Constructing Pairing-Friendly Elliptic Curves for Cryptography

David Freeman

University of California, Berkeley, USA

2nd KIAS-KMS Summer Workshop on Cryptography

Seoul, Korea 30 June 2007

Outline

- Pairings in Cryptography
 - Introduction to Pairings
 - Pairings on Elliptic Curves
- 2 How to Construct Pairing-Friendly Elliptic Curves
 - Ordinary vs. Supersingular
 - The Complex Multiplication Method
 - Classification of Pairing-Friendly Elliptic Curves

3 Construction Methods

- Curves with Arbitrary Embedding Degree
 Cocks-Pinch and Dupont-Enge-Morain Methods
- Sparse Families of Pairing-Friendly Curves
 The Miyaji-Nakabayashi-Takano Method and Extensions
- Complete Families of Curves
 - Cyclotomic, Sproadic, and Scott-Barreto Families

Outline

Pairings in Cryptography

- Introduction to Pairings
- Pairings on Elliptic Curves
- 2 How to Construct Pairing-Friendly Elliptic Curves
 - Ordinary vs. Supersingular
 - The Complex Multiplication Method
 - Classification of Pairing-Friendly Elliptic Curves

3 Construction Methods

- Curves with Arbitrary Embedding Degree
 Cocks-Pinch and Dupont-Enge-Morain Methods
- Sparse Families of Pairing-Friendly Curves
 The Miyaji-Nakabayashi-Takano Method and Extensions
- Complete Families of Curves
 - Cyclotomic, Sproadic, and Scott-Barreto Families

ヘロト ヘアト ヘビト ヘ

Introduction to Pairings

Introduction to Pairings Pairings on Elliptic Curves

What is a pairing?

- Many public-key cryptographic protocols are based on the discrete logarithm problem (DLP) in a finite cyclic group G:
 - Given *x*, *y* in G, find integer *a* such that $y = x^a$.
 - For systems involving G to be secure, the DLP must be computationally infeasible.
- A cryptographic pairing is map

$$\boldsymbol{e}:\mathbb{G}\times\mathbb{G}\to\mathbb{G}_{\boldsymbol{T}}$$

that is

- I Bilinear: $e(x^a, y^b) = e(x, y)^{ab}$ in \mathbb{G}_T .
- Nondegenerate: for any x ∈ G, x ≠ 1, there is a y ∈ G such that e(x, y) ≠ 1 in G_T.

Introduction to Pairings Pairings on Elliptic Curves

What is a pairing?

- Many public-key cryptographic protocols are based on the discrete logarithm problem (DLP) in a finite cyclic group G:
 - Given x, y in \mathbb{G} , find integer a such that $y = x^a$.
 - For systems involving G to be secure, the DLP must be computationally infeasible.
- A cryptographic pairing is map

$$\boldsymbol{e}:\mathbb{G}\times\mathbb{G}\to\mathbb{G}_{\boldsymbol{\mathcal{T}}}$$

that is

- I Bilinear: $e(x^a, y^b) = e(x, y)^{ab}$ in \mathbb{G}_T .
- Nondegenerate: for any x ∈ G, x ≠ 1, there is a y ∈ G such that e(x, y) ≠ 1 in G_T.

Introduction to Pairings Pairings on Elliptic Curves

What is a pairing?

- Many public-key cryptographic protocols are based on the discrete logarithm problem (DLP) in a finite cyclic group G:
 - Given x, y in \mathbb{G} , find integer a such that $y = x^a$.
 - For systems involving G to be secure, the DLP must be computationally infeasible.
- A cryptographic pairing is map

$$\boldsymbol{e}: \mathbb{G} \times \mathbb{G} \to \mathbb{G}_{\mathcal{T}}$$

that is

- I Bilinear: $e(x^a, y^b) = e(x, y)^{ab}$ in \mathbb{G}_T .
- Nondegenerate: for any x ∈ G, x ≠ 1, there is a y ∈ G such that e(x, y) ≠ 1 in G_T.

Introduction to Pairings Pairings on Elliptic Curves

What is a pairing?

- Many public-key cryptographic protocols are based on the discrete logarithm problem (DLP) in a finite cyclic group G:
 - Given x, y in \mathbb{G} , find integer a such that $y = x^a$.
 - For systems involving G to be secure, the DLP must be computationally infeasible.
- A cryptographic pairing is map

$$\pmb{e}:\mathbb{G}\times\mathbb{G}\to\mathbb{G}_{\pmb{T}}$$

that is

Bilinear: $e(x^a, y^b) = e(x, y)^{ab}$ in \mathbb{G}_T .

Nondegenerate: for any x ∈ G, x ≠ 1, there is a y ∈ G such that e(x, y) ≠ 1 in G_T.

くロト (過) (目) (日)

Introduction to Pairings Pairings on Elliptic Curves

What is a pairing?

- Many public-key cryptographic protocols are based on the discrete logarithm problem (DLP) in a finite cyclic group G:
 - Given x, y in \mathbb{G} , find integer a such that $y = x^a$.
 - For systems involving G to be secure, the DLP must be computationally infeasible.
- A cryptographic pairing is map

$$\boldsymbol{e}:\mathbb{G}\times\mathbb{G}\to\mathbb{G}_{\mathcal{T}}$$

that is

1

Bilinear: $e(x^a, y^b) = e(x, y)^{ab}$ in \mathbb{G}_T .

Nondegenerate: for any x ∈ G, x ≠ 1, there is a y ∈ G such that e(x, y) ≠ 1 in G_T.

くロト (過) (目) (日)

Introduction to Pairings Pairings on Elliptic Curves

What is a pairing?

