1. The vacuum expectation value of the energy-momentum tensor, for free fields, is
given as the sum of the zero-point energy. Considering general boundary conditions,
the computation is reduced to the infinite sum

=53

> (n—-6)

n=1

where @ is determined by the particular boundary condition of interest, i.e. # = 0 for
periodic boundary condition, 6 = % antiperiodic boundary condition. The expression
is apparently divergent, but regularization gives the finite part of the above expression
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Verify this.
Remark: This result can be found in Eq.(2.9.19) of Polchinski’s String Theory Vol.1

2. (a) Find the conformal weight of scalar field in d-dimensions. You can start with
the following covariant action

S = /d”x\/ﬁg“"aﬁ,gﬁayqi
and demand invariance under global scale transformation
Guw — ng,um [fb =3 Qn‘:{’

(b) Now let us consider local scale transformation, i.e. we promote the parameter
o to a coordinate dependent function a(z). First study how the present form
of the equation of motion

1

—38,4/99"8,6=0

‘\/E #\/_ (4

transforms under the local conformal transformation.

O¢ =

(¢) Consider general curved background metric and local scale transformation.
T = V(@) g1

Let R and R as the scalar curvature evaluated using g,7 respectively. It is
possible to express R in terms of R and . Show that

R=072R+2(d - 1)Q27°00Q + (d — 1)(d — )07*(VQ)?

(d) Now verify that the following scalar field action coupled to the background
curvature,
5= f ddwﬁ(g“""? $0,4 — d;szz)
PETET 4(d - 1)
gives rise to the equation of motion which is invariant under local conformal
transformation.
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Let us consider the superconformal symmetry algebra in two dimensions, which con-
tains fermionic (anticommuting) generators which mix bosonic and fermionic fields
in addition to the usual generators of the Virasoro algebra. The minimal extension

gives
(Lny L] =
(LG, =

{Gme} =

1
(n — m)Lypm + gén(nz = D)bnymo
n
(5 -m) Grem

1. 1
2Ln+m + —2‘3(112 = Z)5n+m‘g

In the Neveu-Schwarz (Ramond) sector the indices of G, are half-integers (integers).
The superconformal module is constructed from the ground state |h) which is anni-
hilated by L,, G, for n > 0 and an eigenstate of Ly with eigenvalue A.

Show that the first nontrivial null state of the NS algebra is at level 2,

2
[null) = (G_3/2 -t THL_IG—MZ) |R)



Conformal Field Theory

Exercise 4.4~7.9



44
a) Show that the expression (4.62) for the four-point function is conformally covariant,

b) Show that there are only two independent cross-ratios of the form (4.23) that can be built
out of four points, except in dimension two, where the two cross-ratios are related.

conformal invariants, the anharmonic ratios (4.23). The n-point function may have
an arbitrary dependence (i.e., not fixed by conformal invariance) on these ratios,
For instance, the four-point function may take the following form:

4
{¢|(x|). . .¢4(x4)) = f (f}_ﬁé}_ .‘x"]—z:‘t‘gi) nx?3_m-ﬂ" (4.62)

»
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where we have defined A = 31, A,.

It is therefore impossible to construct an invariant I' with only 2 or 3 points. The
simplest possibilities are the following functions of four points:

|X| "'"x:z“x3 '—I‘[ ]x| —x2]]x3 _x4|
by = x;lx, — x,) ¥ = x;lle, — x|

(4.23)

Such expressions are called anharmonic ratios or cross-ratios. With N distinct
points, N(N — 3)/2 independent anharmonic ratios may be constructed.

4.8 Liouville field theory
Consider the Liouville field theory in d = 2, with Lagrangian density

1 1
L= i u(ﬂ&“@“ Emze“’
Write down the canonical energy-momentum tensor and add a term that makes it traceless

without affecting the conservation laws.




5.3 Four-point function for the free boson

Calculate the four-point function (3pdpdpdy) for the free boson using Wick’s theorem.

