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Abstract. We study under what condition a constant mean curvature surface can be round: i) If
the boundary of a compact immersed disk type constant mean curvature surRieeansists

of lines of curvature and has less than 4 vertices with argle, then the surface is spherical;

ii) A compact immersed disk type capillary surface with less than 4 vertices in a domBif of
bounded by spheres or planes is spherical; iii) The mean curvature vector of a compact embedded
capillary hypersurface oR” with smooth boundary in an unbounded polyhedral domain with
unbalanced boundary should point inward; iv) If #th order (2< k < n — 1) mean curvature of

a compact immersed constant mean curvature hypersurfa®® wfthout boundary is constant,

then the hypersurface is a sphere.

Around sphere has constant mean curvature. But not all constant mean curvature
surfaces ifR®are round as there is a famous counterexample: Wente's torus [W1].
With some condition on a constant mean curvature surface, however, one can
derive theroundness ofthe surface. Hopf [Ho] assumed a constant mean curvature
surface to be animmersed sphere and showed itis around sphere. Alexandrov [A]
added the hypotheses of compactness and embeddedness and proved that such a
constant mean curvature surface is round. The classical isoperimetric inequality
forimmersed surfaces states that the area minimizing surface among all constant
mean curvature surfaces enclosing a fixed volume counting multiplicity is round.
Nitsche [N] found that an immersed disk type constant mean curvature surface
S in a ball which makes a constant contact angle with the boundary sphere of
the ball alonga s is a spherical cap. Also Barbosa and do Carmo [BC, WZ2]
imposed stability on a compact constant mean curvature susfane obtained

the roundness df.

In this paper we give more sufficient conditions which guarantee that the given
constant mean curvature surfaces are (part of) a round sphere. First, Hopf’s theo-
rem mentioned above will be extended from an immersed sphere to an immersed
disk. Hopf showed that the constancy of the mean curvature gives rise to a holo-
morphic function®. The zeros ofp are then shown to be related to the topology
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of the surface. While the zeros @fin Hopf’s case are always interior points, our
zeros of®d may occur on the boundary of the disk. Therefore we should estimate
the order of the zeros @ and will prove that if a compact immersed disk type
constant mean curvature surfagés C>* up todS and if 3S is C>“ up to its
singular points (called vertices), consists of lines of curvature, and has less than
4 vertices with angle< =, thenS is part of a round sphere. This theorem has
a nice application for a capillary surfacein a polyhedral domain a&S then
becomes lines of curvature. A capillary surfa&é& a domainU is a constant
mean curvature surface which me&ts in a constant contact angle alod§. So
our second theorem is that if a compact immersed disk type capillary surface in a
domain bounded by planes or spheres has less than four vertices on its boundary,
then the surface is spherical. Third, we are interested in the conjecture that the
only compact embedded capillary hypersurfac®bfvith smooth boundary in
a domain bounded by a family of hyperplanes and spheres which are unbalanced
(see the definition right before Theorem 3) is part of a round sphere. A partial
answer is given to this conjecture by Theorem 3 which says that a compact em-
bedded capillary hypersurface with smooth boundary other than the spherical
ones cannot exist if its mean curvature vector points outward. Finally we turn to
constant mean curvature hypersurfaces without boundarykthherder mean
curvature of a hypersurface is an elementary symmetric polynomial of degree
in the principal curvatures of the hypersurface. It is proved in Theorem 4 that if
the kth order mean curvature of a compact immersed constant mean curvature
hypersurface oR” is constant for somk, 2 < k < n — 1, then the hypersurface
is a sphere.

We wish to thank Finn and McCuan for their helpful comments on this work.

1. Extension of Hopf's theorem

In this section let us first review Hopf’s method and then extend it to a disk type
surface. LetS be a surface ifR® which is the image of a conformal immersion

X of a unit diskD = {(u, v) € R?: u? + v? < 1} into R3. Suppose: andv are

the isothermal coordinates dhdetermined byX. The metric ofS is written

ds? = E(du® + dv®).

