Generating Axially Symmetric Minimal Hyper-Surfaces in $\mathbf{R}^{1,3}$

Jens Hoppe ${ }^{1,2}$, Jaigyoung Choe ${ }^{3}$, and O. Teoman Turgut ${ }^{4}$
${ }^{1}$ Department of Mathematics, TUB 38106 Braunschweig, Germany
${ }^{2}$ Max Planck Institute for Mathematics, Vivatsgasse 7, 53111, Bonn, Germany
${ }^{3}$ School of Mathematics, KIAS, 02455, Seoul, Republic of Korea
${ }^{4}$ Department of Physics, Boğaziçi University, Bebek, 34342, İstanbul, Türkiye

November 9, 2022

Abstract

It is shown that, somewhat similar to the case of classical Bäcklund transformations for surfaces of constant negative curvature, infinitely many axially symmetric minimal hypersurfaces in 4-dimensional Minkowski-space can be obtained, in a non-trivial way, from any given one by combining the scaling symmetries of the equations in light cone coordinates with a non-obvious symmetry (the analogue of Bianchi's original transformation) which can be shown to be involutive/correspond to a space-reflection.

Recently [1, 2] various signs of integrability for axially symmetric membranes in 4dimensional space time,

$$
x^{\nu}(t, \varphi, \theta)=\left(\begin{array}{c}
t \tag{1}\\
r(t, \varphi) \\
\cos \theta \\
z(t, \varphi)
\end{array}\right)=\left(\begin{array}{c}
\tau+\zeta / 2 \\
R(\tau, \mu) \\
\cos \Psi \\
\tau-\zeta / 2
\end{array}\right)=\tilde{x}^{\nu}(\tau, \mu, \Psi),
$$

were revealed, including the use of

$$
\begin{equation*}
\frac{v^{\prime}}{E}=\dot{z}, \quad \dot{v}=r^{2} \frac{z^{\prime}}{E}, \tag{2}
\end{equation*}
$$

(. and ' indicating derivatives with respect to t and φ; the constant E sometimes put equal to 1), where $r(t, \varphi)$ and $z(t, \varphi)$, describing the shape of the hypersurface, satisfy

$$
\begin{array}{lr}
\dot{r} r^{\prime}+\dot{z} z^{\prime}=0, & \text { and } \quad \dot{r}^{2}+\dot{z}^{2}+r^{2}\left(\frac{r^{\prime 2}+z^{\prime 2}}{E^{2}}\right)=1 ; \tag{3}\\
E^{2} \ddot{z}=\left(r^{2} z^{\prime}\right)^{\prime}, & E^{2} \ddot{r}=\left(r^{2} r^{\prime}\right)^{\prime}-r\left(r^{\prime 2}+z^{\prime 2}\right)
\end{array}
$$

(the second line being implied by the first, provided $\dot{r} z^{\prime} \neq r^{\prime} \dot{z}$), while in light-cone coordinates, the first order equations of (3) take the form

$$
\begin{equation*}
\dot{\zeta}=\frac{1}{2}\left(\dot{R}^{2}+\frac{R^{2} R^{\prime 2}}{\eta^{2}}\right), \quad \zeta^{\prime}=\dot{R} R^{\prime} \tag{4}
\end{equation*}
$$

implying

$$
\begin{align*}
& \eta^{2} \ddot{R}=R\left(R R^{\prime}\right)^{\prime} \tag{5}\\
& \eta^{2} \ddot{\zeta}=\left(R^{2} \zeta^{\prime}\right)^{\prime}, \tag{6}
\end{align*}
$$

with $R(\tau, \mu)=r(t, \varphi)$ and $\zeta=t-z, \cdot$ and ' denoting derivatives with respect to

$$
\begin{equation*}
\tau=\frac{1}{2}(t+z(t, \varphi)) \quad \text { and } \quad \mu=\frac{1}{2 \eta}(E \varphi+v(t, \varphi)) \tag{7}
\end{equation*}
$$