- Many public-key cryptographic protocols are based on the discrete logarithm problem (DLP) in a finite cyclic group G:
 - Given x, y in \mathbb{G} , find integer a such that $y = x^a$.
 - For systems involving G to be secure, the DLP must be computationally infeasible.
- A cryptographic pairing is map

$$\boldsymbol{e}:\mathbb{G}\times\mathbb{G}\to\mathbb{G}_{\mathcal{T}}$$

that is

- **)** Bilinear: $e(x^a, y^b) = e(x, y)^{ab}$ in \mathbb{G}_T .
- ② Nondegenerate: for any *x* ∈ \mathbb{G} , *x* ≠ 1, there is a *y* ∈ \mathbb{G} such that $e(x, y) \neq 1$ in \mathbb{G}_{T} .

Introduction to Pairings Pairings on Elliptic Curves

How to Use a Pairing

- A cryptographic pairing maps the discrete logarithm problem in G to the DLP in G_T:
 - Given x and $y = x^a$ in \mathbb{G} :
 - O Choose a $z \in \mathbb{G}$ with $e(x, z) \neq 1$.
 - Ompute x' = e(x, z), y' = e(y, z).
 - Try to compute *a* from x' and $y' = x'^a$.
- The pairing solves the *Decision Diffie-Hellman Problem* in G:
 - Given x, x^a, x^b, x^c , determine if c = ab.
 - **(a)** Compute $e(x, x^2) = e(x, x)^2$ and $e(x^2, x^2) = e(x, x)^2$. **(a)** ab = c if and only if the two pairings are equal to G_2 .

Introduction to Pairings Pairings on Elliptic Curves

How to Use a Pairing

- A cryptographic pairing maps the discrete logarithm problem in G to the DLP in G_T:
 - Given x and $y = x^a$ in \mathbb{G} :
 - 1) Choose a $z \in \mathbb{G}$ with $e(x, z) \neq 1$.
 - 2 Compute x' = e(x, z), y' = e(y, z).
 - 3 Try to compute *a* from x' and $y' = x'^a$.
- The pairing solves the *Decision Diffie-Hellman Problem* in G:
 - Given x, x^a, x^b, x^c , determine if c = ab.
 - (a) Compute $e(x, x^2) = e(x, x)^2$ and $e(x^2, x^2) = e(x, x)^2$. (b) ab = c if and only if the two pairings are equal to G_2 .

Introduction to Pairings Pairings on Elliptic Curves

How to Use a Pairing

- A cryptographic pairing maps the discrete logarithm problem in G to the DLP in G_T:
 - Given x and $y = x^a$ in \mathbb{G} :
 - (1) Choose a $z \in \mathbb{G}$ with $e(x, z) \neq 1$.
 - 2 Compute x' = e(x, z), y' = e(y, z).
 - 3 Try to compute *a* from x' and $y' = x'^a$.
- The pairing solves the *Decision Diffie-Hellman Problem* in G:
 - Given x, x^a, x^b, x^c , determine if c = ab.
 - **(a)** Compute $e(x, x^{n}) = e(x, x)^{n}$ and $e(x^{n}, x^{n}) = e(x, x)^{n}$. **(a)** ab = c it and only if the two pairings are equal in G_{2} .

Introduction to Pairings Pairings on Elliptic Curves

How to Use a Pairing

- A cryptographic pairing maps the discrete logarithm problem in G to the DLP in G_T:
 - Given x and $y = x^a$ in \mathbb{G} :
 - **1** Choose a $z \in \mathbb{G}$ with $e(x, z) \neq 1$.
 - 2 Compute x' = e(x, z), y' = e(y, z).
 - Try to compute *a* from x' and $y' = x'^a$.
- The pairing solves the *Decision Diffie-Hellman Problem* in G:
 - Given x, x^a, x^b, x^c , determine if c = ab.

Introduction to Pairings Pairings on Elliptic Curves

How to Use a Pairing

- A cryptographic pairing maps the discrete logarithm problem in G to the DLP in G_T:
 - Given x and $y = x^a$ in \mathbb{G} :
 - **1** Choose a $z \in \mathbb{G}$ with $e(x, z) \neq 1$.
 - 2 Compute x' = e(x, z), y' = e(y, z).
 - 3 Try to compute *a* from x' and $y' = x'^a$.
- The pairing solves the *Decision Diffie-Hellman Problem* in G:
 - Given x, x^a, x^b, x^c , determine if c = ab.
 - $\begin{array}{l} & \label{eq:computer} & e(x,x') = e(x,x)^c \mbox{ and } e(x^c,x') = e(x,x)^{cc} \\ & \end{tabular} \\ & \end{tabul$

Introduction to Pairings Pairings on Elliptic Curves

How to Use a Pairing

- A cryptographic pairing maps the discrete logarithm problem in G to the DLP in G_T:
 - Given x and $y = x^a$ in \mathbb{G} :
 - **1** Choose a $z \in \mathbb{G}$ with $e(x, z) \neq 1$.
 - 2 Compute x' = e(x, z), y' = e(y, z).
 - 3 Try to compute *a* from x' and $y' = x'^a$.
- The pairing solves the Decision Diffie-Hellman Problem in \mathbb{G} :
 - Given x, x^a, x^b, x^c , determine if c = ab.
 - Compute $e(x, x^c) = e(x, x)^c$ and $e(x^a, x^b) = e(x, x)^{ab}$
 -) ab = c if and only if the two pairings are equal in $\mathbb{G}_{\mathcal{T}}$.

Introduction to Pairings Pairings on Elliptic Curves

How to Use a Pairing

- A cryptographic pairing maps the discrete logarithm problem in G to the DLP in G_T:
 - Given x and $y = x^a$ in \mathbb{G} :
 - **1** Choose a $z \in \mathbb{G}$ with $e(x, z) \neq 1$.
 - 2 Compute x' = e(x, z), y' = e(y, z).
 - **3** Try to compute *a* from x' and $y' = x'^a$.
- The pairing solves the Decision Diffie-Hellman Problem in \mathbb{G} :
 - Given x, x^a, x^b, x^c , determine if c = ab.
 - Occupute $e(x, x^c) = e(x, x)^c$ and $e(x^a, x^b) = e(x, x)^{ab}$.
 - 2) ab = c if and only if the two pairings are equal in $\mathbb{G}_{\mathcal{T}}$.