Define a unit normal vectaX to S by X = X, x X,/|X, x X,|. With the frame
{X,, X,, X}alongS one can write

Xy = F]_llXu + F121Xv + LY,
X = I'HX, + TEX, + MX, (1)
Xy = I'5X, + T5HX, + NX.
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Note that
1 1
EEu = <qu7 Xu) = (Xuvs Xv), EEU = (Xuzn Xu) = (szn Xv)
Hence E, £
F111 F122_2E F112 Fzzz_ﬁ-
Also

1 1
EEu = (Xv, Xuv) = _<va, Xu>7 EEU = <Xus Xvu) = _<qua Xv>

Hence
E, - E,

L = -, = —-——.
Therefore (1) becomes

E, E, _
qu: _Xu__Xv"i_LX’
2F 2E
E, E, —
Xw= —X —X MX, 2
v= opXut o Xet 2
X Eu — X, + — Ev —X,+ NX.
v — 2E u 2F

Let us think ofX as the Gauss map : S — S2. Define themean curvature
H of S to be the trace of-d X. Since

<Yua Xu) = _<Y7 qu) =-—L, <Yu’ Xv) = —<Y, Xuv) =—-M,

(Xv, X)) =—(X, Xu) =—M, (X,, X,) =—(X, Xp») = —N,
one has
X, = —£xu — MXU, X, = —ﬂxu — EXU. (3)
E E E E
Thus
L+ N
= (4)

Now let us derive the Codazzi equations. From (1) we get
L= (quv 7)» M = (Xuva 7), N = <va’ Y)
Hence by (2), (3), and (4)

E,
Lv_Mu=<qu7 Xv>_<Xuv’ Xu>= E(L"i_N): _EUH’ (5)
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But by differentiatingE H = L + N, we get

EFELH=-FH,+L,+N,, EEH=—-EH,+L,+ N,.
Therefore the Codazzi equations (5) can be written as

(L—N), +2M, =EH,, (L—N),—2M, = —EH, (6)
Here let us introduce the complex coordinates

w=u-+iv, w=u—1Iv.
3 9 0 _1(a .0
au ov) aw 2\au " lau )

d(w,w)=L—N—2iM. (7)

Then

Put

Then adding the first equation of (6) tdimes the second gives
oy = FEH,.

From this Hopf concluded the following.
Lemma 1[H]. @ is holomorphic on a constant mean curvature surface.

Let us give a sketchy proof of Hopf’'s theorem about a constant mean curvature
immersion of a sphere. It follows from (3) that

_4<Xw7 Yw) = _<Xu —iX,, Yu - le) = .

Similarly, if ¥(z,z) denotes the function analogous dqw, w) for another
complex coordinate = x + iy, then

U= _4<Xzayz>~
Hence
ddw? = wdz?. (8)

This formula implies thatbdw? is a holomorphic quadratic differential. But

a standard theorem about Riemann surfaces states that on a compact Riemann
surface of genus 0, there exists no holomorphic quadratic differefitiad?

except the trivial onep = 0. Thereforel, = N andM = 0, which implies by

(3) that all the points of the constant mean curvature surfaaes umbilic and

thussS is a round sphere.
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Now, how can we extend Hopf's arguments to a surface with nonempty
boundary? Fortunately, Hopf gave a second proof for his theorem. His second
proof is based on the lines of curvature. The lines of curvature of a smooth
surface flow smoothly except at umbilic points. They rotate (bend) sharply around
umbilic points. So one can naturally define the rotation index of the lines of
curvature at an umbilic point. Being the zeros ®f the umbilic points are
isolated. Moreover the holomorphicity &, as it turns out, requires the umbilic
points to have a negative rotation index. But the total sum of the rotation indices
over a finite number of umbilic points of a compact surface equals its Euler
characteristic, which is positive a§?. Thus an immersed sphere of constant
mean curvature is round.

LetX : D, — Sbeaconformalimmersion ofahalfdigk, = {(u,v) € D :

v > 0} into a regular surfac8 mapping the diametérof D, into .S. The lines

of curvature ofS can be pulled back by to a line field onD,,. If X(/) is a line

of curvature ofS, then this line field can be extended smoothly to a line field
on D by reflection through the diameter. Cleafiyhas the well defined rotation
index atX ~1(p) for an umbilic pointp € 85 and furthermore, the rotation index
is independent of the choice of the immersXnSo one can naturally define the
rotation index of the lines of curvature at an umbilic pging 9.5 to behalf the
rotation index ofF at X ~1(p). But one needs to show that the umbilic points on
dS are isolated and then one ought to estimate the rotation indéxatfthose
umbilic points. With these in mind we do some preliminary work.