Compare the result with the general expression (5.28). What is the function f(n, ) ?

the result is real. The general expression (4.62) translates into

hi3—hi—h; -hﬂ—h; —}11

(,(x))- .. $4(x)) = flm, n)l_[z Z (5.28)

l<]

where 2 = ¥ h; and h = "¢, h;. This form for the four-point function may

The four-point function may then depend on 7 and 7 in an arbitrary way—provided

5.5 Free complex fermion
Given two real fermions ¥, and y/;, one may define a single complex fermion ¥ and its
Hermitian conjugate ' this way (with holomorphic and antiholomorphic modes):

l - e L
V= —=Y +iys) ¥ = —=(¥ + i)
‘{i ‘? ] (5.194)
Y= ﬁ(“’i — i) ARES EW’: — iyr)

The real fermions ¥, and v, are governed by the action and energy-momentum tensor of
Sect, 5.3.2.

a) Show that the OPE of the complex fermion with itself is
1
¥ 2)ypw) ~ Tw V@)~ y@'yw)' ~ 0 (5.195)
b) Show that the energy-momentum tensor may be expressed as

I(z) = %(N‘Wf —y'ay) (5.196)

and that the conformal dimension of  is % and that the central charge isc = 1,

¢) Show that the action describing the complex fermion system may be written as
Syl =¢g f dx W'y y*8, v (5.197)

where W = (y, ¥') is a two-component field.



5.9 The Schwarzian derivative
a) Demonstrate explicitly the group property (5.130) of the Schwarzian derivative.
b) Show that the Schwarzian derivative of the SL(2, C) transformation (5.12) vanishes.

fle) = aziz with ad —bc =1 (5.12)
2
{u; 2} = (w; 2} + (%) {u; w) (5.130)

6.7 Contraction of two exponentials

Let A and B be two free fields whose contraction (with themselves and with each other) are
c-numbers.

a) Show by recursion that

o

{ e |
AQR): B"(w) := nA(2)B(w) : B '(w) :
and therefore

| S | |

A(2) : e®™ = A(2)B(w) ; 2™ .
Asusual,: .- : denotes normal ordering for free fields.
b) By counting correctly multiple contractions, show that

e‘E’ @ = Z i (’:) (:) [.:l(_z;é(w)]k A" (w)B K (w) ;

min!

= exp lA(z)B(w) : AW)gBw)

And deduce from this the OPE (6.65) of two vertex operators.

Vo2, D)Vp(w, W) ~ |z — w4 Y (w, W)+ .- (6.65)




6.8 Calculate ([7,(TT)]), first using Eq. (6.222) and the OPE T(z)(TT)(w) given in

Eq. (6.213), and then directly in terms of modes, from the equality

(T.(TD)] = [T-2,(TT)-d]
with T_g = L-z and

(IT)a= 2ZL-r—3LI—| +L_3L

1z0
which follows from Eq. (6.213).

( 1)n+1
(IA,B)) = »_ ——3"{AB}, (W) (6.222)
n>0
3¢ (8 +c)T(w)  33T(w)
) ITHw) ~ z-w)¥ (z-w)}*  (z-w) (6.213)

4TT)(w) o ATT)(w)
z-w)?  (z-w)




6.12 The classical limit of the Virasoro algebra

The Poisson bracket form of the Virasoro algebra is obtained by replacing the commutator
by a Poisson bracket times a factor i, that is,

i{Ln, L} = (1t = 1)Ly + fin(n‘ = 1o

Letu(x, t) be the classical field defined on a cylinder (u(x + 2, t) = u(x, t)) whose Fourier
modes are the L, 's:

. 6 —irx ]
u(x) = E ZL,,C - 2

nel

(the explicit time-dependence is omitted from now on). This is the classical form of the
energy-momentum tensor. Show that its equal-time Poisson bracket is

6
(u(x), u(y)) = ?"[—a: + 4u(x)3, + 2(8,u(x)))8(x - y) (6.247)

Use:
o ~inlz-y)
8x—y) = = ) e

neZ
Recover the classical Korteweg—de Vries equation
du = —o u + 6udu

from the following canonical formulation:
du = (u,H}, with H= oL fdx u?
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The above Poisson bracket defifies the so-called second Hamiltonian structure of the KdV
equation. (The relative sign between the two terms on the r.h.s. of the KdV equation is not
as in the classical form derived in Ex. 6.10 (cf. Eq. (6.242)); this is explained by a ‘space
Wick rotation’, i.e., the space variables used in the two cases are related by a factori.)



