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Small CM Discriminants

Constructing pairing-friendly curves requires solving an
equation of the form Dy2 = 4p − t2.
D is the CM discriminant; if D < 1010, then we can
construct a curve with the desired properties.
Most constructions of families of pairing-friendly curves fix
D = 1, 2, or 3.
Curves with small CM discriminant often have extra
structure (e.g., extra automorphisms) that might be used to
aid a future attack on the discrete log problem.

No such attack currently known, but we want to think ahead!
For maximum security, want to construct families with
variable CM discriminant D.

No international standard, but German Information Security
Agency requires that class number of Q(

√
−D) be > 200.
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Varying the CM Discriminant

Recall: complete families of curves constructed by finding
t(x), r(x), p(x) satisfying certain conditions.

Also y(x) in CM equation Dy2 = 4p − t2.
Theorem (F.-Scott-Teske):

Suppose t(x), r(x), p(x) give a family of pairing-friendly
elliptic curves with embedding degree k and CM
discriminant D.
Suppose t(x), r(x), p(x) are even polynomials and the
corresponding y(x) is an odd polynomial.
Subsituting x2 7→ ax2 for any a gives a family with
embedding degree k , CM discriminant aD, and the same
ρ-value.

Given a family that satisfies the conditions of the theorem,
we can construct curves with nearly arbitrary square-free
CM discriminant.
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Families Allowing Variable CM Discriminant

Brezing-Weng families with embedding degree k and 2k , k
odd.

ρ = (k + 2)/ϕ(k), or (k + 2)/(k − 1) for prime k .
F.-Scott-Teske families with embedding degree k (k ≡ 3
mod 4) or 2k (k ≡ 1 mod 4).

ρ = (k + 1)/ϕ(k), or (k + 1)/(k − 1) for prime k .
F.-Scott-Teske families with 3 | k , 8 - k , k ≥ 18.

ρ often close to 2; only even CM discriminants.
Scott-Barreto families.

Doesn’t make use of Theorem; D a parameter in the
construction.

Conclusion: variable discriminant families exist for every k
with gcd(k , 24) ∈ {1, 2, 3, 6, 12}.
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Composite-Order Subgroups

Many recent protocols require curves to be pairing-friendly
with respect to a subgroup of composite order r = r1r2 that
is infeasible to factor (e.g., r is an RSA modulus).
Security of protocols relies on factoring, not discrete log
problem.
Factoring an integer of size r takes roughly the same
amount of time as discrete log in a finite field of size r .
Conclude: for maximum efficiency, want to minimize ρ · k =
ratio of field size to subgroup size.
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Pairing-Friendly Curves of Composite Order

Want to minimize ρ · k ; theoretical minimum is 2.
Two options with ρ · k = 2:

Supersingular curves over prime fields
(Boneh-Goh-Nissim): k = 2, ρ = 1.
Cocks-Pinch method with Chinese Remainder Theorem
(Rubin-Silverberg): k = 1, ρ = 2.

Supersingular curves have slight advantage due to
implementation improvements for even k .
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Hyperelliptic Curves

A hyperelliptic curve C of genus g is given by y2 = f (x),
where deg f = 2g + 1.

Elliptic curves have genus 1.
There is no group law on C, but there is a group law on the
Jacobian of C, Jac(C).

Jac(C) is a g-dimensional abelian variety.
Can think of Jac(C) as g-tuples of points on C.
Efficient group law algorithm given by Cantor.

The Weil and Tate pairings exist on Jac(C) and have the
same properties as on elliptic curves.
Thus we can search for pairing-friendly hyperelliptic
curves, whose Jacobians have large prime-order subgroup
and small embedding degree.
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and small embedding degree.
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Supersingular Abelian Varieties

Jac(C) is supersingular if there is a map from Jac(C) to a
product of supersingular elliptic curves.
Rubin-Silverberg: showed all curves C with supersingular
Jacobians are pairing-friendly.

Gave upper bound on k for all g.
Gave sharp bound on k for g ≤ 6.

Cardona-Nart: gave explicit formulas for embedding
degree when C has genus 2.
Possible embedding degrees (and thus security levels)
always limited.

For more flexibility, must use non-supersingular varieties.
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Non-supersingular Abelian Varieties

Results only exist for g = 2 (abelian surfaces).
Galbraith-McKee-Valença: Showed existence of abelian
surfaces A over prime fields with k = 5, 10.
Hitt: Showed existence of abelian surfaces A in
characteristic 2 with various k < 50.
Neither technique gives explicit construction of a
pairing-friendly curve C.
F.: Constructed pairing-friendly curves C over prime fields
whose Jacobians have arbitrary k and subgroup size r .

Adapts Cocks-Pinch method for elliptic curves.
Jac(C) has ρ ≈ 8 (quite poor!)

Open problem: construct non-supersingular
pairing-friendly abelian surfaces with ρ ≤ 2.
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For Further Information

See survey article by F.-Scott-Teske, “A Taxonomy of
Pairing-Friendly Elliptic Curves”
Available at http://eprint.iacr.org/2006/372.
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