From (3) it follows that the principal curvature and the principal vector

satisfy _%(&%) <Z>:K<Z)

Taking an infinitesimal tangent vect rzﬁ to a line of curvature and elimi-

nating«, one obtains the differential equation for the lines of curvature

—Mdu® + (L — N)dudv + Mdv® = 0.

a
b

This equation can be rephrased in complex coordinates as
Im(@dw?) = 0,
which is equivalent to
argdw = % — %arg@. (m an integey
Therefore the rotation index of the lines of curvature is

1 1
I = Z(S(argdw) = —Eé(argcb),
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wheres denotes the variation as one winds once around an isolated umbilic point
p. If pisinthe interior ofS and is a zero of order of @, thené(argd) = 27n
and consequently

n 1

[=——-<—-. 9

27 2 ©
At a boundary umbilic poinp, suppose tha® has a zero (a pole, respectively)
of ordern(—n > 0, respectively). Then

2 4

In comparison with the interior umbilic points, the boundary umbilic points have
some similarities and differences as follows.

=1 [—ia(argqb)] S (10)
4r

Lemma 2. Let S be an immersed constant mean curvature surface which is of
classC?% up to and including the boundaS and letdS consist of curves
which areC?¢ up to and including the singular points 8% called the vertices

of S. If the regular components @fS are lines of curvature, then we have the
following.

(a) The boundary umbilic points ¢f are isolated;

(b) At a boundary umbilic point which is not a vertex®the rotation index of
lines of curvature is not bigger than1/4;

(c) At a vertex ofS with angle< & the rotation index is< 1/4, and at a vertex
with angle> =z the rotation index is< —1/4.

Proof. One may assume without loss of generality thé of disk type. First we
show thatS has a conformal parametrization whiclfi$* up to and including S
except the vertices df. Fix an interior poing € S and find a harmonic function

o (p)onSwhichvanishes oaS and grows like log digip, ¢) nearg. Clearly such

p exists inC%%(§ ~ {q, vertices ofS}). Letd be a conjugate harmonic function

of p. Thenp andé give rise to the desired conformal immersign: D — S

such thatX %(p) = e**? andX (0) = ¢. Now letX; : D, — S be a conformal
immersion of a halfdistD,, c D into S mapping the diametéof D, intodSina

C?“ manner. From (3) and (7) one sees that the imaginary part of the holomorphic
function® vanishes alonfj Hence® can be extended to a holomorphic function
(still denoted®) defined in the whole diskD except at some vertices ¢f
Therefore the nonvertex boundary umbilic points are isolated. Let us now show
that a vertex of cannot be an accumulation point of the boundary umbilic points.
One might call a vertey an umbilic point provided the two lines of curvature
emanating fronp are not perpendicular, bdt does not necessarily vanish;at

This is because the regularity Sfimplies that the second fundamental form is
bounded ors and hence, in view of (3)@(p)| < E(p) = 0 or oo depending

on whether the angle ¢fat p is > 7 or < x. In case® (p) = 0, p cannot be an
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accumulation point of the boundary umbilic points since the zeros of the extended
@ are isolated. In cas@ (p) = oo, p cannot be an accumulation point of zeros

of @. Thus in either case (a) follows. For (b) one just uses the holomorphicity of
the extended and (10). For (c) one needs to estimate the ordd? of (3) at a
vertex as in the following lemma.

Lemma 3.Let S and S be the same as ibemma 2and suppose is a vertex
of S with angle¢. If ¢ < 7 and p is a singularity of®, thenp is a simple pole,
and ifé > m, thenp is a zero ofd.

Proof. In view of (3) and the boundedness of the second fundamental fosn on
one can see tha cannot grow faster thaf. First we claim that the regularity
of 8.5 implies p, if it is a singularity of®, is not essential. LeR C S be a
neighborhood ofy which is C%¢ diffeomorphic to a sectob, C D with angle
& at the origin. Find the harmonic functienwhich satisfies the mixed boundary
condition thatd = 0 and® = & on two components ofdS ~ {p}) N IR,
respectively, an@% =00naR ~ 95, v beingthe unitnormaltéR ~ 3S.If pis
a harmonic function conjugate gthen the conformal immersiaty, : Dy — R
defined byX,* = ¢**% is in C>%(D,), and the conformal factok, of X is
bounded. LefX3(w) = w?/"™ and defineX = X,0 X3: D, — R. ThenX isa
conformal immersion and its conformal factBrgrows at most like a pole at.
Hencep cannot be an essential singularity®df

