Electric fields, Wannier centers, and nonlinear dielectric response in perovskite superlattices

David Vanderbilt Rutgers University

Principal Collaborators

Oswaldo Dieguez Bernd Meyer Serge Nakhmanson Na Sai Xifan Wu Massimiliano Stengel

Karin Rabe

First-principles calculations

Throughout the talk:

- Density-functional theory
- Local-density approximation
- Plane-wave pseudopotential approach
- ABINIT, VASP, PWSCF packages

Outline

- Introduction
 - Epitaxial perovskite superlattices
 - Unusual dielectric properties
- Theory of nonlinear dielectric behavior
 - Finite electric field ${\cal E}$
 - Mapping *E(P)*
 - Electric equations of state: $P(\mathcal{E})$, $\mathcal{E}(P)$, P(D), etc.
 - Layer-by-layer spatial resolution of P
- Work in progress: Model for *P(D)* of superlattice
- Summary and conclusions

A. K. Gutakovskii *et al.*, Phys. Stat. Sol. (a) **150** (1995) 127.

Cubic perovskite family

Paraelectric

Ferroelectric

Examples:

 $STO = SrTiO_3$

 $BTO = BaTiO_3$

Artificial charge-modulation in atomic-scale perovskite titanate superlattices

A. Ohtomo, D. A. Muller, J. L. Grazul & H. Y. Hwang Nature 419, 378 (2002).

SrTiO₃ / LaTiO₃

VOLUME 90, NUMBER 3

PHYSICAL REVIEW LETTERS

week ending 24 JANUARY 2003

Artificial Dielectric Superlattices with Broken Inversion Symmetry

Maitri P. Warusawithana, Eugene V. Colla, J. N. Eckstein, and M. B. Weissman

Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801-3080 (Received 24 May 2002; published 24 January 2003)

Strong polarization enhancement in asymmetric three-component ferroelectric superlattices

Ho Nyung Lee, Hans M. Christen, Matthew F. Chisholm, Christopher M. Rouleau & Douglas H. Lowndes

Nature 433, 395 (2005).

Courtesy H.-N. Lee

Exquisite control of epitaxy now possible !

Epitaxy Constraints

(topic of another talk)

Electrical boundary conditions

Example: m=3, n=2: .../Ba/Ba/Ba/Sr/Sr/...

 $D_z = \varepsilon_0 \mathcal{E}_z + P_z$ constant

Nahkmanson, Rabe, & Vanderbilt, APL 87, 102906 (2005).

Example 2: Warusawithana, Colla, Eckstein, and Weissman, 2003

Example 2: Warusawithana, Colla, Eckstein, and Weissman, 2003

Desired theory should describe:

P: Polarization*E*: Energy*E*: Electric field*D*: Displacement field

- Prediction of P_s by itself is not enough
- Want full *P(E)* curve!

Outline

- Introduction
 - Epitaxial perovskite superlattices
 - Unusual dielectric properties
- Theory of nonlinear dielectric behavior
 - Finite electric field ${\cal E}$
 - Mapping *E(P)*
 - Electric equations of state: $P(\mathcal{E})$, $\mathcal{E}(P)$, P(D), etc.
 - Layer-by-layer spatial resolution of P
- Work in progress: Model for *P(D)* of superlattice
- Summary and conclusions

Electric Fields: The Problem

Zener tunneling \Rightarrow There is no ground state!

Electric Fields: The Problem

$$H = H_0 - e \mathcal{E} x$$

= $\frac{P^2}{2m} + \widetilde{V}(x)$, $\widetilde{V}(x) = V_{\text{per}}(x) - e \mathcal{E} x$

- $\widetilde{V}(x)$ is not periodic
- Bloch's theorem does not apply
- \mathcal{E} acts as singular perturbation on eigenfunctions $\psi(x)$
- V(x) not bounded from below
- There is no ground state

Electric Fields: The Problem

• Empirical and phenomenological approaches: No problem.

• First-principles approaches:

Smart enough to become confused!

Electric Fields: The Solution

I. Souza, J. Iniguez, and D. Vanderbilt "First-Principles Approach to Insulators in Finite Electric Fields" Phys. Rev. Lett. 89, 117602 (2002).

- Seek long-lived resonance
- Described by Bloch functions
- Minimizing the electric enthalpy functional

$$F = E - \mathcal{E} \cdot \mathbf{P}$$
 (Nunes and Gonze, 2001)

$$E = \sum_{nk} \langle \psi_{nk} | T + V_{\text{per}} | \psi_{nk} \rangle \quad \text{Usual } \mathsf{E}_{\mathsf{KS}}$$
$$\mathbf{P} = \mathbf{P}[\hat{n}] = \mathbf{P}[\{\psi_{nk}\}] \quad \text{Berry phase polarization}$$

• Justification:

Electric Fields: Justification

Seek long-lived metastable periodic solution

- Want periodic charge density: $ho({f r})=
 ho({f r}+{f R})$
- Want periodic one-particle density matrix: $n({f r},{f r}')=n({f r}+{f R},{f r}'+{f R})$
- Use Bloch representation of density matrix: $n(\mathbf{r}, \mathbf{r}') = \sum_{n\mathbf{k}} \psi_{n\mathbf{k}}^*(\mathbf{r}) \, \psi_{n\mathbf{k}}(\mathbf{r}')$

even though $\psi_{n\mathbf{k}}$ are not eigenstates!

Electric Fields: Limitation

- There is a limitation!
- For given E-field, there is a limit on k-point sampling
- Length scale $L_C = 1/\Delta k$
- Meaning: L_C = supercell dimension

• Solution: Keep $\Delta k > 1/L_t = \mathcal{E}/E_g$

Electric Fields: Implementation

As long as Δk is not too small:

- Can use standard methods to find minimum
- The \mathcal{E} P term introduces <u>coupling</u> between k-points

Sample Application: Born Z^*

We can now do calculations like this

But \mathcal{E} is not a good choice of dependent variable!