(2) implying

$$
\begin{equation*}
\eta \dot{\mu}=\frac{r^{2}}{E} \tau^{\prime}, \quad \eta \frac{\mu^{\prime}}{E}=\dot{\tau} \tag{8}
\end{equation*}
$$

where η is a constant (related to boosts in the z-direction, i. e. Minkowski rotations in the (t, z)-plane), often put equal to 1 just like E. Due to (5), respectively (6), (4) also implies the existence of a function $\kappa(\tau, \mu)$ satisfying

$$
\begin{equation*}
\frac{\kappa^{\prime}}{\eta}=\dot{\zeta}, \quad \dot{\kappa}=R^{2} \frac{\zeta^{\prime}}{\eta} . \tag{9}
\end{equation*}
$$

(1), (8), and (9) are all generalizations of the Minkowski version of Cauchy-Riemann equations, i. e. for $r^{2}=1$ and $R^{2}=1$ all 6 functions would satisfy the linear wave equation with respect to their independent variables $(t, \varphi$ for (1) and (8), τ, μ for (9)).

Just as $g(f(w))$ is a holomorphic function of w, if f and g are, the following 'non-linear' (respectively r-dependent) generalization holds:

Theorem 1:

Let $r(t, \varphi)$ be given, as well as $(x(t, \varphi), y(t, \varphi))$ and $(\phi(t, \varphi), T(t, \varphi))$ satisfy

$$
\begin{array}{ll}
x^{\prime}=\dot{y}, & \dot{x}=r^{2} y^{\prime} \\
\phi^{\prime}=\dot{T}, & \dot{\phi}=r^{2} T^{\prime} \tag{11}
\end{array}
$$

$X(T, \phi)=x(t, \varphi)$ and $Y(T, \phi)=y(t, \varphi)($ with $R(T, \phi)=r(t, \varphi))$ will then satisfy

$$
\begin{equation*}
X^{\prime}=\dot{Y}, \quad \dot{X}=R^{2} Y^{\prime} \tag{12}
\end{equation*}
$$

provided the change of variables $(t, \varphi) \mapsto(T, \phi)$ is invertible i. e. $\dot{T}^{2}-r^{2} T^{\prime 2} \neq 0$.
Proof: We note that,

$$
\begin{equation*}
\partial_{t}=\dot{T} \partial_{T}+\dot{\phi} \partial_{\phi}, \quad \partial_{\varphi}=T^{\prime} \partial_{T}+\phi^{\prime} \partial_{\phi} . \tag{13}
\end{equation*}
$$

So, using (11), (10) implies

$$
\left(\begin{array}{cc}
\dot{T} & T^{\prime} \\
r^{2} T^{\prime} & \dot{T}
\end{array}\right)\binom{X^{\prime}-\dot{Y}}{\dot{X}-R^{2} Y^{\prime}}=\binom{0}{0}
$$

hence (12) follows. For the construction of infinitely many non-trivial solutions of (5), the following observation will be crucial:

Theorem 2:

Given (5), respectively (4) and (9), $\rho(\zeta, \kappa)=R(\tau, \mu)$ will satisfy $\ddot{\rho}=\rho\left(\rho \rho^{\prime}\right)^{\prime}$ i.e. a new solution of (5) can be generated by rewriting a starting solution R in terms of ζ, κ (obtained by solving (4) and (9)).
Proof: Note that

$$
\left(\begin{array}{cc}
\tau_{\zeta} & \tau_{\kappa} \tag{14}\\
\mu_{\zeta} & \mu_{\kappa}
\end{array}\right)=\left(\begin{array}{cc}
\dot{\zeta} & \zeta^{\prime} \\
\dot{\kappa} & \kappa^{\prime}
\end{array}\right)^{-1}=\frac{1}{\delta}\left(\begin{array}{cc}
\kappa^{\prime} & -\zeta^{\prime} \\
-\dot{\kappa} & \dot{\zeta}
\end{array}\right)
$$

