly convex. The analysis of equality in the isoperimetric inequality for a general
convex set cannot be treated with the tools used in this paper.
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