Introduction to Pairings Pairings on Elliptic Curves

How to Use a Pairing

- A cryptographic pairing maps the discrete logarithm problem in G to the DLP in G_T:
 - Given x and $y = x^a$ in \mathbb{G} :
 - **1** Choose a $z \in \mathbb{G}$ with $e(x, z) \neq 1$.
 - 2 Compute x' = e(x, z), y' = e(y, z).
 - **③** Try to compute *a* from x' and $y' = x'^a$.
- The pairing solves the Decision Diffie-Hellman Problem in \mathbb{G} :
 - Given x, x^a, x^b, x^c , determine if c = ab.
 - Compute $e(x, x^c) = e(x, x)^c$ and $e(x^a, x^b) = e(x, x)^{ab}$.

• ab = c if and only if the two pairings are equal in \mathbb{G}_T .

Introduction to Pairings Pairings on Elliptic Curves

How to Use a Pairing

- A cryptographic pairing maps the discrete logarithm problem in G to the DLP in G_T:
 - Given x and $y = x^a$ in \mathbb{G} :
 - **1** Choose a $z \in \mathbb{G}$ with $e(x, z) \neq 1$.
 - 2 Compute x' = e(x, z), y' = e(y, z).
 - **③** Try to compute *a* from x' and $y' = x'^a$.
- The pairing solves the Decision Diffie-Hellman Problem in \mathbb{G} :
 - Given x, x^a, x^b, x^c , determine if c = ab.
 - Occupute $e(x, x^c) = e(x, x)^c$ and $e(x^a, x^b) = e(x, x)^{ab}$.
 - 2 ab = c if and only if the two pairings are equal in \mathbb{G}_T .

Introduction to Pairings Pairings on Elliptic Curves

Applications of Pairings

- Attack on discrete logarithm problem for supersingular elliptic curves (Menezes-Okamoto-Vanstone).
 - Map discrete log on elliptic curve to easier discrete log in finite field.
- One-round 3-way key exchange (Joux).
- Identity-based encryption (Sakai-Ohgishi-Kasahara; Boneh-Franklin).
- Short digital signatures (Boneh-Lynn-Shacham).
- Many other applications:
 - Group signatures, batch signatures, threshold cryptography, broadcast encryption, private information retrieval, electronic voting, etc.

Introduction to Pairings Pairings on Elliptic Curves

Applications of Pairings

- Attack on discrete logarithm problem for supersingular elliptic curves (Menezes-Okamoto-Vanstone).
 - Map discrete log on elliptic curve to easier discrete log in finite field.
- One-round 3-way key exchange (Joux).
- Identity-based encryption (Sakai-Ohgishi-Kasahara; Boneh-Franklin).
- Short digital signatures (Boneh-Lynn-Shacham).
- Many other applications:
 - Group signatures, batch signatures, threshold cryptography, broadcast encryption, private information retrieval, electronic voting, etc.

Introduction to Pairings Pairings on Elliptic Curves

Applications of Pairings

- Attack on discrete logarithm problem for supersingular elliptic curves (Menezes-Okamoto-Vanstone).
 - Map discrete log on elliptic curve to easier discrete log in finite field.

• One-round 3-way key exchange (Joux).

- Identity-based encryption (Sakai-Ohgishi-Kasahara; Boneh-Franklin).
- Short digital signatures (Boneh-Lynn-Shacham).
- Many other applications:
 - Group signatures, batch signatures, threshold cryptography, broadcast encryption, private information retrieval, electronic voting, etc.

Introduction to Pairings Pairings on Elliptic Curves

Applications of Pairings

- Attack on discrete logarithm problem for supersingular elliptic curves (Menezes-Okamoto-Vanstone).
 - Map discrete log on elliptic curve to easier discrete log in finite field.
- One-round 3-way key exchange (Joux).
- Identity-based encryption (Sakai-Ohgishi-Kasahara; Boneh-Franklin).
- Short digital signatures (Boneh-Lynn-Shacham).
- Many other applications:
 - Group signatures, batch signatures, threshold cryptography, broadcast encryption, private information retrieval, electronic voting, etc.

ヘロト ヘアト ヘビト ヘビト

Introduction to Pairings Pairings on Elliptic Curves

Applications of Pairings

- Attack on discrete logarithm problem for supersingular elliptic curves (Menezes-Okamoto-Vanstone).
 - Map discrete log on elliptic curve to easier discrete log in finite field.
- One-round 3-way key exchange (Joux).
- Identity-based encryption (Sakai-Ohgishi-Kasahara; Boneh-Franklin).
- Short digital signatures (Boneh-Lynn-Shacham).
- Many other applications:
 - Group signatures, batch signatures, threshold cryptography, broadcast encryption, private information retrieval, electronic voting, etc.

ヘロト ヘアト ヘビト ヘビト

Introduction to Pairings Pairings on Elliptic Curves

Applications of Pairings

- Attack on discrete logarithm problem for supersingular elliptic curves (Menezes-Okamoto-Vanstone).
 - Map discrete log on elliptic curve to easier discrete log in finite field.
- One-round 3-way key exchange (Joux).
- Identity-based encryption (Sakai-Ohgishi-Kasahara; Boneh-Franklin).
- Short digital signatures (Boneh-Lynn-Shacham).
- Many other applications:
 - Group signatures, batch signatures, threshold cryptography, broadcast encryption, private information retrieval, electronic voting, etc.

くロト (過) (目) (日)

Introduction to Pairings Pairings on Elliptic Curves

Applications of Pairings

- Attack on discrete logarithm problem for supersingular elliptic curves (Menezes-Okamoto-Vanstone).
 - Map discrete log on elliptic curve to easier discrete log in finite field.
- One-round 3-way key exchange (Joux).
- Identity-based encryption (Sakai-Ohgishi-Kasahara; Boneh-Franklin).
- Short digital signatures (Boneh-Lynn-Shacham).
- Many other applications:
 - Group signatures, batch signatures, threshold cryptography, broadcast encryption, private information retrieval, electronic voting, etc.