Supposé < 7. ThenE(p) = oo and 0< |®(p)| < oo. SinceM = 0 along
9.5, we have only to compute the blow-up ratedof N onaS.LetX; : D, — S
be the immersion as in the proof of the preceding lemma. Assum& {l@t = p
anda S is parametrized by arclengtrsuch thatX, (1) = ¢(s), -1 < u < 1, and
p = ¢(0). Thens can be thought of as a function @f s = s () with s(0) = 0.
Note that alond, E(w) = (ds/du)?. Suppose O< s(u) < —a/logu for all
u, 0 < u < € (< 1), and for some positive constamt Then there exists a
sequencéu;} of positive numbers approaching 0 such that

d ( —a a
O<s'u) < — (o | i) = ———
< s < du (IOgu)(u) u;(logu;)?

and hence
2

N

a
< —

E(;) < .
(ui) 2

a
u?(logu;)*
Thereforep is a simple pole o if |®(p)| = co. Suppose how thatu) grows
faster than—a/logu for anya > 0. Then O< 1/s(u) < —(logu)/a for 0 <
u < €. So one can find a sequence of positive numbgrs- 0 such that for any
a>0,0>—s"(u;)/[su;)]? > —1/au;, or 0 < s'(u;) < [s(u;))?/au; < 1/au;
sinces(u#;) — 0. In this case agairp is a simple pole. Now suppoge> 7.
ThenE(p) = 0 and hence (3) implies thatis a zero of®.
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Going back to the proof of Lemma 2, one notes that at a simple pale of
8(argp) = —2x. Thus (c) follows from (10).

Theorem 1.LetS C R® be a compactimmersed disk type constant mean curva-
ture surface which i€%“ up to and including S and whose boundary €%

up to and including its vertices. Suppose the regular componeits afe lines

of curvature. If the number of vertices of S with angler is less than or equal

to 3, then S is part of a sphere.

Proof. To begin, let us remark from the Poineaopf theorem [Ho] that iV

is a line field on the domai® with a finite number of singularities which is
the pull-back undex : D — S of the lines of curvature o, then the sum

of the rotation indices o¥ at the singularities irD is equal to 1. Therefors
has a nonempty sét of singularities. However, note here that the singularities
of the lines of curvature o8 occur not only at the umbilic points (the zeros of
@) but also at the vertices df (the poles or zeros ap). Suppose is finite.

Let p;, g;, rx, ands; be the interior umbilic points, nonvertex boundary umbilic
points, vertices with angle m, and vertices with angle =, respectively. Then
(9), Lemma 2(b), and (c) imply

Ep:pi.qj.rk,sll(p) =< El(_1/2)+Ej(_1/4)+2k(_1/4)+El(l/4) =< 2](1/4)

Hence if 0< / < 3, thenX,1(p) < 3/4, which contradicts the Poineaitiopf
theorem. Therefor# is infinite and has an accumulation paintf «; andk, are
the principal curvatures of, thenY is the zero set of the continuous function
k1 — k2, and hencey € Y andY is closed. But the points af except some
vertices are also the zeros @f, and the zero set ap is either open or finite.
ThusY = §, and saf is spherical.

Remark 1The number of vertices being less than or equal to 3in Theorem lisa
critical condition. There is a counterexample with 4 vertices:Mdie a cylinder

S x R! c R®andS ¢ M arectangular region which is bounded by two straight
lines and two circles. Thefi is a compact embedded disk type constant mean
curvature surface with 4 vertices at each of which the rotation index equals 1/4.

2. Capillary surfaces

A capillary surfaceS in a domainU is an immersed constant mean curvature
surface which meet8U at a constant contact angle alod§. WhenaU is a
piecewise smooth surface one may assume the contact angles to be distinct on
each smooth component 8t/. In this section we will study when a capillary
surface is spherical or rotational and when it does not exist.

Itwas H. A. Schwarz [Sc] who showed that a minimal surface with piecewise
linear boundary is the conjugate surface of a capillary surface ith 0 in a
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polyhedron. By the Weierstrass representation formula two conjugate minimal
surfaces are isometric. Therefore a compact minimal surface with constant con-
tact angle in a polyhedral domain which has less than 4 vertices must be flat since
a minimal surface bounded by three line segments is flat. We extend this fact to
capillary surfaces wittH # 0 in the following theorem which in fact comes as

a corollary of Theorem 1.

Theorem 2.LetU C R® be a domain bounded by spheres or planes and let
be a compact immersed disk type capillary surfac& iwhich isC%* up to and
including S and whose boundary i§2¢ up to and including its vertices. §
has less thad vertices with angle< i, thensS is spherical.

