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Abstract. We study under what condition a constant mean curvature surface can be round: i) If
the boundary of a compact immersed disk type constant mean curvature surface inR3 consists
of lines of curvature and has less than 4 vertices with angle< π , then the surface is spherical;
ii) A compact immersed disk type capillary surface with less than 4 vertices in a domain ofR3

bounded by spheres or planes is spherical; iii) The mean curvature vector of a compact embedded
capillary hypersurface ofRn with smooth boundary in an unbounded polyhedral domain with
unbalanced boundary should point inward; iv) If thekth order (2≤ k ≤ n−1) mean curvature of
a compact immersed constant mean curvature hypersurface ofRn without boundary is constant,
then the hypersurface is a sphere.

A round sphere has constant mean curvature. But not all constant mean curvature
surfaces inR3 are roundas there isa famouscounterexample:Wente’s torus [W1].
With some condition on a constant mean curvature surface, however, one can
derive the roundnessof thesurface.Hopf [Ho]assumedaconstantmeancurvature
surface to bean immersed sphere and showed it is a round sphere.Alexandrov [A]
added the hypotheses of compactness and embeddedness and proved that such a
constant mean curvature surface is round. The classical isoperimetric inequality
for immersed surfaces states that the areaminimizing surface among all constant
mean curvature surfaces enclosing a fixed volume countingmultiplicity is round.
Nitsche [N] found that an immersed disk type constant mean curvature surface
S in a ball which makes a constant contact angle with the boundary sphere of
the ball along∂S is a spherical cap. Also Barbosa and do Carmo [BC, W2]
imposed stability on a compact constant mean curvature surfaceS and obtained
the roundness ofS.

In this paperwegivemoresufficient conditionswhichguarantee that thegiven
constant mean curvature surfaces are (part of) a round sphere. First, Hopf’s theo-
remmentioned above will be extended from an immersed sphere to an immersed
disk. Hopf showed that the constancy of the mean curvature gives rise to a holo-
morphic functionΦ. The zeros ofΦ are then shown to be related to the topology
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of the surface.While the zeros ofΦ in Hopf’s case are always interior points, our
zeros ofΦ may occur on the boundary of the disk. Therefore we should estimate
the order of the zeros ofΦ and will prove that if a compact immersed disk type
constant mean curvature surfaceS is C2,α up to ∂S and if ∂S is C2,α up to its
singular points (called vertices), consists of lines of curvature, and has less than
4 vertices with angle< π , thenS is part of a round sphere. This theorem has
a nice application for a capillary surfaceS in a polyhedral domain as∂S then
becomes lines of curvature. A capillary surfaceS in a domainU is a constant
mean curvature surface whichmeets∂U in a constant contact angle along∂S. So
our second theorem is that if a compact immersed disk type capillary surface in a
domain bounded by planes or spheres has less than four vertices on its boundary,
then the surface is spherical. Third, we are interested in the conjecture that the
only compact embedded capillary hypersurface ofRn with smooth boundary in
a domain bounded by a family of hyperplanes and spheres which are unbalanced
(see the definition right before Theorem 3) is part of a round sphere. A partial
answer is given to this conjecture by Theorem 3 which says that a compact em-
bedded capillary hypersurface with smooth boundary other than the spherical
ones cannot exist if its mean curvature vector points outward. Finally we turn to
constant mean curvature hypersurfaces without boundary. Thekth order mean
curvature of a hypersurface is an elementary symmetric polynomial of degreek

in the principal curvatures of the hypersurface. It is proved in Theorem 4 that if
thekth order mean curvature of a compact immersed constant mean curvature
hypersurface ofRn is constant for somek, 2≤ k ≤ n−1, then the hypersurface
is a sphere.

We wish to thank Finn and McCuan for their helpful comments on this work.

1. Extension of Hopf’s theorem

In this section let us first review Hopf’s method and then extend it to a disk type
surface. LetS be a surface inR3 which is the image of a conformal immersion
X of a unit diskD = {(u, v) ∈ R2 : u2 + v2 < 1} intoR3. Supposeu andv are
the isothermal coordinates onS determined byX. The metric ofS is written

ds2 = E(du2 + dv2).