Introduction to Pairings Pairings on Elliptic Curves

Requirements for Pairings

• To be useful in applications using the Decision Diffie-Hellman property, we need:

- the discrete logarithm problem in G to be computationally infeasible,
- 2 the discrete logarithm problem in G_τ to be computationally infeasible, and
- Ithe pairing to be easy to compute.

Introduction to Pairings Pairings on Elliptic Curves

Requirements for Pairings

- To be useful in applications using the Decision Diffie-Hellman property, we need:
 - the discrete logarithm problem in G to be computationally infeasible,
 - the discrete logarithm problem in G_T to be computationally infeasible, and
 - Ithe pairing to be easy to compute.

Introduction to Pairings Pairings on Elliptic Curves

Requirements for Pairings

- To be useful in applications using the Decision Diffie-Hellman property, we need:
 - the discrete logarithm problem in G to be computationally infeasible,
 - 2 the discrete logarithm problem in $\mathbb{G}_{\mathcal{T}}$ to be computationally infeasible, and
 - the pairing to be easy to compute.

Introduction to Pairings Pairings on Elliptic Curves

Requirements for Pairings

- To be useful in applications using the Decision Diffie-Hellman property, we need:
 - the discrete logarithm problem in G to be computationally infeasible,
 - 2 the discrete logarithm problem in $\mathbb{G}_{\mathcal{T}}$ to be computationally infeasible, and
 - the pairing to be easy to compute.

Introduction to Pairings Pairings on Elliptic Curves

Outline

- Pairings in Cryptography
 - Introduction to Pairings
 - Pairings on Elliptic Curves
- 2 How to Construct Pairing-Friendly Elliptic Curves
 - Ordinary vs. Supersingular
 - The Complex Multiplication Method
 - Classification of Pairing-Friendly Elliptic Curves

3 Construction Methods

- Curves with Arbitrary Embedding Degree
 Cocks-Pinch and Dupont-Enge-Morain Methods
- Sparse Families of Pairing-Friendly Curves
 The Miyaji-Nakabayashi-Takano Method and Extensions
- Complete Families of Curves
 - Cyclotomic, Sproadic, and Scott-Barreto Families

Introduction to Pairings Pairings on Elliptic Curves

Elliptic Curves in Cryptography

An *elliptic curve E* over a finite field 𝔽_p is defined by an equation

 $E: y^2 = x^3 + ax + b \pmod{p}$

- The set of points (*x*, *y*) on *E*, plus a "point at infinity" *O*, forms a group (usually written additively).
 - Adding two points P, Q gives a third point R = P + Q.
 - Adding a point to itself repeatedly gives multiplication: P + · · · + P (m times) = mP.
- If *P* has prime order *r*, then computing *a* from *P* and *aP* takes time $\sim \sqrt{r}$.
 - If *r* is a large prime, then discrete log in elliptic curve subgroup of order *r* is infeasible.

くロト (過) (目) (日)

Elliptic Curves in Cryptography

An *elliptic curve E* over a finite field 𝔽_p is defined by an equation

$$E: y^2 = x^3 + ax + b \pmod{p}$$

- The set of points (*x*, *y*) on *E*, plus a "point at infinity" *O*, forms a group (usually written additively).
 - Adding two points P, Q gives a third point R = P + Q.
 - Adding a point to itself repeatedly gives multiplication: $P + \cdots + P$ (*m* times) = *mP*.
- If *P* has prime order *r*, then computing *a* from *P* and *aP* takes time $\sim \sqrt{r}$.
 - If *r* is a large prime, then discrete log in elliptic curve subgroup of order *r* is infeasible.

ヘロト ヘ戸ト ヘヨト ヘヨト

Elliptic Curves in Cryptography

An *elliptic curve E* over a finite field 𝔽_p is defined by an equation

$$E: y^2 = x^3 + ax + b \pmod{p}$$

- The set of points (*x*, *y*) on *E*, plus a "point at infinity" *O*, forms a group (usually written additively).
 - Adding two points P, Q gives a third point R = P + Q.
 - Adding a point to itself repeatedly gives multiplication: $P + \cdots + P$ (*m* times) = *mP*.
- If *P* has prime order *r*, then computing *a* from *P* and *aP* takes time $\sim \sqrt{r}$.
 - If *r* is a large prime, then discrete log in elliptic curve subgroup of order *r* is infeasible.

Elliptic Curves in Cryptography

An *elliptic curve E* over a finite field 𝔽_p is defined by an equation

$$E: y^2 = x^3 + ax + b \pmod{p}$$

- The set of points (*x*, *y*) on *E*, plus a "point at infinity" *O*, forms a group (usually written additively).
 - Adding two points P, Q gives a third point R = P + Q.
 - Adding a point to itself repeatedly gives multiplication: $P + \cdots + P (m \text{ times}) = mP.$
- If *P* has prime order *r*, then computing *a* from *P* and *aP* takes time $\sim \sqrt{r}$.
 - If *r* is a large prime, then discrete log in elliptic curve subgroup of order *r* is infeasible.

Elliptic Curves in Cryptography

An *elliptic curve E* over a finite field 𝔽_p is defined by an equation

$$E: y^2 = x^3 + ax + b \pmod{p}$$

- The set of points (*x*, *y*) on *E*, plus a "point at infinity" *O*, forms a group (usually written additively).
 - Adding two points P, Q gives a third point R = P + Q.
 - Adding a point to itself repeatedly gives multiplication: $P + \cdots + P (m \text{ times}) = mP.$
- If *P* has prime order *r*, then computing *a* from *P* and *aP* takes time $\sim \sqrt{r}$.
 - If *r* is a large prime, then discrete log in elliptic curve subgroup of order *r* is infeasible.