Proof. The Terquem-Joachimsthal theorem [S1] says that# S;N Sy is aline
of curvature inSy, thenC is also a line of curvature i, if and only if S; and
S, intersect at a constant angle alofigHence each smooth componentsf
is a line of curvature of. Thus the theorem follows from Theorem 1.

Remark 2If So = 9U is neither spherical nor planar, one cannot expect Theorem
2 to hold. Even ifSy is of constant mean curvature, there is no hope. However, if
So is the union of two constant mean curvature surfaiesndS,, and the triad

of surfacesS, S;, andS, meet each other along a curyveC 95 N 451N 3S,

at the angle of 120 theny can be thought of as a removable singularity. Indeed
y makes no contribution in the evaluation of some geometric integrals along
S U 051 U aS, (see [Ch]). Motivated by this property ¢f, we would like to
propose the following.

Conjecture. The singular curves of a stationary compound soap bubbR3in
are lines of curvature.

An affirmative answer to this conjecture will give a remarkable result about the
multiple bubbles as follows. Define the symmetric double bubble, triple bubble,
and quadruple bubble to be simply connected compound soap bubbles which
respectively enclose 2, 3, and 4 congruent regions homeomorphic to a ball. Then
every regular surface of a compound soap bubble which is an immersion of a
symmetric double bubble, triple bubble, or quadruple bubble has less than four
vertices and therefore by Theorem 1 and the conjecture above the regular surfaces
are spherical. The compound soap bubble of our conjecture is just assumed to be
stationary. But there are some recent results on the area minimizing compound
soap bubbles. In 1995 Hass, Hutchings, and Schlafly [HHS] succeeded in proving
that an area minimizing compound soap bubble enclosing two regions of equal
volume is a symmetric double bubble. Furthermore in 2000 Hutchings, Morgan,
Ritoré, and Ros [HMRR] showed that an area minimizing compound soap bubble
enclosing two regions of any prescribed volume is the standard double bubble
consisting of three spherical caps.
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Remark 3t should be mentioned that Finn and McCuan [FM] also obtained
a result similar to Theorem 2 for embedd&dwvith H > 0, U bounded by
planes only, and’>* behavior at the vertices. Also their definition of vertices is
significantly different from ours.

From now on let us deal with the capillary surfaces without a vertex. A disk type
capillary surface in a ball was initially studied by Nitsche [N]; He showed that

it is necessarily a spherical cap. The Delaunay surfaces and the catenoid, being
annular rotational surfaces, meet a sphere or a pair of parallel planes at constant
angles. Indeed, adopting the Alexandrov reflection method, Wente [W3] showed
that every embedded annular capillary surface in a slab is a surface of revolution.
But he also constructed many examples of immersed annular capillary surfaces
lying in a ball or slab which are not surfaces of revolution [W4]. However, an
immersed annular capillary surface with zero mean curvature in a slab must be
part of the catenoid. This is due to the harmonicity of both the height function
and log|g|, ¢ being the Gauss map.

As for the capillary surfaces with more than two boundary components, some
existence results are known. Lawson [L] showed there exist capillary surfacesina
triangular prism and in a square prism; Schwarz [Sc] and Smyth [Sm] constructed
capillary surfaces in a cube and in a tetrahedron, respectively. Of course in these
domains there also exist much simpler ones: the spherical capillary surfaces. But
the existence of a nonspherical capillary surface in the domain above is partly
because the piecewise linear boundary of the domain is balanced. Therefore in
a domainU like a wedge or an octant whose boundary is not well balanced, it is
conjectured thathe only capillary surface is the spherical one regard to this
conjecture for the case of awedge, McCuan [M] gave a partial affirmative answer
under an assumption on the contact angles that there are no embedded constant
mean curvature spanners in a wedg® i 6, < = + o whereg; are the contact
angles and is the dihedral angle for the wedge. In the following theorem we
give another partial answer by showing that a nonspherical capillary sufface
does not exist if the mean curvature vectosgioints outward or vanishes. We
consider a domait/, more general than a wedge or an octant, whose boundary
aU is piecewise smooth anghbalancedD c aU is said to be unbalanced if
there exists a parallel vector fieldsuch that for any outward unit normalto
D, (n, v) is positive.

