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Density-Functional Theory (DFT)

DFT provides very accurate description of 
many systems within the same framework.
DFT plays an important role in materials
science, life science, mineral science, …
I will introduce an efficient algorithm for
linear scaling electronic-structure 
calculations.



Kohn-Sham Equation (I)

Hamiltonian

Electron density



Kohn-Sham Equation (II)
Nonlinear eigenvalue problem

Computational cost grows as O(N^3)
Systems of > 1000 atoms intractable

Linear scaling algorithms
Reduce computational cost based on 
approximation
S.Goedecker, Rev.Mod.Phys.71 (1999) 1085.



Linear scaling methods
Divide and Conquer

Y.Wang

Density Matrix
Li, Nunes, and Vanderbilt

Fermi Operator Expansion
S.Goedecker

Orbital Minimization Method (OMM)
Galli and Parrinello

We focus on OMM in this talk.



O(N^3) algorithm
Total energy

is minimized under orthonormality constraints



Maximally Localized Wannier Functions 
(MLWFs)

Total energy is invariant under any 
unitary transformation
MLWFs minimize the spread S

among the unitary transformation of 
the ground state



Orbital Minimization Method (I)
Total energy functional:

Total energy is minimized wrt ψ without 
any constraint

Implicit orthonormalization



Orbital Minimization Method (II)
Total energy is invariant under any  
transformation:

where Xij is nonsingular



Localization regions (LR)

Achieving O(N) 
Localization 
constraints on the 
orbitals 

• Centers of LRs ≒
centers of MLWFs

good approximation 
for insulators & 
semiconductors



Properties of OMM (I)
Energy gap is required

Also assumed in most O(N) methods

Nonorthogonal basis functions can be  
treated easily
Variational principle

Total energies always converge from above 



Properties of OMM (II)
Small overhead

No unoccupied states taken into account
Crossover at small system

Easy to implement
analogous to conventional algorithm



Problems with OMM (I)
Extremely slow convergence

Often > 1000 iterations

Presence of local minima 
Ionic forces are also inaccurate

These problems must be overcome for  
routine use of OMM !



Orbitals in OMM (3/5)



Problems with OMM (II)
Ideally, the orbitals should automatically 
converge to MLWF-like states at the 
minimum

case small LRs: OK
case large LRs: MLWF-like states have only 
minor (or no) advantage in total energy  
→ total energy alone is insufficient to ...



Kernel Regions (KR)
KR and LR have 
same centers
Each KR includes a  
MLWF center
KRs do not overlap
No partial overlap 
between KR and LR



Kernel Functions
Each kernel function (χ) approximates 
the MLWF

Localized within each KR
Normalized
Orthogonal (by construction)
Not unique



Augmented Orbital Minimization 
Method (AOMM)

For any i,j (i ≠ j), 

is required
Orhogonalize each orbital approximately 
to MLWFs on other LRs, in the hope that 
ψ→ MLWF on this LR



Explicit orthogonalization

Each orbital remains as localized as the 
original one 



Flow chart of AOMM



Model Potential



Computational details (I)
5 lowest occupied states
LRs/KRs centered at x=40,60,80,100,120

consistent with potential wells 

Tridiagonal Hamiltonian:



Computational details (II)
100 ground state calculations

Random initial states
Iterative minimization with conjugate 
gradient method
“Failure” if exceeds 1000 iterations

• excluded from statistics



MLWF / Kernel functions



Orbitals in AOMM (3/5)



Average number of iterations



Errors in total energy



Determinant of overlap matrix



Average spread of orbitals



Ab initio MD of liquid water
125 water molecules in a supercell

L=29 Bohr
GGA (PBE form）

Normconserving pseudopotentials
Born-Oppenheimer MD

timestep=40 a.u. (～0.97fs)
Adaptive finite element basis

E. Tsuchida and M. Tsukada, J. Phys. Soc. Jpn. 67, 
3844 (1998).



Case extended orbitals



Case localized orbitals (O(N))
LRs and KRs centered at oxygen atoms

4 orbitals /LR, KR

Ionic forces evaluated assuming that LRs
and KRs do not move 

In practice, both move 
Can have negative impact on total energy 
conservation



Total energy conservation



Errors in ionic temperature



Remaining problems 
AOMM does not work when MLWF centers 
are unknown:

Use extended orbitals (only) for unpredictable 
ones
Adaptive localization centers (Fattebert et al.)



Conclusion
AOMM overcomes slow convergence and 
local minima problem

Computational overhead is minor

Crossover with conventional method    
～ 200-300 atoms
Reference: cond-mat/0608024

pdf-file is available upon request
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