Elliptic Curves in Cryptography

An *elliptic curve E* over a finite field 𝔽_p is defined by an equation

$$E: y^2 = x^3 + ax + b \pmod{p}$$

- The set of points (*x*, *y*) on *E*, plus a "point at infinity" *O*, forms a group (usually written additively).
 - Adding two points P, Q gives a third point R = P + Q.
 - Adding a point to itself repeatedly gives multiplication: $P + \cdots + P (m \text{ times}) = mP.$
- If *P* has prime order *r*, then computing *a* from *P* and *aP* takes time $\sim \sqrt{r}$.
 - If *r* is a large prime, then discrete log in elliptic curve subgroup of order *r* is infeasible.
Introduction to Pairings Pairings on Elliptic Curves

The Weil and Tate Pairings

• Let *E* be an elliptic curve defined over a finite field \mathbb{F} .

$$e_{r,weil} \colon E[r] \times E[r] \to \mu_r.$$

• The *Tate pairing e*_{*r*,*tate*} is similar:

 $e_{r,tate}$: $E(\mathbb{F})[r] \times E(\mathbb{F})/rE(\mathbb{F}) \to \mathbb{F}^{\times}/(\mathbb{F}^{\times})^r$.

- If *r* is prime and F_{p^k} is the smallest field containing μ_r, then both pairings take values in F[×]_{p^k}.
- Tate pairing generally can be computed more efficiently.

Introduction to Pairings Pairings on Elliptic Curves

The Weil and Tate Pairings

- Let *E* be an elliptic curve defined over a finite field \mathbb{F} .
- For any integer *r* the Weil pairing e_{r,weil} is a bilinear map sending pairs of points of order *r* to *r*-th roots of unity in F.

$$e_{r,\textit{weil}} \colon E[r] \times E[r]
ightarrow \mu_r.$$

• The *Tate pairing* $e_{r,tate}$ is similar:

 $e_{r,tate}$: $E(\mathbb{F})[r] \times E(\mathbb{F})/rE(\mathbb{F}) \to \mathbb{F}^{\times}/(\mathbb{F}^{\times})^{r}$.

- If *r* is prime and F_{ρ^k} is the smallest field containing μ_r, then both pairings take values in F[×]_{ρ^k}.
- Tate pairing generally can be computed more efficiently.

Introduction to Pairings Pairings on Elliptic Curves

The Weil and Tate Pairings

- Let *E* be an elliptic curve defined over a finite field \mathbb{F} .
- For any integer *r* the Weil pairing e_{r,weil} is a bilinear map sending pairs of points of order *r* to *r*-th roots of unity in F.

$$e_{r,\textit{weil}} \colon E[r] \times E[r]
ightarrow \mu_r.$$

• The *Tate pairing e*_{*r*,*tate*} is similar:

 $e_{r,tate} \colon E(\mathbb{F})[r] \times E(\mathbb{F})/rE(\mathbb{F}) \to \mathbb{F}^{\times}/(\mathbb{F}^{\times})^{r}.$

- If *r* is prime and F_{p^k} is the smallest field containing μ_r, then both pairings take values in F[×]_{p^k}.
- Tate pairing generally can be computed more efficiently.

Introduction to Pairings Pairings on Elliptic Curves

The Weil and Tate Pairings

- Let *E* be an elliptic curve defined over a finite field \mathbb{F} .
- For any integer *r* the Weil pairing e_{r,weil} is a bilinear map sending pairs of points of order *r* to *r*-th roots of unity in F.

$$e_{r,\textit{weil}} \colon E[r] \times E[r] \rightarrow \mu_r.$$

• The *Tate pairing e*_{*r*,*tate*} is similar:

 $e_{r,tate} \colon E(\mathbb{F})[r] \times E(\mathbb{F})/rE(\mathbb{F}) \to \mathbb{F}^{\times}/(\mathbb{F}^{\times})^{r}.$

- If *r* is prime and F_{ρ^k} is the smallest field containing μ_r, then both pairings take values in F[×]_{ρ^k}.
- Tate pairing generally can be computed more efficiently.

Introduction to Pairings Pairings on Elliptic Curves

The Weil and Tate Pairings

- Let *E* be an elliptic curve defined over a finite field \mathbb{F} .
- For any integer *r* the Weil pairing e_{r,weil} is a bilinear map sending pairs of points of order *r* to *r*-th roots of unity in F.

$$e_{r,\textit{weil}} \colon E[r] \times E[r] \rightarrow \mu_r.$$

• The *Tate pairing e*_{*r*,*tate*} is similar:

 $e_{r,tate} \colon E(\mathbb{F})[r] \times E(\mathbb{F})/rE(\mathbb{F}) \to \mathbb{F}^{\times}/(\mathbb{F}^{\times})^{r}.$

- If *r* is prime and F_{ρ^k} is the smallest field containing μ_r, then both pairings take values in F[×]_{ρ^k}.
- Tate pairing generally can be computed more efficiently.

Introduction to Pairings Pairings on Elliptic Curves

Embedding degrees

- Elliptic curve pairings used in cryptography use curves *E*/F_p with a point of order *r*, and map into the *r*th roots of unity in F_{p^k}.
- *k* is the *embedding degree* of *E* (with respect to *r*).
 - k is the smallest integer such that $r \mid p^k 1$.
 - k is the order of p in $(\mathbb{Z}/r\mathbb{Z})^{\times}$
 - Want k large enough so that discrete log in F[×]_p, is computationally infeasible, but small enough so that pairing is easy to compute.
- *r* is a large prime dividing $#E(\mathbb{F}_p)$
 - Define $\rho = \log p / \log r = \#$ bits of p / # bits of r.
 - If keys, signatures, ciphertexts, etc. are elements of E[r], we want ρ small to save bandwidth.
 - If curve has prime order, $\rho = 1$.