Theorem 3.Let S be a compact embedded capillary hypersurface with smooth
boundary in a domai/ ¢ R" with piecewise smooth boundady/ such that

aS is disjoint from the singular set ¢fU. Let £2 be the compact set bounded
by aU and S, andn the outward unit normal t@ 2. Suppose thai2 ~ S is
unbalanced and is a disjoint union of open digksc aU. Let6;,0 < 6; < m,

be the contact angle & with D;, H = H#n the mean curvature vector 6f and
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Ho = Hyn the mean curvature vector 6§2 ~ S. If H + Hgcosp; > 0 for all
i, then no such capillary hypersurfadeexists.

Proof. Let v be the outward unit conormal &S on S, v, the projection ofy on
oU, andy, the component of normal todU. Then

|v;| = | cosy;| andv, = (sind;)n.

First, one has for the constaft

0= Hn:fSH—{—Z/DiHn. (11)

082
If X denotes the position vector from a fixed point, then
AX =HonSandAX = Hopponas2 ~ S. (12)
Integrating (12) gives

/SH B Xi:/é;Di . Xi:/ﬁ;Di v lZ '/BDi (Slnei)n’ (13)

and

COSH,-/ Hm]:/ V;. (24)
D; aD;

In (13) 5 alonga D; is the unit normal ta);, not toS. By combining (11), (13),
and (14) one gets

0= Z/D.(HJrHocose,»)nJrZ/aD.(sinG,-)n.

But this contradicts the hypothesis thatD; is unbalanced.

Remark 4 Concus-Finn-McCuan [CFM] derived the same result wheis a
wedge inR3.

3. Higher order mean curvature

In this section let us give a sufficient condition for a compact immersed hyper-
surfaceS ¢ R" without boundary to be a round sphese. First of all, thekth
order mean curvaturdf, of S is defined to be the elementary symmetric poly-
nomial of degre& in the principal curvatures;, ..., x,_1 of S. For notational
simplicity let us normalize, by the following identity

-1 -1
A+k1t) - A+ k,_1t) =1+ <I’l 1 )Hll+ <I’l 2 >H2t2+...

n—1 n—1
+ (n _ 1) Hl’l*lt .
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As the mean curvaturf; is related to the first variation of the volume $f so
is H; related with thekth variation of the volume of. Let S, be the parallel
hypersurface of which is the set of all points iR" at a distance from S on
one side ofS for sufficiently smallr > 0. According to Weyl's tube formula
[Wy, Re] the volumeV (r) of S, is a polynomial of degree — 1 the coefficient
of r¥ of which is a constant multiple of; H;.

Minkowski had found another integral formula involviiif} as follows. Let
X be the position vector as before. Then

AlXI?=2(n—1)+2(H, X)onS. (15)

Integrating (15) or§ and denotingd = Volume(S), H = (n — 1) Hyn, one gets

0=A+ / Hi(n, X). (16)
N

(16) also holds forS,, which, interestingly, becomes a polynomial equation of
r. Equating the like terms gives the Minkowski formula [Hs]:

0= LHk1+/;Hk<U»X>’ (17)

(16) can be recovered from (17) by setting= 1. If we setk = 0, (17) reduces
just nominally to

O=nV+f(n,X), (18)
N

whereV is the volume of the immersiof counting multiplicity.
Being elementary symmetric polynomial$, satisfies the following inequal-
ities:
HE™h < HE (19)
providedH; > 0 onS for some > k. Here equality holds only at umbilic points
of S. Indeed (19) holds i, = const sinceS has a point where all principal

curvatures are positive, which is obviously true focompact. Applying (19)
inductively, one sees that H, = const, then

Hy < Hf, (20)

here again equality holds only at umbilic points. We are now ready to prove the
following.

Theorem 4.Let § ¢ R"” be a compact immersed constant mean curvature
hypersurface without boundary. If tlhéh order mean curvature df is constant
for somek, 2 < k < n — 1, thenS is a hypersphere.
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Proof. IntegrateH*P’* < H,_; overS to get

HE 4 < / Hiy<—H, / (1. X) = nH,V (by (17), (18)).
S S
Hence
(A/V)* < n*H, < n*Hf (by (20)).
SinceH; is constant, (16) and (18) imply
Hi=A/(nV).

Therefore equality holds in (20) arsds umbilic everywhere. ThuS is a hyper-
sphere [S2].

Remark 5The constancy aoff; can be replaced by the embeddedness Af Ros
[Ro] proved that the hypersphere is the only embedded compact hypersurface in
R" with H, = const forsomé&, 1 <k <n — 1.
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