Sai, Rabe, and Vanderbilt, PRB **66**, 104108 (2002).

Can we do calculations like this?

 $E_{KS}(P)$

Lagrange mult.: *Min.* $E_{KS}(P)$ - \mathcal{E} ·P

Lagrange mult.: *Min.* $E_{KS}(P)$ - \mathcal{E} ·P

Lagrange mult.: *Min.* $E_{KS}(P)$ - \mathcal{E} ·P

Try to minimize at fixed $\ensuremath{\mathcal{E}}$

$\mathcal{E}(P)$ from E(P)

Example: Compositional breaking of inversion symmetry

Example: Compositional breaking of inversion symmetry

Dieguez and Vanderbilt, 2006

Example: Hexagonal KNO₃

Dieguez and Vanderbilt, 2006

Electric equations of state

Why *P(D)* ?

1. P(D) is monotonic.

Why *P(D)* ?

2. *D* is uniform throughout superlattice.

Outline

- Introduction
 - Epitaxial perovskite superlattices
 - Unusual dielectric properties
- Theory of nonlinear dielectric behavior
 - Finite electric field ${\cal E}$
 - Mapping *E(P)*
 - Electric equations of state: $P(\mathcal{E})$, $\mathcal{E}(P)$, P(D), etc.
 - Layer-by-layer spatial resolution of P
- Work in progress: Model for *P(D)* of superlattice
- Summary and conclusions

Look inside interface: layer polarizations

Definition of layer polarization

PRL 97, 107602 (2006)

PHYSICAL REVIEW LETTERS

week ending 8 SEPTEMBER 2006

Wannier-Based Definition of Layer Polarizations in Perovskite Superlattices

Xifan Wu, Oswaldo Diéguez, Karin M. Rabe, and David Vanderbilt Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854-8019, USA (Received 9 June 2006; published 8 September 2006)

How to define layer polarizations?

Use Wannier function centers

Mapping to Wannier centers

Mapping to Wannier centers

Wannier dipole theorem

$$\Delta \mathbf{P} = \Sigma_{ion} (Z_{ion}e) \Delta \mathbf{r}_{ion} + \Sigma_{wf} (-2e) \Delta \mathbf{\bar{r}}_{wf}$$

- Exact!
- Gives <u>local</u> description of dielectric response!

Wannier functions in BaTiO₃

Wannier functions in BaTiO₃

Ferroelectric BaTiO₃

(Courtesy N. Marzari)

(Sr,Ba)TiO₃

Ions can naturally be assigned to layers.

Can WF centers also be assigned to layers?

3D vs. 1D Wannier analysis

- 3D maximally localized Wannier functions
 - Marzari and Vanderbilt, PRB 56, 12847 (1997).
 - Requires iterative procedure
 - Compromise: maximum localization in x, y, and z
- Here keep (k_x, k_y) and work in 1D along k_z
 - Maximum localization along z
 - No iterative procedure needed
 - Only small matrix diagonalizations

See also Giustino, Umari, and Pasquarello, PRL 91, 267601 (2003); Giustino and Pasquarello, PRB 71,144104 (2005).

1D Wannier center analysis

Layer decomposition of Z*

TABLE I: Layer decomposition of the [001] Born effective charges in a 3BT supercell. Total effective charges are given in the last row.

	Ti (1B)	Ba $(1A)$	O_{\parallel} (1A)	O_{\perp} (1B)
BaO(1A)	1.433	1.268	-2.448	-0.225
TiO_2 (1B)	1.872	0.148	-0.231	-0.930
BaO(2A)	1.262	0.434	-1.027	-0.191
TiO_2 (2B)	0.619	0.296	-0.542	-0.216
BaO(3A)	1.211	0.435	-1.046	-0.348
TiO_2 (3B)	0.636	0.191	-0.264	-0.217
Z^*	7.033	2.772	-5.557	-2.127

Layer decomposition of Z^*

Ferroelectric BaTiO₃

(Courtesy N. Marzari)

Outline

- Introduction
 - Epitaxial perovskite superlattices
 - Unusual dielectric properties
- Theory of nonlinear dielectric behavior
 - Finite electric field ${\cal E}$
 - Mapping *E(P)*
 - Electric equations of state: $P(\mathcal{E})$, $\mathcal{E}(P)$, P(D), etc.
 - Layer-by-layer spatial resolution of P
- Work in progress: Model for *P(D)* of superlattice
- Summary and conclusions

Desired theory: Non-linear C-V

First-principles based model of electrostatics of arbitrary sequences?

Dependence of $p_j(D)$ on environment

Work in progress: Improved model?

- Model: $P(D) = \sum_j p_j(D)$
- $P_{i}(D)$ depends on
 - *D* field
 - Chemical identity of layer itself
 - Chemical identities of near neighbors
 (but dependence decays with distance)
- Use ab-initio p_j(D) of short-period superlattices as database for fit
- Predict electrostatics of superlattices with arbitrary sequences

Desired theory: Non-linear C-V

First-principles based model of electrostatics of arbitrary sequences?

Summary

- First-principles theory can now handle complex, nonlinear dielectric behavior
 - Finite electric field \mathcal{E}
 - Mapping *E(P)*
 - Electric equations of state: $P(\mathcal{E})$, $\mathcal{E}(P)$, P(D), etc.
 - Layer-by-layer spatial resolution of P
- Applications
 - Here: Perovskite superlattices
 - Other dielectric, ferroelectric, piezoelectric systems