ヘロア 人間 アメヨア 人口 ア

Introduction to Pairings Pairings on Elliptic Curves

Embedding degrees

- Elliptic curve pairings used in cryptography use curves *E*/F_p with a point of order *r*, and map into the *r*th roots of unity in F_{p^k}.
- *k* is the *embedding degree* of *E* (with respect to *r*).
 - *k* is the smallest integer such that $r \mid p^k 1$.
 - *k* is the order of *p* in $(\mathbb{Z}/r\mathbb{Z})^{\times}$.
 - Want k large enough so that discrete log in

 p^k is
 computationally infeasible, but small enough so that pairing
 is easy to compute.
- *r* is a large prime dividing $#E(\mathbb{F}_p)$
 - Define $\rho = \log p / \log r = \#$ bits of p / #bits of r.
 - If keys, signatures, ciphertexts, etc. are elements of E[r], we want ρ small to save bandwidth.
 - If curve has prime order, $\rho = 1$.

ヘロア 人間 アメヨア 人口 ア

Introduction to Pairings Pairings on Elliptic Curves

Embedding degrees

- Elliptic curve pairings used in cryptography use curves *E*/F_p with a point of order *r*, and map into the *r*th roots of unity in F_{p^k}.
- *k* is the *embedding degree* of *E* (with respect to *r*).
 - k is the smallest integer such that $r \mid p^k 1$.
 - *k* is the order of *p* in $(\mathbb{Z}/r\mathbb{Z})^{\times}$.
 - Want k large enough so that discrete log in

 p^k is
 computationally infeasible, but small enough so that pairing
 is easy to compute.
- *r* is a large prime dividing $#E(\mathbb{F}_p)$
 - Define $\rho = \log p / \log r = \#$ bits of p / #bits of r.
 - If keys, signatures, ciphertexts, etc. are elements of E[r], we want ρ small to save bandwidth.
 - If curve has prime order, $\rho = 1$.

<ロト <回 > < 注 > < 注 > 、

Introduction to Pairings Pairings on Elliptic Curves

Embedding degrees

- Elliptic curve pairings used in cryptography use curves *E*/F_p with a point of order *r*, and map into the *r*th roots of unity in F_{p^k}.
- *k* is the *embedding degree* of *E* (with respect to *r*).
 - *k* is the smallest integer such that $r | p^k 1$.
 - *k* is the order of *p* in $(\mathbb{Z}/r\mathbb{Z})^{\times}$.
 - Want k large enough so that discrete log in F[×]_{p^k} is computationally infeasible, but small enough so that pairing is easy to compute.
- *r* is a large prime dividing $#E(\mathbb{F}_p)$
 - Define $\rho = \log p / \log r = \#$ bits of p / # bits of r.
 - If keys, signatures, ciphertexts, etc. are elements of E[r], we want ρ small to save bandwidth.
 - If curve has prime order, $\rho = 1$.

<ロト <回 > < 注 > < 注 > 、

Introduction to Pairings Pairings on Elliptic Curves

Embedding degrees

- Elliptic curve pairings used in cryptography use curves *E*/F_p with a point of order *r*, and map into the *r*th roots of unity in F_{p^k}.
- *k* is the *embedding degree* of *E* (with respect to *r*).
 - *k* is the smallest integer such that $r | p^k 1$.
 - *k* is the order of *p* in $(\mathbb{Z}/r\mathbb{Z})^{\times}$.
 - Want k large enough so that discrete log in F[×]_{p^k} is computationally infeasible, but small enough so that pairing is easy to compute.
- *r* is a large prime dividing $\#E(\mathbb{F}_p)$
 - Define $\rho = \log p / \log r = \#$ bits of p / #bits of r.
 - If keys, signatures, ciphertexts, etc. are elements of E[r], we want ρ small to save bandwidth.
 - If curve has prime order, $\rho = 1$

ヘロト 人間 ト ヘヨト ヘヨト

- Elliptic curve pairings used in cryptography use curves *E*/F_p with a point of order *r*, and map into the *r*th roots of unity in F_{p^k}.
- *k* is the *embedding degree* of *E* (with respect to *r*).
 - k is the smallest integer such that $r \mid p^k 1$.
 - *k* is the order of *p* in $(\mathbb{Z}/r\mathbb{Z})^{\times}$.
- *r* is a large prime dividing $\#E(\mathbb{F}_p)$
 - Define $\rho = \log p / \log r = \#$ bits of p / #bits of r.
 - If keys, signatures, ciphertexts, etc. are elements of *E*[*r*], we want *ρ* small to save bandwidth.
 - If curve has prime order, $\rho = 1$.

- Elliptic curve pairings used in cryptography use curves *E*/F_p with a point of order *r*, and map into the *r*th roots of unity in F_{p^k}.
- *k* is the *embedding degree* of *E* (with respect to *r*).
 - k is the smallest integer such that $r \mid p^k 1$.
 - *k* is the order of *p* in $(\mathbb{Z}/r\mathbb{Z})^{\times}$.
 - Want k large enough so that discrete log in F[×]_{p^k} is computationally infeasible, but small enough so that pairing is easy to compute.
- *r* is a large prime dividing $#E(\mathbb{F}_p)$
 - Define $\rho = \log p / \log r = \#$ bits of p / #bits of r.
 - If keys, signatures, ciphertexts, etc. are elements of *E*[*r*], we want *ρ* small to save bandwidth.
 - If curve has prime order, $\rho = 1$.

イロン イロン イヨン イヨン

- Elliptic curve pairings used in cryptography use curves *E*/F_p with a point of order *r*, and map into the *r*th roots of unity in F_{p^k}.
- *k* is the *embedding degree* of *E* (with respect to *r*).
 - k is the smallest integer such that $r \mid p^k 1$.
 - *k* is the order of *p* in $(\mathbb{Z}/r\mathbb{Z})^{\times}$.
- *r* is a large prime dividing $\#E(\mathbb{F}_p)$
 - Define $\rho = \log p / \log r = \#$ bits of p / #bits of r.
 - If keys, signatures, ciphertexts, etc. are elements of *E*[*r*], we want *ρ* small to save bandwidth.
 - If curve has prime order, $\rho = 1$.