Define a unit normal vectorX to S byX = Xu ×Xv/|Xu ×Xv|. With the frame
{Xu, Xv, X} alongS one can write

Xuu = Γ 1
11Xu + Γ 2

11Xv + LX,

Xuv = Γ 1
12Xu + Γ 2

12Xv + MX, (1)

Xvv = Γ 1
22Xu + Γ 2

22Xv + NX.
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Note that

1

2
Eu = 〈Xuu, Xu〉 = 〈Xuv, Xv〉, 1

2
Ev = 〈Xuv, Xu〉 = 〈Xvv, Xv〉.

Hence

Γ 1
11 = Γ 2

12 = Eu

2E
, Γ 1

12 = Γ 2
22 = Ev

2E
.

Also

1

2
Eu = 〈Xv, Xuv〉 = −〈Xvv, Xu〉, 1

2
Ev = 〈Xu, Xvu〉 = −〈Xuu, Xv〉.

Hence

Γ 1
22 = −Eu

2E
, Γ 2

11 = −Ev

2E
.

Therefore (1) becomes

Xuu = Eu

2E
Xu − Ev

2E
Xv + LX,

Xuv = Ev

2E
Xu + Eu

2E
Xv + MX, (2)

Xvv = −Eu

2E
Xu + Ev

2E
Xv + NX.

Let us think ofX as the Gauss mapX : S → S2. Define themean curvature
H of S to be the trace of−dX. Since

〈Xu, Xu〉 = −〈X, Xuu〉 = −L, 〈Xu, Xv〉 = −〈X, Xuv〉 = −M,

〈Xv, Xu〉 = −〈X, Xuv〉 = −M, 〈Xv, Xv〉 = −〈X, Xvv〉 = −N,

one has

Xu = −L

E
Xu − M

E
Xv, Xv = −M

E
Xu − N

E
Xv. (3)

Thus

H = L + N

E
. (4)

Now let us derive the Codazzi equations. From (1) we get

L = 〈Xuu, X〉, M = 〈Xuv, X〉, N = 〈Xvv, X〉.
Hence by (2), (3), and (4)

Lv − Mu = 〈Xuu, Xv〉 − 〈Xuv, Xu〉 = Ev

2E
(L + N) = 1

2
EvH, (5)

Mv − Nu = 〈Xuv, Xv〉 − 〈Xvv, Xu〉 = −Eu

2E
(L + N) = −1

2
EuH.
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But by differentiatingEH = L + N , we get

EvH = −EHv + Lv + Nv, EuH = −EHu + Lu + Nu.

Therefore the Codazzi equations (5) can be written as

(L − N)u + 2Mv = EHu, (L − N)v − 2Mu = −EHv (6)

Here let us introduce the complex coordinates

w = u + iv, w̄ = u − iv.

Then
∂

∂w
= 1

2

(
∂

∂u
− i

∂

∂v

)
,

∂

∂w̄
= 1

2

(
∂

∂u
+ i

∂

∂v

)
.

Put

Φ(w, w̄) = L − N − 2iM. (7)

Then adding the first equation of (6) toi times the second gives

Φw̄ = EHw.

From this Hopf concluded the following.

Lemma 1 [H]. Φ is holomorphic on a constant mean curvature surface.

Let usgiveasketchyproof ofHopf’s theoremabout a constantmeancurvature
immersion of a sphere. It follows from (3) that

−4〈Xw,Xw〉 = −〈Xu − iXv,Xu − iXv〉 = Φ.

Similarly, if Ψ (z, z̄) denotes the function analogous toΦ(w, w̄) for another
complex coordinatez = x + iy, then

Ψ = −4〈Xz,Xz〉.
Hence

Φdw2 = Ψdz2. (8)

This formula implies thatΦdw2 is a holomorphic quadratic differential. But
a standard theorem about Riemann surfaces states that on a compact Riemann
surface of genus 0, there exists no holomorphic quadratic differentialΦdw2

except the trivial one,Φ ≡ 0. ThereforeL ≡ N andM ≡ 0, which implies by
(3) that all the points of the constant mean curvature surfaceS are umbilic and
thusS is a round sphere.