where $\delta=\eta\left(\dot{\zeta}^{2}-R^{2} \frac{\zeta^{\prime 2}}{\eta^{2}}\right)=\frac{\eta}{4}\left(\dot{R}^{2}-R^{2} \frac{R^{\prime 2}}{\eta^{2}}\right)^{2}=: \eta \mathcal{L}^{2}$, gives

$$
\begin{align*}
\dot{\rho} & =\rho_{\zeta}=\left(\tau_{\zeta} \partial_{\tau}+\mu_{\zeta} \partial_{\mu}\right) R=\ldots=\frac{\dot{R}}{\mathcal{L}} \\
\rho^{\prime} & =\rho_{\kappa}=\left(\tau_{\kappa} \partial_{\tau}+\mu_{\kappa} \partial_{\mu}\right) R=\ldots=-\frac{R^{\prime}}{\eta \mathcal{L}} \tag{15}
\end{align*}
$$

A lengthy, but straigthforward, calculation of $\delta \ddot{\rho}=\left(\kappa^{\prime} \partial_{\tau}-\dot{\kappa} \partial_{\mu}\right) \frac{\dot{R}}{\mathcal{L}}$ and $\delta \rho^{\prime \prime}=-\left(-\zeta^{\prime} \partial_{\tau}+\right.$ $\left.\dot{\zeta} \partial_{\mu}\right) \frac{R^{\prime}}{\eta \mathcal{L}}$ then gives the desired result. Note also that (15) implies

$$
\begin{equation*}
\frac{1}{2}\left(\dot{\rho}^{2}-\rho^{2} \rho^{\prime 2}\right) \cdot \frac{1}{2}\left(\dot{R}^{2}-\frac{R^{2} R^{\prime 2}}{\eta^{2}}\right)=1 \tag{16}
\end{equation*}
$$

It would at first sight be tempting to apply Theorem 2 directly multiple times, to obtain infinitely many solutions from a given one. However, (16), as well as (ζ, τ), as functions of t, φ, related to (τ, μ) by the simple reflection $z \rightarrow-z$ (the factors of 2 being irrelevant, respectively cancelling) indicate that the transformation is involutive. Indeed, considering

$$
\begin{equation*}
X^{\prime}=\dot{Y}=\frac{1}{2}\left(\dot{\rho}^{2}+\rho^{2} \rho^{\prime 2}\right) \quad \text { and } \quad \dot{X}=\rho^{2} Y^{\prime}=\rho^{2} \dot{\rho} \rho^{\prime} \tag{17}
\end{equation*}
$$

in τ, μ coordinates, using $(\eta=1)$,

$$
\begin{equation*}
\partial_{\zeta}=\frac{1}{\mathcal{L}^{2}}\left(\kappa^{\prime} \partial_{\tau}-\dot{\kappa} \partial_{\mu}\right), \quad \partial_{\kappa}=\frac{1}{\mathcal{L}^{2}}\left(-\zeta^{\prime} \partial_{\tau}+\dot{\zeta} \partial_{\mu}\right) \tag{18}
\end{equation*}
$$

gives

$$
\begin{gathered}
\kappa^{\prime} \dot{x}-\dot{\kappa} x^{\prime}=R^{2}\left(-\zeta^{\prime} \dot{y}+\dot{\zeta} y^{\prime}\right)=\mathcal{L}^{2} \rho^{2} \dot{\rho} \rho^{\prime}=-R^{2} \dot{R} R^{\prime} \\
-\zeta^{\prime} \dot{x}+\dot{\zeta} x^{\prime}=\kappa^{\prime} \dot{y}-\dot{\kappa} y^{\prime}=\frac{1}{2} \mathcal{L}^{2}\left(\dot{\rho}^{2}+\rho^{2} \rho^{\prime 2}\right)=\frac{1}{2}\left(\dot{R}^{2}+R^{2} R^{\prime 2}\right)
\end{gathered}
$$

which implies

$$
\binom{\dot{x}}{x^{\prime}}=\binom{0}{1}, \quad\binom{\dot{y}}{y^{\prime}}=\binom{1}{0}
$$

i. e. up to some trivial additive constants

$$
\begin{equation*}
x(\tau, \mu)=\mu, \quad y(\tau, \mu)=\tau \tag{19}
\end{equation*}
$$