6.10 The quantum Korteweg—de Vries equation

Let us introduce an equation of evolution in time for the energy-momentum tensor through
the canonical equation of motion

1
AT=-IT) , H=5_ fdw TT)w)
a) Using the OPE (6.213), check that the resulting evolution equation is

8T = é(l - ¢)®T - 33(TT) (6.241)

This is called the quantum Korteweg—de Vries (KdV) equation since in the classical limit
¢ = —00,? the substitution ' = cu(z, 1)/6 and a rescal ing of the time variable transforms
it into the standard KdV equation:

du = *u + 6udu (6.242)

b) The quantum KdV equation (like its classical counterpart) is a completely integrable
system in the sense that it has an infinite number of conserved integrals H,,

a,H,., = 0

(whose densities are polynomial derivatives in 7)), all commuting with each other. Each
of these conserved integrals has a definite spin. The spin of these charges is always odd,
and there is one charge for each odd value of the spin. To illustrate this statement, check
that there can be no nontrivial conserved integral of spin 2 and 4. A conserved integral is
nontrivial if its density is not a total derivative.




1.1 Inner product
Show that the norm of the state (L_,)"|A) is

2"n:ﬁ(h = 1)!2)

=]

7.2 Gram matrix
Show that the Gram rnat{ix for level 3 is

24h(1 + h)(1 + 2h) 12h(1 + 3h) 24h
M® = 12h(1 + 3h) h(8+c+8h) 10k

24h 10h 2c + 6h
(the states are ordered as in Table 7.1).

Table 7.1. Lowest states of a Verma module.

I p)

0 1 |k

1 1 L_yh)

2 2 L%|h), Lotk

3 3 L2 k), L.yL_plh), L_slh)

4 5 L4\, L2\Lalh), LoiL_slh), L2,lh), L_alh)




7.9 Equation of motion for the Yang-Lee model
Consider the minimal model M(S, 2) associated with the Yang-Lee edge singularity. The
module of the identity operator [ = ¢(,,1) = ¢(1.4) contains a null vector at level four:

3
0 = (L - zL-4)i0) (7.125)
a) Show that the field associated with the state | ) is

Ti&) = (T~ = T"

b) Compute the singular terms in the short-distance product of this field with any primary
field ® of the theory, with dimension 4.
Result:

v

T(@®(0) = 2~*h(h + $)0(0)

+z7%2h + é)aq»(o)

427 (%}—} 320(0) + thb*”(m)

+27 (ah-—f-‘r}(‘-ﬁli—ﬁa%(o) + E‘%W’(O) +2(h - 1)¢"’(0))

where

O? = (L, — "2@—37!'5[“2‘ Do

2 1
(6) - e e 2D
Y = (L, L IL_,L_; + GG +2)JZ._,)<I:

¢) Deduce that the only possible primary fields of the theory have dimensions 0 or —1/5.
Show, moreover, that when & = —1/5, we have @ = ¢©) =0,

The vanishing of T4(z) therefore implies most of the structure of the corresponding minimal
model: It may be viewed as the equation of motion of the Yang-Lee model. This may
be generalized to any minimal model (p, p’). In those cases, the identity has a nontrivial
singular descendant at level (p — 1)(p’ — 1): It is a composite field T,_y)—1) of T and
its derivatives, Its vanishing forms the equation of motion of the corresponding minimal
model and completely determines the spectrum of the theory.