Sufficient conditions for constant mean curvature surfaces to be round 147

Now, how can we extend Hopf’s arguments to a surface with nonempty
boundary? Fortunately, Hopf gave a second proof for his theorem. His second
proof is based on the lines of curvature. The lines of curvature of a smooth
surfaceflowsmoothly except at umbilic points.They rotate (bend) sharply around
umbilic points. So one can naturally define the rotation index of the lines of
curvature at an umbilic point. Being the zeros ofΦ, the umbilic points are
isolated. Moreover the holomorphicity ofΦ, as it turns out, requires the umbilic
points to have a negative rotation index. But the total sum of the rotation indices
over a finite number of umbilic points of a compact surface equals its Euler
characteristic, which is positive onS2. Thus an immersed sphere of constant
mean curvature is round.

LetX : Dh → S be a conformal immersion of a half diskDh = {(u, v) ∈ D :
v ≥ 0} into a regular surfaceS mapping the diameterl of Dh into ∂S. The lines
of curvature ofS can be pulled back byX to a line field onDh. If X(l) is a line
of curvature ofS, then this line field can be extended smoothly to a line fieldF

onD by reflection through the diameter. ClearlyF has the well defined rotation
index atX−1(p) for an umbilic pointp ∈ ∂S and furthermore, the rotation index
is independent of the choice of the immersionX. So one can naturally define the
rotation index of the lines of curvature at an umbilic pointp ∈ ∂S to behalf the
rotation index ofF atX−1(p). But one needs to show that the umbilic points on
∂S are isolated and then one ought to estimate the rotation index ofF at those
umbilic points. With these in mind we do some preliminary work.

From (3) it follows that the principal curvatureκ and the principal vector(
a

b

)
satisfy

− 1

E

(
L

M

M

N

) (
a

b

)
= κ

(
a

b

)
.

Taking an infinitesimal tangent vector

(
du

dv

)
to a line of curvature and elimi-

natingκ, one obtains the differential equation for the lines of curvature

−Mdu2 + (L − N)dudv + Mdv2 = 0.

This equation can be rephrased in complex coordinates as

Im(Φdw2) = 0,

which is equivalent to

argdw = mπ

2
− 1

2
argΦ. (m an integer)

Therefore the rotation index of the lines of curvature is

I = 1

2π
δ(argdw) = − 1

4π
δ(argΦ),
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whereδ denotes the variation as onewinds once around an isolated umbilic point
p. If p is in the interior ofS and is a zero of ordern of Φ, thenδ(argΦ) = 2πn
and consequently

I = −n

2
≤ −1

2
. (9)

At a boundary umbilic pointp, suppose thatΦ has a zero (a pole, respectively)
of ordern(−n > 0, respectively). Then

I = 1

2

[
− 1

4π
δ(argΦ)

]
= −n

4
. (10)

In comparison with the interior umbilic points, the boundary umbilic points have
some similarities and differences as follows.

Lemma 2.Let S be an immersed constant mean curvature surface which is of
classC2,α up to and including the boundary∂S and let∂S consist of curves
which areC2,α up to and including the singular points of∂S called the vertices
of S. If the regular components of∂S are lines of curvature, then we have the
following.
(a)The boundary umbilic points ofS are isolated;
(b)At a boundary umbilic point which is not a vertex ofS the rotation index of
lines of curvature is not bigger than−1/4;
(c)At a vertex ofS with angle< π the rotation index is≤ 1/4, and at a vertex
with angle> π the rotation index is≤ −1/4.

Proof.Onemay assume without loss of generality thatS is of disk type. First we
show thatS has a conformal parametrizationwhich isC2,α up to and including∂S
except the vertices ofS. Fix an interior pointq ∈ S and find a harmonic function
ρ(p)onSwhichvanisheson∂S andgrows like log dist(p, q)nearq.Clearly such
ρ exists inC2,α(S̄ ∼ {q, vertices ofS}). Let θ be a conjugate harmonic function
of ρ. Thenρ andθ give rise to the desired conformal immersionX : D̄ → S̄

