Quantum Theory of Thermal Transport in Carbon Nanotubes

Takahiro YamamotoDepartment of Physics, Tokyo University of Science

Contents

- Introduction
- Objective
- Basic Theory
 - NEGF method for phonon transport
- Results
 - Phonon-derived thermal transport in CNTs
 - Electron-derived thermal transport in CNTs
- Summary

INTRODUCTION

Miniaturization of Electrical Devices

Large Joule Heating

serious bottleneck

CNT-based Heat Remover

► High Thermal Conductivity: ~3000W/m•K [Theoretical]

► Good Thermal Stability: ~2500°C (vacuum), 450°C(atmosphere)

Intel Co. (2003)

Heat Sink

Device

- CNT bundles

Laid-open disclosure public patent bulletin : 2003-249613

Experimental Values of Thermal Conductivity

- J. Hone *et al.*, Phys. Rev. B **59**, 2514 (1999). => 35
- W. Yi et al., Phys. Rev. B **59**, 9015 (1999). => 25
- J. Hone *et al.*, Appl. Phys. Lett. **77**, 666 (2000). => 200
- P. Kim *et al.*, Phys. Rev. Lett. **87**, 215502 (2001). => 3000
- D. J. Yang *et al.*, Phys. Rev. B **66**, 165440 (2002). => 200
- M. Fujii *et al.*, Phys. Rev. Lett. **95** 065502 (2005). => 2000
- Iwai et al., IEEE IITC Tech. Digest, pp. 257 (2005). => 1400 [W/m·K]

Possible Reasons

- 1) Difference among experimental method
- 2) Purity of samples: defect influence
- 3) Contact thermal resistance at interface between CNT and substrate/device
- 4) Heat dissipation to surrounding
- 5) Phonon-phonon scattering

Various Types of Defect in CNTs

Defects in CNTs

A. Hashimoto, et al., Nature 430, 870 (2004)

Various Types of Defects in CNTs

Vacancy defect

SW defect

Isotope Impurities

Many defects exist in synthesized CNTs.

Pentagon-Heptagon defect

Reduction of Thermal Conductivity due to Mono-Vacancies

Kondo, Yamamoto, Watanabe: e-J. Surf. Sci. Nanotech. **4**, 239 (2006).

Thermal conductivity decreases rapidly due to vacancies

Objectives

Clarification of

- Effect of defects on thermal transport in CNTs
- Mechanism of phonon scattering with the defects

Provision of

Way to improve reduced thermal conductivity

The NEGF Method for Phonon Transport at Nanoscale

Phonon-derived thermal current

$$J_{\rm th} = \int_0^\infty \frac{d\omega}{2\pi} \hbar \omega \operatorname{Tr} \Big[\boldsymbol{\Sigma}_L^>(\omega) \boldsymbol{D}_S^<(\omega) - \boldsymbol{\Sigma}_L^<(\omega) \boldsymbol{D}_S^>(\omega) \Big]$$

 $\Sigma_L^{\gtrless}(\omega)$: Greater/Lesser self-energy for the left lead $D_S^{\gtrless}(\omega)$: Greater/Lesser Green's function for the scattering region

Yamamoto and Watanabe, Phys. Rev. Lett. 96, 255503 (2006)

Advantages:

1) Applicable to nanoscale objects with complex atomic structure

- 2) Local physical quantities
- 3) Applicable to the interacting phonon transport

Reduction of Thermal Conductance due to Vacancy

Fig: Thermal conductance κ scaled by the universal quantum κ_0 of (8,8) CNT at low T.

Phonon Transmission Functions

Structural Change due to Thermal Annealing

Vacancy

Annealing

5-1db defect

Meta Stable

Stable

A.V. Krasheninnikov and K. Nordlund, J. Vac. Sci. Technol. B 20, 728 (2002)
Y. Miyamoto *et al.*, Physica B 323, 78 (2002)

Phonon Number Density

 $\hbar\omega$ =11.6 meV

Improvement of Thermal Conductance

H.J. Choi, et al., PRL, 84, 2917 (2000)

Improvement of Reduced Electron-Derived Thermal Conductance using *Gate Voltage*

The transmission dip can be removed by applying gate voltages.

Summary

We study the thermal transport in carbon nanotubes, especially focusing on influences of vacancy defect on thermal transport in CNTs.

- "*Phonon*"-derived thermal conductance is
 - reduced by phonon scattering with the localized phonon state around vacancy.
 - repaired by rearrangement of the vacancy to the 5-1db defect.
- "Electron"-derived thermal conductance is
 - reduced by electron scattering with σ dangling-bond state.
 - repaired by tuning a gate voltage in addition to the annealing.