Just as with the original Bäcklund transformation 4] which (as observed by Lie) were a combination of Bianchi's original transformation [5] and trivial scaling symmetries (see [6] for a nice discusion of $K=-1$ surfaces) one may combine Theorem 2 with the ('trivial') observation that

$$
\begin{equation*}
R_{\alpha, \gamma}(\tau, \mu)=\alpha R(\alpha \gamma \tau, \gamma \mu) \tag{20}
\end{equation*}
$$

satisfies (5), if R does, to obtain infinitely many solutions of (5) which are not simply results of (20) (namely applying theorem 2 and (20) infinitely many times, always in pairs).

As nice as this seems, explicit non-trivial elementary examples of the construction are not easy to come by:

$$
\begin{equation*}
R(\tau, \mu)=\sqrt{2} \frac{\mu}{\tau}, \quad \zeta=-\frac{\mu^{2}}{\tau^{3}}=-\frac{R^{2}}{2 \tau}, \text { and } \quad \kappa=\frac{\mu^{3}}{\tau^{4}} \tag{21}
\end{equation*}
$$

is invariant under both (20) and the involutary transformation of theorem 2 ,

$$
\begin{equation*}
R \mapsto R^{*}(\tau, \mu):=\rho(\tau, \mu) \tag{22}
\end{equation*}
$$

as $\frac{\kappa}{\zeta}=-\frac{\mu}{\tau}$, hence $\rho(\zeta, \tau)=-\sqrt{2} \frac{\kappa}{\zeta}$, i.e. $R^{*}=-R$ (which of course is always a solution, to be identified with R as the radius of the rotated curve should, by definition, be positive.) (21) corresponds to $\mathcal{M}_{3}=\left\{x^{\nu} \in \mathbf{R}^{1,3} \mid t^{2}+x^{2}+y^{2}=z^{2}\right\}$, moving hyperboloids, which in orthonormal parametrization were shown in [7] to read

$$
\begin{equation*}
z(t, \varphi)= \pm t \sqrt{\frac{\sqrt{1+8 \frac{\varphi^{2}}{t^{4}}}+1}{2}}, \quad r(t, \varphi)=|t| \sqrt{\frac{\sqrt{1+8 \frac{\varphi^{2}}{t^{4}}}+1}{2}} \tag{23}
\end{equation*}
$$

solving (2), hence also the second-order equations $(E=1)$

$$
\begin{equation*}
E^{2} \ddot{r}=\left(r^{2} r^{\prime}\right)^{\prime}-r\left(r^{\prime 2}+z^{\prime 2}\right), \quad E^{2} \ddot{z}=\left(r^{2} z^{\prime}\right)^{\prime} \tag{24}
\end{equation*}
$$

On the other hand, applying Theorem 2 to the minimal hypersurface

$$
\begin{equation*}
R=\sqrt{2} \frac{\sqrt{\mu^{2}+\epsilon}}{\tau}, \quad \zeta=-\frac{\mu^{2}+\epsilon / 3}{\tau^{3}}, \quad \kappa=\frac{\mu^{3}+\epsilon \mu}{\tau^{4}} \tag{25}
\end{equation*}
$$