such thatX−1(p) = eρ+iθ andX(0) = q. Now letX1 : Dh → S be a conformal
immersion of a half diskDh ⊂ D intoSmapping the diameterl ofDh into∂S in a
C2,α manner. From (3) and (7) onesees that the imaginary part of theholomorphic
functionΦ vanishes alongl. HenceΦ can be extended to a holomorphic function
(still denotedΦ) defined in the whole diskD except at some vertices ofS.
Therefore the nonvertex boundary umbilic points are isolated. Let us now show
that a vertex ofS cannot be anaccumulation point of the boundary umbilic points.
One might call a vertexp an umbilic point provided the two lines of curvature
emanating fromp are not perpendicular, butΦ does not necessarily vanish atp.
This is because the regularity ofS̄ implies that the second fundamental form is
bounded on̄S and hence, in view of (3),|Φ(p)| ≤ E(p) = 0 or∞ depending
on whether the angle ofS atp is> π or< π . In caseΦ(p) = 0,p cannot be an
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accumulationpoint of theboundary umbilic points since the zerosof theextended
Φ are isolated. In caseΦ(p) = ∞, p cannot be an accumulation point of zeros
ofΦ. Thus in either case (a) follows. For (b) one just uses the holomorphicity of
the extendedΦ and (10). For (c) one needs to estimate the order ofE in (3) at a
vertex as in the following lemma.

Lemma 3.Let S and∂S be the same as inLemma 2and supposep is a vertex
of S with angleξ . If ξ < π andp is a singularity ofΦ, thenp is a simple pole,
and if ξ > π , thenp is a zero ofΦ.

Proof.In view of (3) and the boundedness of the second fundamental form onS̄,
one can see thatΦ cannot grow faster thanE. First we claim that the regularity
of ∂S implies p, if it is a singularity ofΦ, is not essential. LetR ⊂ S be a
neighborhood ofp which isC2,α diffeomorphic to a sectorDs ⊂ D with angle
ξ at the origin. Find the harmonic functionθ which satisfies the mixed boundary
condition thatθ = 0 andθ = ξ on two components of(∂S ∼ {p}) ∩ ∂R,
respectively, and∂θ

∂ν
= 0 on∂R ∼ ∂S, ν being the unit normal to∂R ∼ ∂S. If ρ is

a harmonic function conjugate toθ , then the conformal immersionX2 : Ds → R

defined byX−1
2 = eρ+iθ is in C2,α(D̄s), and the conformal factorE2 of X2 is

bounded. LetX3(w) = wξ/π and defineX = X2 ◦ X3 : Dh → R. ThenX is a
conformal immersion and its conformal factorE grows at most like a pole atp.
Hencep cannot be an essential singularity ofΦ.

Supposeξ < π . ThenE(p) = ∞ and 0≤ |Φ(p)| ≤ ∞. SinceM = 0 along
∂S, we have only to compute the blow-up rate ofL−N on∂S. LetX1 : Dh → S

be the immersion as in the proof of the preceding lemma.Assume thatX1(0) = p

and∂S is parametrized by arclengths such thatX1(u) = c(s),−1< u < 1, and
p = c(0). Thens can be thought of as a function ofu, s = s(u) with s(0) = 0.
Note that alongl, E(w) = (ds/du)2. Suppose 0< s(u) ≤ −a/ logu for all
u, 0 < u < ε (< 1), and for some positive constanta. Then there exists a
sequence{ui} of positive numbers approaching 0 such that

0 ≤ s ′(ui) ≤ d

du

( −a

logu

)
(ui) = a

ui(logui)2

and hence

E(ui) ≤ a2

u2i (logui)
4
<

a2

u2i
.

Thereforep is a simple pole ofΦ if |Φ(p)| = ∞. Suppose now thats(u) grows
faster than−a/ logu for anya > 0. Then 0< 1/s(u) < −(logu)/a for 0 <

u < ε. So one can find a sequence of positive numbersui → 0 such that for any
a > 0, 0> −s ′(ui)/[s(ui)]2 > −1/aui , or 0< s ′(ui) < [s(ui)]2/aui < 1/aui
sinces(ui) → 0. In this case again,p is a simple pole. Now supposeξ > π .
ThenE(p) = 0 and hence (3) implies thatp is a zero ofΦ.
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Going back to the proof of Lemma 2, one notes that at a simple pole ofΦ,
δ(argΦ) = −2π. Thus (c) follows from (10).

Theorem 1.LetS ⊂ R3 be a compact immersed disk type constant mean curva-
ture surface which isC2,α up to and including∂S and whose boundary isC2,α

up to and including its vertices. Suppose the regular components of∂S are lines
of curvature. If the number of vertices of S with angle< π is less than or equal
to 3, then S is part of a sphere.

