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Abstract

It is shown that, somewhat similar to the case of classical Bäcklund transformations
for surfaces of constant negative curvature, infinitely many axially symmetric minimal hy-
persurfaces in 4-dimensional Minkowski-space can be obtained, in a non-trivial way, from
any given one by combining the scaling symmetries of the equations in light cone coordi-
nates with a non-obvious symmetry (the analogue of Bianchi’s original transformation) -
which can be shown to be involutive/correspond to a space-reflection.

Recently [1, 2] various signs of integrability for axially symmetric membranes in 4-
dimensional space time,

xν(t, ϕ, θ) =







t

r(t, ϕ)
cos θ
sin θ

z(t, ϕ)






=









τ + ζ/2

R(τ, µ)
cos Ψ
sinΨ

τ − ζ/2









= x̃ν(τ, µ,Ψ), (1)

were revealed, including the use of

v′

E
= ż, v̇ = r2

z′

E
, (2)

(· and ′ indicating derivatives with respect to t and ϕ; the constant E sometimes put
equal to 1), where r(t, ϕ) and z(t, ϕ), describing the shape of the hypersurface, satisfy

ṙr′ + żz′ = 0, and ṙ2 + ż2 + r2
(r′2 + z′2

E2

)

= 1; (3)

E2z̈ = (r2z′)′, E2r̈ = (r2r′)′ − r(r′2 + z′2)
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(the second line being implied by the first, provided ṙz′ 6= r′ż), while in light-cone coor-
dinates, the first order equations of (3) take the form

ζ̇ =
1

2

(

Ṙ2 +
R2R′2

η2

)

, ζ ′ = ṘR′, (4)

implying

η2R̈ = R(RR′)′ (5)

η2ζ̈ = (R2ζ ′)′, (6)

with R(τ, µ) = r(t, ϕ) and ζ = t− z, · and ′ denoting derivatives with respect to

τ =
1

2
(t+ z(t, ϕ)) and µ =

1

2η
(Eϕ + v(t, ϕ)), (7)

(2) implying

ηµ̇ =
r2

E
τ ′, η

µ′

E
= τ̇ , (8)

where η is a constant (related to boosts in the z-direction, i. e. Minkowski rotations in
the (t, z)-plane), often put equal to 1 just like E. Due to (5), respectively (6), (4) also
implies the existence of a function κ(τ, µ) satisfying

κ′

η
= ζ̇ , κ̇ = R2 ζ

′

η
. (9)

(1), (8), and (9) are all generalizations of the Minkowski version of Cauchy-Riemann
equations, i. e. for r2 = 1 and R2 = 1 all 6 functions would satisfy the linear wave
equation with respect to their independent variables (t, ϕ for (1) and (8), τ, µ for (9)).

Just as g(f(w)) is a holomorphic function of w, if f and g are, the following ’non-linear’
(respectively r-dependent) generalization holds:
Theorem 1:
Let r(t, ϕ) be given, as well as (x(t, ϕ), y(t, ϕ)) and (φ(t, ϕ), T (t, ϕ)) satisfy

x′ = ẏ, ẋ = r2y′ (10)

φ′ = Ṫ , φ̇ = r2T ′ (11)

X(T, φ) = x(t, ϕ) and Y (T, φ) = y(t, ϕ) (with R(T, φ) = r(t, ϕ)) will then satisfy

X ′ = Ẏ , Ẋ = R2Y ′ (12)

provided the change of variables (t, ϕ) 7→ (T, φ) is invertible i. e. Ṫ 2 − r2T ′2 6= 0.
Proof: We note that,

∂t = Ṫ ∂T + φ̇∂φ, ∂ϕ = T ′∂T + φ′∂φ . (13)

So, using (11), (10) implies

(

Ṫ T ′

r2T ′ Ṫ

)(

X ′ − Ẏ
Ẋ −R2Y ′

)

=

(

0
0

)

,

hence (12) follows. For the construction of infinitely many non-trivial solutions of (5), the
following observation will be crucial:
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Theorem 2:
Given (5), respectively (4) and (9), ρ(ζ, κ) = R(τ, µ) will satisfy ρ̈ = ρ(ρρ′)′ i.e. a new
solution of (5) can be generated by rewriting a starting solution R in terms of ζ, κ (obtained
by solving (4) and (9)).
Proof: Note that

(

τζ τκ
µζ µκ

)

=

(

ζ̇ ζ ′

κ̇ κ′

)−1

=
1

δ

(

κ′ −ζ ′

−κ̇ ζ̇

)

, (14)

where δ = η(ζ̇2 −R2 ζ′2

η2
) = η

4 (Ṙ
2 −R2R′2

η2
)2 =: ηL2, gives

ρ̇ = ρζ = (τζ∂τ + µζ∂µ)R = ... =
Ṙ

L
ρ′ = ρκ = (τκ∂τ + µκ∂µ)R = ... = −R′

ηL . (15)