(where ϵ is a constant), whose level set form,

$$
\begin{equation*}
\mathcal{M}_{3}=\left\{x^{\nu} \in \mathbf{R}^{1,3} \left\lvert\,\left(t^{2}+x^{2}+y^{2}-z^{2}\right)(t+z)^{2}=\frac{16 \epsilon}{3}\right.\right\} \tag{26}
\end{equation*}
$$

was, 30 years after Dirac's spherically symmetric solution [8] the first non-trivial, polynomial solution [9, is already very difficult to fully work out in detail, as one has to solve polynomial equations of high degree(s) to obtain $\mu(\zeta, \kappa)$ and $\tau(\zeta, \kappa)$ and hence $\rho(\zeta, \kappa)$, from (25) -or to find an explicit orthonormal parametrization of (26) by inverting

$$
\begin{equation*}
t=\tau-\frac{\mu^{2}+\epsilon / 3}{2 \tau^{3}} \quad E \varphi=\mu+\frac{\mu^{3}+\epsilon \mu}{2 \tau^{4}} \tag{27}
\end{equation*}
$$

Before going to the next example, note that (20) will give

$$
\begin{equation*}
\zeta_{\alpha, \gamma}(\tau, \mu)=\alpha^{3} \gamma \zeta(\alpha \gamma \tau, \gamma \mu), \quad \kappa_{\alpha, \gamma}(\tau, \mu)=\alpha^{4} \gamma \kappa(\alpha \gamma \tau, \gamma \mu) \tag{28}
\end{equation*}
$$

and the effect of scale transformations in (t, φ) parametrization can be calculated according to

$$
\begin{align*}
t & =\tau+\frac{\alpha^{3} \gamma}{2} \zeta(\alpha \gamma \tau, \gamma \mu) \\
E \varphi & =\mu+\frac{\alpha^{4} \gamma}{2} \kappa(\alpha \gamma \tau, \gamma \mu) \tag{29}
\end{align*}
$$

the inversion of which gives $\tau=\tau_{\alpha, \gamma}(t, \varphi), \mu=\mu_{\alpha, \gamma}(t, \varphi)$ from which

$$
\begin{equation*}
z_{\alpha, \gamma}(t, \varphi)=\tau-\frac{1}{2} \zeta_{\alpha, \gamma}, \quad \text { and } \quad r_{\alpha, \gamma}(t, \varphi)=R_{\alpha, \gamma}(\tau, \mu) \tag{30}
\end{equation*}
$$

can in principle be calculated.
Consider now, as a third (class of) example(s)

$$
\begin{equation*}
R=\tau \sqrt{\mu}, \quad \zeta=\frac{\mu \tau}{2}+\frac{\tau^{5}}{40}, \quad \kappa=\frac{\tau^{4}}{8} \mu+\frac{\mu^{2}}{4} \tag{31}
\end{equation*}
$$

respectively their scaled versions,

$$
\begin{align*}
R_{\alpha, \gamma} & =R_{\beta=\alpha^{2} \gamma^{3 / 2}}(\tau, \mu)=\beta \tau \sqrt{\mu} \\
\zeta_{\beta} & =\beta^{2}\left(\frac{\mu \tau}{2}+\beta^{2} \frac{\tau^{5}}{40}\right)=\frac{R_{\beta}^{2}}{2 \tau}+\frac{\beta^{4} \tau^{5}}{40} \\
\kappa_{\beta} & =\beta^{4} \frac{\tau^{4} \mu}{8}+\beta^{2} \frac{\mu^{2}}{4} \tag{32}
\end{align*}
$$

corresponding to

$$
\begin{equation*}
\mathcal{M}=\left\{x^{\nu} \in \mathbf{R}^{1,3} \mid t^{2}-x^{2}-y^{2}-z^{2}=C(t+z)^{6}\right\}, \quad \text { with } \quad C=\frac{\beta^{4}}{1280}>0 \tag{33}
\end{equation*}
$$