- Elliptic curve pairings used in cryptography use curves *E*/F_p with a point of order *r*, and map into the *r*th roots of unity in F_{p^k}.
- *k* is the *embedding degree* of *E* (with respect to *r*).
 - k is the smallest integer such that $r \mid p^k 1$.
 - *k* is the order of *p* in $(\mathbb{Z}/r\mathbb{Z})^{\times}$.
- *r* is a large prime dividing $#E(\mathbb{F}_p)$
 - Define $\rho = \log p / \log r = \#$ bits of p / #bits of r.
 - If keys, signatures, ciphertexts, etc. are elements of *E*[*r*], we want *ρ* small to save bandwidth.
 - If curve has prime order, $\rho = 1$.

Introduction to Pairings Pairings on Elliptic Curves

Pairing-friendly elliptic curves

- Balasubramanian-Koblitz: If *E*/𝔽_p is a "random" elliptic curve with an order-*r* subgroup, then *k* ∼ *r*.
 - Pairing computation on random curves is totally infeasible: If $r \sim p \sim 2^{160}$, pairing is computed in field of size $2^{2^{160}}$.
- A pairing-friendly curve is an elliptic curve with a large prime-order subgroup (ρ ≤ 2) and small embedding degree (k ≤ 50).
- Problem: construct pairing-friendly elliptic curves for specified values of *k* and number of bits in *r*.

Introduction to Pairings Pairings on Elliptic Curves

Pairing-friendly elliptic curves

- Balasubramanian-Koblitz: If *E*/𝔽_p is a "random" elliptic curve with an order-*r* subgroup, then *k* ∼ *r*.
 - Pairing computation on random curves is totally infeasible: If $r \sim p \sim 2^{160}$, pairing is computed in field of size $2^{2^{160}}$.
- A pairing-friendly curve is an elliptic curve with a large prime-order subgroup (ρ ≤ 2) and small embedding degree (k ≤ 50).
- Problem: construct pairing-friendly elliptic curves for specified values of *k* and number of bits in *r*.

・ロト ・ 同ト ・ ヨト ・ ヨト

Introduction to Pairings Pairings on Elliptic Curves

Pairing-friendly elliptic curves

- Balasubramanian-Koblitz: If *E*/𝔽_p is a "random" elliptic curve with an order-*r* subgroup, then *k* ∼ *r*.
 - Pairing computation on random curves is totally infeasible: If $r \sim p \sim 2^{160}$, pairing is computed in field of size $2^{2^{160}}$.
- A pairing-friendly curve is an elliptic curve with a large prime-order subgroup (ρ ≤ 2) and small embedding degree (k ≤ 50).
- Problem: construct pairing-friendly elliptic curves for specified values of *k* and number of bits in *r*.

Introduction to Pairings Pairings on Elliptic Curves

Pairing-friendly elliptic curves

- Balasubramanian-Koblitz: If *E*/𝔽_p is a "random" elliptic curve with an order-*r* subgroup, then *k* ∼ *r*.
 - Pairing computation on random curves is totally infeasible: If $r \sim p \sim 2^{160}$, pairing is computed in field of size $2^{2^{160}}$.
- A pairing-friendly curve is an elliptic curve with a large prime-order subgroup (ρ ≤ 2) and small embedding degree (k ≤ 50).
- Problem: construct pairing-friendly elliptic curves for specified values of k and number of bits in r.

Our Goal

 Provide a supply of pairing-friendly curves suitable for many different performance and security requirements.

Pairings on Elliptic Curves

- Since discrete logarithm problem is easier in finite fields than on elliptic curves, finite field size \mathbb{F}_{p^k} should be larger than subgroup size *r*.
- How much larger depends on level of security desired:

Security level		Extension field size	Embedding degree k	
(in bits)	r (in bits)	p ^k (in bits)	ho pprox 1	hopprox 2
	160	960 - 1280	6 – 8	3 – 4
112	224	2200 - 3600	10 - 16	5 – 8
128	256		12 – 20	6-10
192	384	8000 - 10000	20 – 26	10 – 13
256	512	14000 - 18000	28 – 36	14 – 18

Our Goal

- Provide a supply of pairing-friendly curves suitable for many different performance and security requirements.
- Since discrete logarithm problem is easier in finite fields than on elliptic curves, finite field size 𝔽_{p^k} should be larger than subgroup size *r*.

Pairings on Elliptic Curves

• How much larger depends on level of security desired:

Security level		Extension field size	Embedding degree k	
(in bits)	r (in bits)	p ^k (in bits)	ho pprox 1	hopprox 2
	160	960 - 1280	6 – 8	3 – 4
112	224	2200 - 3600	10 - 16	5 – 8
128	256		12 – 20	6 - 10
192	384	8000 - 10000	20 – 26	10 – 13
256	512	14000 - 18000	28 – 36	14 – 18

< □ > < 同 > < 回 > < 回

Our Goal

- Provide a supply of pairing-friendly curves suitable for many different performance and security requirements.
- Since discrete logarithm problem is easier in finite fields than on elliptic curves, finite field size 𝔽_{p^k} should be larger than subgroup size *r*.

Pairings on Elliptic Curves

• How much larger depends on level of security desired:

Security level		Extension field size	Embedding degree k	
(in bits)	r (in bits)	p ^k (in bits)	ho pprox 1	hopprox 2
	160	960 - 1280	6 – 8	3 – 4
112	224	2200 - 3600	10 - 16	5 – 8
128	256		12 – 20	6 - 10
192	384	8000 - 10000	20 – 26	10 – 13
256	512	14000 - 18000	28 – 36	14 – 18

< □ > < 同 > < 回 > < 回

Our Goal

- Provide a supply of pairing-friendly curves suitable for many different performance and security requirements.
- Since discrete logarithm problem is easier in finite fields than on elliptic curves, finite field size 𝔽_{p^k} should be larger than subgroup size *r*.