A lengthy, but straigthforward, calculation of δρ̈ = (κ′∂τ − κ̇∂µ)
Ṙ
L

and δρ′′ = −(−ζ ′∂τ +

ζ̇∂µ)
R′

ηL then gives the desired result. Note also that (15) implies

1

2
(ρ̇2 − ρ2ρ′2) · 1

2
(Ṙ2 − R2R′2

η2
) = 1. (16)

It would at first sight be tempting to apply Theorem 2 directly multiple times, to obtain
infinitely many solutions from a given one. However, (16), as well as (ζ, τ), as functions
of t, ϕ, related to (τ, µ) by the simple reflection z → −z (the factors of 2 being irrelevant,
respectively cancelling) indicate that the transformation is involutive. Indeed, considering

X ′ = Ẏ =
1

2
(ρ̇2 + ρ2ρ′2) and Ẋ = ρ2Y ′ = ρ2ρ̇ρ′ (17)

in τ, µ coordinates, using (η = 1),

∂ζ =
1

L2
(κ′∂τ − κ̇∂µ), ∂κ =

1

L2
(−ζ ′∂τ + ζ̇∂µ), (18)

gives
κ′ẋ− κ̇x′ = R2(−ζ ′ẏ + ζ̇y′) = L2ρ2ρ̇ρ′ = −R2ṘR′

−ζ ′ẋ+ ζ̇x′ = κ′ẏ − κ̇y′ =
1

2
L2(ρ̇2 + ρ2ρ′2) =

1

2
(Ṙ2 +R2R′2)

which implies
(

ẋ
x′

)

=

(

0
1

)

,

(

ẏ
y′

)

=

(

1
0

)

,

i. e. up to some trivial additive constants

x(τ, µ) = µ, y(τ, µ) = τ. (19)

Just as with the original Bäcklund transformation [4] which (as observed by Lie) were
a combination of Bianchi’s original transformation [5] and trivial scaling symmetries (
see [6] for a nice discusion of K = −1 surfaces) one may combine Theorem 2 with the
(’trivial’) observation that

Rα,γ(τ, µ) = αR(αγτ, γµ) (20)
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satisfies (5), if R does, to obtain infinitely many solutions of (5) which are not simply
results of (20) (namely applying theorem 2 and (20) infinitely many times, always in
pairs).

As nice as this seems, explicit non-trivial elementary examples of the construction are
not easy to come by:

R(τ, µ) =
√
2
µ

τ
, ζ = −µ2

τ3
= −R2

2τ
, and κ =

µ3

τ4
(21)

is invariant under both (20) and the involutary transformation of theorem 2,

R 7→ R∗(τ, µ) := ρ(τ, µ) (22)

as κ
ζ = −µ

τ , hence ρ(ζ, τ) = −
√
2κ
ζ , i.e. R

∗ = −R (which of course is always a solution, to
be identified with R as the radius of the rotated curve should, by definition, be positive.)
(21) corresponds to M3 = {xν ∈ R

1,3|t2 + x2 + y2 = z2}, moving hyperboloids, which in
orthonormal parametrization were shown in [7] to read

z(t, ϕ) = ±t

√

√

√

√

√

1 + 8ϕ2

t4
+ 1

2
, r(t, ϕ) = |t|

√

√

√

√

√

1 + 8ϕ2

t4
+ 1

2
, (23)

solving (2), hence also the second-order equations (E = 1)

E2r̈ = (r2r′)′ − r(r′2 + z′2), E2z̈ = (r2z′)′. (24)

On the other hand, applying Theorem 2 to the minimal hypersurface

R =
√
2

√

µ2 + ǫ

τ
, ζ = −µ2 + ǫ/3

τ3
, κ =

µ3 + ǫµ

τ4
, (25)

(where ǫ is a constant), whose level set form,

M3 = {xν ∈ R
1,3|(t2 + x2 + y2 − z2)(t+ z)2 =

16ǫ

3
} (26)

was, 30 years after Dirac’s spherically symmetric solution [8] the first non-trivial, polyno-
mial solution [9], is already very difficult to fully work out in detail, as one has to solve
polynomial equations of high degree(s) to obtain µ(ζ, κ) and τ(ζ, κ) and hence ρ(ζ, κ),
from (25) –or to find an explicit orthonormal parametrization of (26) by inverting

t = τ − µ2 + ǫ/3

2τ3
Eϕ = µ+

µ3 + ǫµ

2τ4
. (27)

Before going to the next example, note that (20) will give

ζα,γ(τ, µ) = α3γ ζ(αγτ, γµ), κα,γ(τ, µ) = α4γ κ(αγτ, γµ) (28)

and the effect of scale transformations in (t, ϕ) parametrization can be calculated accord-
ing to

t = τ +
α3γ

2
ζ(αγτ, γµ)