(discussed in [2, 1] and 'quantized' in [10]). In order to obtain R^{*}, respectively ρ, by writing R in $(31) /(32)$ as a function of ζ and κ one would have to solve polynomial equations like $(\beta=1)$

$$
\begin{equation*}
\left(2 \zeta-\frac{\tau^{5}}{20}\right)\left(\frac{9}{20} \tau^{5}+2 \zeta\right)=4 \tau^{2} \kappa \tag{34}
\end{equation*}
$$

As a final example, consider

$$
\begin{equation*}
R=\sqrt{2} F(\tau) \mu, \quad \zeta=F \dot{F} \mu^{2}, \quad \kappa=F^{4} \mu^{3}+\frac{1}{3} \mu^{3} \tag{35}
\end{equation*}
$$

where F is an elliptic function satisfying

$$
\begin{equation*}
\dot{F}^{2}=F^{4}+1 \tag{36}
\end{equation*}
$$

Here one can compute that

$$
\begin{equation*}
\rho(\zeta, \kappa)=\zeta^{1 / 2} F\left(\kappa \zeta^{-3 / 2}\right) \tag{37}
\end{equation*}
$$

showing that the involutary transformation $R \mapsto \rho$ of Theorem 2 maps two self-similar solutions (with different exponents) onto each other.

In order to appreciate the non-triviality of implementing the $z \mapsto-z$ symmetry on solutions $R(\tau, \mu), \zeta(\tau, \mu)$ of $(4),(5)$ and (6), consider for example $(25) /(26)$: although Theorem-2 is difficult to apply explicitly (as for that μ and τ would be needed as explicit functions of ζ and κ), one may observe that ζ^{4} / κ^{3} depends only on μ hence $\mu=\mu\left(\zeta \kappa^{-3 / 4}\right)$, implying $\tau=\zeta^{-1 / 3} h\left(\zeta \kappa^{-3 / 4}\right)$ and $\rho=\zeta^{1 / 3} f\left(\zeta \kappa^{-3 / 4}\right)$. Theorem 2 thus predicts a new solution $\tilde{R}(\tau, \mu)$, that is of the form

$$
\begin{equation*}
\tilde{R}(\tau, \mu)=\tau^{1 / 3} f\left(\mu \tau^{-3 / 4}:=\xi\right) \tag{38}
\end{equation*}
$$

Both (4), and the $z \mapsto-z$ variant of (26),

$$
\begin{equation*}
\left(2 \tau \tilde{\zeta}+\tilde{R}^{2}\right) \tilde{\zeta}^{2}=\frac{16 \epsilon}{3}=C(<0) \tag{39}
\end{equation*}
$$

then imply/suggest that

$$
\begin{equation*}
\tilde{\zeta}(\tau, \mu)=\tau^{-1 / 3} g(\xi) \tag{40}
\end{equation*}
$$

Indeed, (38)/(40) consistently reduces (39) and (4) to

$$
\begin{equation*}
2 g^{3}+f^{2} g^{2}=C(<0) \tag{41}
\end{equation*}
$$

and the 2 ODE's

$$
\begin{align*}
g^{\prime} & =f^{\prime}\left(\frac{1}{3} f+\xi f^{\prime}\right) \tag{42}\\
2\left(\xi g^{\prime}-\frac{g}{3}\right) & =\left(\frac{1}{3} f+\xi f^{\prime}\right)^{2}+\frac{9}{16} \xi^{14 / 3} f^{2}\left(f^{\prime}\right)^{2} \tag{43}
\end{align*}
$$

Using (from (41))

$$
\begin{equation*}
f=-\frac{1}{g} \sqrt{C-2 g^{3}}, \quad f^{\prime}=\frac{g^{\prime}}{g^{2} \sqrt{C-2 g^{3}}}\left(C+g^{3}\right) \tag{44}
\end{equation*}
$$