Proof.To begin, let us remark from the Poincar`e-Hopf theorem [Ho] that ifV
is a line field on the domainD with a finite number of singularities which is
the pull-back underX : D → S of the lines of curvature onS, then the sum
of the rotation indices ofV at the singularities inD̄ is equal to 1. ThereforeS
has a nonempty setY of singularities. However, note here that the singularities
of the lines of curvature onS occur not only at the umbilic points (the zeros of
Φ) but also at the vertices ofS (the poles or zeros ofΦ). SupposeY is finite.
Let pi, qj , rk, andsl be the interior umbilic points, nonvertex boundary umbilic
points, vertices with angle> π , and vertices with angle< π , respectively. Then
(9), Lemma 2(b), and (c) imply

Σp=pi,qj ,rk,sl I (p) ≤ Σi(−1/2)+Σj(−1/4)+Σk(−1/4)+Σl(1/4) ≤ Σl(1/4).

Hence if 0≤ l ≤ 3, thenΣpI (p) ≤ 3/4, which contradicts the Poincar´e-Hopf
theorem. ThereforeY is infinite and has an accumulation pointq. If κ1 andκ2 are
the principal curvatures ofS, thenY is the zero set of the continuous function
κ1 − κ2, and henceq ∈ Y andY is closed. But the points ofY except some
vertices are also the zeros ofΦ, and the zero set ofΦ is either open or finite.
ThusY = S, and soS is spherical.

Remark 1.The number of vertices being less than or equal to 3 in Theorem 1 is a
critical condition. There is a counterexample with 4 vertices: LetM be a cylinder
S1×R1 ⊂ R3 andS ⊂ M a rectangular region which is bounded by two straight
lines and two circles. ThenS is a compact embedded disk type constant mean
curvature surface with 4 vertices at each of which the rotation index equals 1/4.

2. Capillary surfaces

A capillary surfaceS in a domainU is an immersed constant mean curvature
surface which meets∂U at a constant contact angle along∂S. When∂U is a
piecewise smooth surface one may assume the contact angles to be distinct on
each smooth component of∂U . In this section we will study when a capillary
surface is spherical or rotational and when it does not exist.

It was H.A. Schwarz [Sc] who showed that a minimal surface with piecewise
linear boundary is the conjugate surface of a capillary surface withH ≡ 0 in a
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polyhedron. By the Weierstrass representation formula two conjugate minimal
surfaces are isometric. Therefore a compact minimal surface with constant con-
tact angle in a polyhedral domain which has less than 4 verticesmust be flat since
a minimal surface bounded by three line segments is flat. We extend this fact to
capillary surfaces withH �= 0 in the following theorem which in fact comes as
a corollary of Theorem 1.

Theorem 2.LetU ⊂ R3 be a domain bounded by spheres or planes and letS

be a compact immersed disk type capillary surface inU which isC2,α up to and
including∂S and whose boundary isC2,α up to and including its vertices. IfS
has less than4 vertices with angle< π , thenS is spherical.

Proof.The Terquem-Joachimsthal theorem [S1] says that ifC = S1∩S2 is a line
of curvature inS1, thenC is also a line of curvature inS2 if and only if S1 and
S2 intersect at a constant angle alongC. Hence each smooth component of∂S

is a line of curvature ofS. Thus the theorem follows from Theorem 1.

Remark 2.If S0 = ∂U is neither spherical nor planar, one cannot expect Theorem
2 to hold. Even ifS0 is of constant mean curvature, there is no hope. However, if
S0 is the union of two constant mean curvature surfacesS1 andS2, and the triad
of surfacesS, S1, andS2 meet each other along a curveγ ⊂ ∂S ∩ ∂S1 ∩ ∂S2
at the angle of 120◦, thenγ can be thought of as a removable singularity. Indeed
γ makes no contribution in the evaluation of some geometric integrals along
∂S ∪ ∂S1 ∪ ∂S2 (see [Ch]). Motivated by this property ofγ , we would like to
propose the following.

Conjecture. The singular curves of a stationary compound soap bubble inR3

are lines of curvature.