Eϕ = µ+
α4γ

2
κ(αγτ, γµ) (29)
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the inversion of which gives τ = τα,γ(t, ϕ), µ = µα,γ(t, ϕ) from which

zα,γ(t, ϕ) = τ − 1

2
ζα,γ , and rα,γ(t, ϕ) = Rα,γ(τ, µ) (30)

can in principle be calculated.
Consider now, as a third (class of) example(s)

R = τ
√
µ, ζ =

µτ

2
+

τ5

40
, κ =

τ4

8
µ+

µ2

4
(31)

respectively their scaled versions,

Rα,γ = Rβ=α2γ3/2(τ, µ) = βτ
√
µ

ζβ = β2(
µτ

2
+ β2 τ

5

40
) =

R2
β

2τ
+

β4τ5

40

κβ = β4 τ
4µ

8
+ β2µ

2

4
(32)

corresponding to

M = {xν ∈ R
1,3| t2 − x2 − y2 − z2 = C(t+ z)6}, with C =

β4

1280
> 0 (33)

(discussed in [2, 1] and ‘quantized’ in [10]). In order to obtain R∗, respectively ρ, by
writing R in (31)/(32) as a function of ζ and κ one would have to solve polynomial
equations like (β = 1)

(2ζ − τ5

20
)(

9

20
τ5 + 2ζ) = 4τ2κ. (34)

As a final example, consider

R =
√
2F (τ)µ, ζ = FḞµ2, κ = F 4µ3 +

1

3
µ3 (35)

where F is an elliptic function satisfying

Ḟ 2 = F 4 + 1 . (36)

Here one can compute that
ρ(ζ, κ) = ζ1/2F (κζ−3/2) (37)

showing that the involutary transformation R 7→ ρ of Theorem 2 maps two self-similar
solutions (with different exponents) onto each other.

In order to appreciate the non-triviality of implementing the z 7→ −z symmetry on
solutions R(τ, µ), ζ(τ, µ) of (4),(5) and (6), consider for example (25)/(26): although
Theorem-2 is difficult to apply explicitly (as for that µ and τ would be needed as explicit
functions of ζ and κ), one may observe that ζ4/κ3 depends only on µ hence µ = µ(ζκ−3/4),
implying τ = ζ−1/3h(ζκ−3/4) and ρ = ζ1/3f(ζκ−3/4). Theorem 2 thus predicts a new
solution R̃(τ, µ), that is of the form

R̃(τ, µ) = τ1/3f(µτ−3/4 := ξ). (38)

Both (4), and the z 7→ −z variant of (26),

(2τ ζ̃ + R̃2)ζ̃2 =
16ǫ

3
= C (< 0); (39)
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then imply/suggest that
ζ̃(τ, µ) = τ−1/3g(ξ). (40)

Indeed, (38)/(40) consistently reduces (39) and (4) to

2g3 + f2g2 = C (< 0) (41)

and the 2 ODE’s

g′ = f ′(
1

3
f + ξf ′) (42)

2(ξg′ − g

3
) = (

1

3
f + ξf ′)2 +

9

16
ξ14/3f2(f ′)2. (43)

Using (from (41))

f = −1

g

√

C − 2g3, f ′ =
g′

g2
√

C − 2g3
(C + g3), (44)

(42) can be written as

−dξ

ξ
= −3

dg

g

(C + g3)2

(C + 4g3)(C − 2g2)

(z=−g3)
=

dz

z

(z −C)2

(2z + C)(4z − C)

= dz
(

− 1

z
+

3/4

(z + C/2)
+

3/8

(z − C/4)

)

(45)

implying

E2ξ =
z

(z + C/2)3/4(z − C/4)3/8
. (46)

(43), on the other hand gives

6(C + 4g3)(C − 2g3)g3 − 6g3(C + g3)2 − (C − 2g3)(C + g3)2 − (C + 4g3)(C − 2g)

+2(C + g3)(C + 4g3)(C − 2g3) =
9

16

ξ8/3

g2
(C − 2g3)2(C + 4g3) (47)

with a (at first sight ‘weird’) factor ξ8/3

g2 , which however, using (46) (with E2 = 1) is

exactly what is needed to make (43) consistent with (42)/(41) (both sides of (47) are
equal to −9z2(C − 4z), provided the integration constant E2 is chosen to be equal to 1).

So, while (25) can not be explicitly inverted, the solution that is obtained from it via
Theorem 2, respectively z 7→ −z in (26), can be obtained ‘almost explicitly’, the function
g(ξ) in (40) solving a polynomial equation of degree 27,

ξ8(g3 + C/4)3(g3 − C/2)6 = g24. (48)
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