(42) can be written as

$$
\begin{align*}
-\frac{d \xi}{\xi} & =-3 \frac{d g}{g} \frac{\left(C+g^{3}\right)^{2}}{\left(C+4 g^{3}\right)\left(C-2 g^{2}\right)} \stackrel{\left(z=-g^{3}\right)}{=} \frac{d z}{z} \frac{(z-C)^{2}}{(2 z+C)(4 z-C)} \\
& =d z\left(-\frac{1}{z}+\frac{3 / 4}{(z+C / 2)}+\frac{3 / 8}{(z-C / 4)}\right) \tag{45}
\end{align*}
$$

implying

$$
\begin{equation*}
E^{2} \xi=\frac{z}{(z+C / 2)^{3 / 4}(z-C / 4)^{3 / 8}} \tag{46}
\end{equation*}
$$

(43), on the other hand gives

$$
\begin{array}{r}
6\left(C+4 g^{3}\right)\left(C-2 g^{3}\right) g^{3}-6 g^{3}\left(C+g^{3}\right)^{2}-\left(C-2 g^{3}\right)\left(C+g^{3}\right)^{2}-\left(C+4 g^{3}\right)(C-2 g) \\
+2\left(C+g^{3}\right)\left(C+4 g^{3}\right)\left(C-2 g^{3}\right)=\frac{9}{16} \frac{\xi^{8 / 3}}{g^{2}}\left(C-2 g^{3}\right)^{2}\left(C+4 g^{3}\right) \tag{47}
\end{array}
$$

with a (at first sight 'weird') factor $\frac{\xi^{8 / 3}}{g^{2}}$, which however, using (46) (with $E^{2}=1$) is exactly what is needed to make (43) consistent with $(42) /(41)$ (both sides of (47) are equal to $-9 z^{2}(C-4 z)$, provided the integration constant E^{2} is chosen to be equal to 1).

So, while (25) can not be explicitly inverted, the solution that is obtained from it via Theorem 2, respectively $z \mapsto-z$ in (26), can be obtained 'almost explicitly', the function $g(\xi)$ in (40) solving a polynomial equation of degree 27 ,

$$
\begin{equation*}
\xi^{8}\left(g^{3}+C / 4\right)^{3}\left(g^{3}-C / 2\right)^{6}=g^{24} \tag{48}
\end{equation*}
$$

Acknowledgement

J.C is supported in part by Korea NRF-2018R1A2B6004262.

References

[1] J. Hoppe, On some new types of membrane solutions, arXiv:2201.02524, (2022).
[2] J. Hoppe, Integrability in the dynamics of axially symmetric membranes, Arxiv-220206955 (2022).
[3] J.Hoppe, Quantum Theory of a Massless Relativistic Surface, MIT Ph.D. Thesis 1982, http://dspace.mit.edu/handle/1721.1/15717.
[4] A. V. Bäcklund, Zur Theorie der Partiellen Differentialgleichungen erster Ordnung, Math. Ann., XVII, 285-328 (1880).
[5] L. Bianchi, Lezioni di geometria differenziale, in: Richerce sulle superficie isoterme e sulla deformazione delle quadruche, Pisa 1894, 1902, 1909, in: Annali di Matematica (3), vol. 11, pp. 93-157 (1905).
L. Bianchi, Vorlesungen über Differentialgeometrie, Teubner, Leipzig, 1899.
[6] C. Rogers and W. K. Schief, Bäcklund and Darboux transformations, Cambridge University Press, ISBN-978-0-521-01288-1 (2002).
[7] J.Hoppe, U(1) invariant minimal hypersurfaces in $\mathbf{R}^{(1,3)}$, Phys. Lett. B 736, pg. 465 (2014).
[8] P.A.M.Dirac, An extensible model of the electron, Proc.Roy.Soc.London A268, pg. 57 (1962).
[9] J.Hoppe, Some classical solutions of relativistic membrane equations in 4 space-time dimensions, Phys. Lett. B 329, pg. 66 (1994).
[10] J.Hoppe, On the quantization of some polynomial minimal surfaces, Phys. Lett. B 822, 136658 (2022).