An affirmative answer to this conjecture will give a remarkable result about the
multiple bubbles as follows. Define the symmetric double bubble, triple bubble,
and quadruple bubble to be simply connected compound soap bubbles which
respectively enclose 2, 3, and 4 congruent regions homeomorphic to a ball. Then
every regular surface of a compound soap bubble which is an immersion of a
symmetric double bubble, triple bubble, or quadruple bubble has less than four
vertices and therefore byTheorem1and the conjecture above the regular surfaces
are spherical. The compound soap bubble of our conjecture is just assumed to be
stationary. But there are some recent results on the area minimizing compound
soapbubbles. In 1995Hass,Hutchings, andSchlafly [HHS] succeeded in proving
that an area minimizing compound soap bubble enclosing two regions of equal
volume is a symmetric double bubble. Furthermore in 2000 Hutchings, Morgan,
Ritoré, andRos [HMRR] showed that an areaminimizing compound soapbubble
enclosing two regions of any prescribed volume is the standard double bubble
consisting of three spherical caps.
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Remark 3.It should be mentioned that Finn and McCuan [FM] also obtained
a result similar to Theorem 2 for embeddedS with H ≥ 0, U bounded by
planes only, andC1,α behavior at the vertices. Also their definition of vertices is
significantly different from ours.

From now on let us deal with the capillary surfaces without a vertex. A disk type
capillary surface in a ball was initially studied by Nitsche [N]; He showed that
it is necessarily a spherical cap. The Delaunay surfaces and the catenoid, being
annular rotational surfaces, meet a sphere or a pair of parallel planes at constant
angles. Indeed, adopting theAlexandrov reflection method,Wente [W3] showed
that every embedded annular capillary surface in a slab is a surface of revolution.
But he also constructed many examples of immersed annular capillary surfaces
lying in a ball or slab which are not surfaces of revolution [W4]. However, an
immersed annular capillary surface with zero mean curvature in a slab must be
part of the catenoid. This is due to the harmonicity of both the height function
and log|g|, g being the Gauss map.

As for the capillary surfaces withmore than two boundary components, some
existence results are known. Lawson [L] showed thereexist capillary surfaces in a
triangular prismand in a square prism;Schwarz [Sc] andSmyth [Sm] constructed
capillary surfaces in a cube and in a tetrahedron, respectively. Of course in these
domains there also exist much simpler ones: the spherical capillary surfaces. But
the existence of a nonspherical capillary surface in the domain above is partly
because the piecewise linear boundary of the domain is balanced. Therefore in
a domainU like a wedge or an octant whose boundary is not well balanced, it is
conjectured thatthe only capillary surface is the spherical one. In regard to this
conjecture for the case of awedge,McCuan [M] gave a partial affirmative answer
under an assumption on the contact angles that there are no embedded constant
mean curvature spanners in a wedge ifθ1 + θ2 ≤ π + α whereθi are the contact
angles andα is the dihedral angle for the wedge. In the following theorem we
give another partial answer by showing that a nonspherical capillary surfaceS

does not exist if the mean curvature vector ofS points outward or vanishes. We
consider a domainU , more general than a wedge or an octant, whose boundary
∂U is piecewise smooth andunbalanced. D ⊂ ∂U is said to be unbalanced if
there exists a parallel vector fieldv such that for any outward unit normalη to
D, 〈η, v〉 is positive.

Theorem 3.LetS be a compact embedded capillary hypersurface with smooth
boundary in a domainU ⊂ Rn with piecewise smooth boundary∂U such that
∂S is disjoint from the singular set of∂U . LetΩ be the compact set bounded
by ∂U andS, andη the outward unit normal to∂Ω. Suppose that∂Ω ∼ S is
unbalanced and is a disjoint union of open disksDi ⊂ ∂U . Letθi , 0 < θi < π ,
be the contact angle ofS withDi ,H = Hη the mean curvature vector ofS, and
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H0 = H0η the mean curvature vector of∂Ω ∼ S. If H + H0 cosθi ≥ 0 for all
i, then no such capillary hypersurfaceS exists.

Proof.Let ν be the outward unit conormal to∂S onS, νt the projection ofν on
∂U , andνn the component ofν normal to∂U . Then

|νt | = | cosθi | andνn = (sinθi)η.

First, one has for the constantH

0 =
∫
∂Ω

Hη =
∫
S

H +
∑
i

∫
Di

Hη. (11)

If X denotes the position vector from a fixed point, then

∆X = H onS and∆X = H0η on ∂Ω ∼ S. (12)

Integrating (12) gives∫
S

H =
∑
i

∫
∂Di

ν =
∑
i

∫
∂Di

νt +
∑
i

∫
∂Di

(sinθi)η, (13)

and

cosθi

∫
Di

H0η =
∫
∂Di

νt . (14)

In (13)η along∂Di is the unit normal toDi , not toS. By combining (11), (13),
and (14) one gets

0 =
∑
i

∫
Di

(H + H0 cosθi)η +
∑
i

∫
∂Di

(sinθi)η.

But this contradicts the hypothesis that∪iDi is unbalanced.

Remark 4.Concus-Finn-McCuan [CFM] derived the same result whenU is a
wedge inR3.

3. Higher order mean curvature

In this section let us give a sufficient condition for a compact immersed hyper-
surfaceS ⊂ Rn without boundary to be a round sphereSn−1. First of all, thekth
order mean curvatureHk of S is defined to be the elementary symmetric poly-
nomial of degreek in the principal curvaturesκ1, ..., κn−1 of S. For notational
simplicity let us normalizeHk by the following identity

(1+ κ1t) · · · (1+ κn−1t) = 1+
(
n − 1
1

)
H1t +

(
n − 1
2

)
H2t

2 + ...

+
(
n − 1
n − 1

)
Hn−1t

n−1.
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As the mean curvatureH1 is related to the first variation of the volume ofS, so
is Hk related with thekth variation of the volume ofS. Let Sr be the parallel
hypersurface ofS which is the set of all points inRn at a distancer from S on
one side ofS for sufficiently smallr > 0. According to Weyl’s tube formula
[Wy, Re] the volumeV (r) of Sr is a polynomial of degreen − 1 the coefficient
of rk of which is a constant multiple of

∫
S
Hk.

Minkowski had found another integral formula involvingHk as follows. Let
X be the position vector as before. Then

∆|X|2 = 2(n − 1) + 2〈H, X〉 onS. (15)

Integrating (15) onS and denotingA = Volume(S), H = (n− 1)H1η, one gets

0 = A +
∫
S

H1〈η,X〉. (16)

(16) also holds forSr , which, interestingly, becomes a polynomial equation of
r. Equating the like terms gives the Minkowski formula [Hs]:

0 =
∫
S

Hk−1 +
∫
S

Hk〈η,X〉, (17)

(16) can be recovered from (17) by settingk = 1. If we setk = 0, (17) reduces
just nominally to

0 = nV +
∫
S

〈η,X〉, (18)

whereV is the volume of the immersionS counting multiplicity.
Being elementary symmetric polynomials,Hk satisfies the following inequal-

ities:

Hk−1
k ≤ Hk

k−1, (19)

providedHl > 0 onS for somel ≥ k. Here equality holds only at umbilic points
of S. Indeed (19) holds ifHk ≡ const sinceS has a point where all principal
curvatures are positive, which is obviously true forS compact. Applying (19)
inductively, one sees that ifHk ≡ const, then

Hk ≤ Hk
1 , (20)

here again equality holds only at umbilic points. We are now ready to prove the
following.

Theorem 4. Let S ⊂ Rn be a compact immersed constant mean curvature
hypersurface without boundary. If thekth order mean curvature ofS is constant
for somek, 2 ≤ k ≤ n − 1, thenS is a hypersphere.
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Proof. IntegrateH(k−1)/k
k ≤ Hk−1 overS to get

H
(k−1)/k
k A ≤

∫
S

Hk−1 ≤ −Hk

∫
S

〈η,X〉 = nHkV (by (17), (18)).

Hence
(A/V )k ≤ nkHk ≤ nkHk

1 (by (20)).

SinceH1 is constant, (16) and (18) imply

H1 = A/(nV ).

Therefore equality holds in (20) andS is umbilic everywhere. ThusS is a hyper-
sphere [S2].

Remark 5.TheconstancyofH1 canbe replacedby theembeddednessofS.A.Ros
[Ro] proved that the hypersphere is the only embedded compact hypersurface in
Rn with Hk ≡ const for somek, 1≤ k ≤ n − 1.
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