Pairings on Elliptic Curves

• How much larger depends on level of security desired:

Security level		Extension field size	Embedding degree k	
(in bits)	r (in bits)	p ^k (in bits)	ho pprox 1	hopprox 2
	160	960 - 1280	6 – 8	3 – 4
112	224	2200 - 3600	10 - 16	5 – 8
128	256		12 – 20	6 - 10
192	384	8000 - 10000	20 – 26	10 – 13
256	512	14000 - 18000	28 – 36	14 – 18

< □ > < 同 > < 回 > < 回

Our Goal

- Provide a supply of pairing-friendly curves suitable for many different performance and security requirements.
- Since discrete logarithm problem is easier in finite fields than on elliptic curves, finite field size \mathbb{F}_{p^k} should be larger than subgroup size *r*.

Pairings on Elliptic Curves

• How much larger depends on level of security desired:

Security level	Subgroup size	Extension field size	Embedding degree k	
(in bits)	r (in bits)	p ^k (in bits)	ho pprox 1	ho pprox 2
80	160	960 – 1280	6 – 8	3 – 4
112	224	2200 - 3600	10 – 16	5 – 8
128	256	3000 – 5000	12 – 20	6 – 10
192	384	8000 - 10000	20 – 26	10 – 13
256	512	14000 – 18000	28 – 36	14 – 18

Ordinary vs. Supersingular The Complex Multiplication Method Classification of Pairing-Friendly Elliptic Curves

Outline

- Pairings in Cryptography
 - Introduction to Pairings
 - Pairings on Elliptic Curves

2 How to Construct Pairing-Friendly Elliptic Curves

- Ordinary vs. Supersingular
- The Complex Multiplication Method
- Classification of Pairing-Friendly Elliptic Curves

3 Construction Methods

- Curves with Arbitrary Embedding Degree
 Cocks-Pinch and Dupont-Enge-Morain Methods
- Sparse Families of Pairing-Friendly Curves
 The Miyaji-Nakabayashi-Takano Method and Extensions
- Complete Families of Curves
 - Cyclotomic, Sproadic, and Scott-Barreto Families

ヘロト ヘアト ヘビト ヘ

Ordinary vs. Supersingular The Complex Multiplication Method Classification of Pairing-Friendly Elliptic Curves

Supersingular Curves

- An elliptic curve over 𝔽_p (p ≥ 5) is supersingular if #E(𝔽_p) = p + 1.
 - Supersingular curves easy to construct; e.g., y² = x³ + 1 for any p ≡ 2 (mod 3).
- If p ≥ 5, then supersingular curves over 𝑘_p have embedding degree 2.
- Supersingular curves over non-prime fields have embedding degree \leq 6.
- To obtain other embedding degrees, we must use ordinary (i.e., non-supersingular) elliptic curves.

ヘロト 人間 ト ヘヨト ヘヨト

Ordinary vs. Supersingular The Complex Multiplication Method Classification of Pairing-Friendly Elliptic Curves

Supersingular Curves

- An elliptic curve over 𝔽_p (p ≥ 5) is supersingular if #E(𝔽_p) = p + 1.
 - Supersingular curves easy to construct; e.g., y² = x³ + 1 for any p ≡ 2 (mod 3).
- If p ≥ 5, then supersingular curves over 𝑘_p have embedding degree 2.
- Supersingular curves over non-prime fields have embedding degree \leq 6.
- To obtain other embedding degrees, we must use ordinary (i.e., non-supersingular) elliptic curves.

イロン イボン イヨン イヨン

Ordinary vs. Supersingular The Complex Multiplication Method Classification of Pairing-Friendly Elliptic Curves

Supersingular Curves

- An elliptic curve over 𝔽_p (p ≥ 5) is supersingular if #E(𝔽_p) = p + 1.
 - Supersingular curves easy to construct; e.g., y² = x³ + 1 for any p ≡ 2 (mod 3).
- If p ≥ 5, then supersingular curves over 𝑘_p have embedding degree 2.
- Supersingular curves over non-prime fields have embedding degree \leq 6.
- To obtain other embedding degrees, we must use ordinary (i.e., non-supersingular) elliptic curves.

くロト (過) (目) (日)

Ordinary vs. Supersingular The Complex Multiplication Method Classification of Pairing-Friendly Elliptic Curves

Supersingular Curves

- An elliptic curve over 𝔽_p (p ≥ 5) is supersingular if #E(𝔽_p) = p + 1.
 - Supersingular curves easy to construct; e.g., y² = x³ + 1 for any p ≡ 2 (mod 3).
- If p ≥ 5, then supersingular curves over 𝑘_p have embedding degree 2.
- Supersingular curves over non-prime fields have embedding degree ≤ 6.
- To obtain other embedding degrees, we must use ordinary (i.e., non-supersingular) elliptic curves.

Ordinary vs. Supersingular The Complex Multiplication Method Classification of Pairing-Friendly Elliptic Curves

Supersingular Curves

- An elliptic curve over 𝔽_p (p ≥ 5) is supersingular if #E(𝔽_p) = p + 1.
 - Supersingular curves easy to construct; e.g., y² = x³ + 1 for any p ≡ 2 (mod 3).
- If p ≥ 5, then supersingular curves over 𝑘_p have embedding degree 2.
- Supersingular curves over non-prime fields have embedding degree ≤ 6.
- To obtain other embedding degrees, we must use ordinary (i.e., non-supersingular) elliptic curves.

Ordinary vs. Supersingular The Complex Multiplication Method Classification of Pairing-Friendly Elliptic Curves

Ordinary Elliptic Curves: The General Strategy

To construct pairing-friendly ordinary elliptic curves:

- Fix k, find primes p and r such that there exists a curve E/F_p with a subgroup of order r and embedding degree k.
- Use Complex Multiplication method to construct the equation for *E*.

Ordinary vs. Supersingular The Complex Multiplication Method Classification of Pairing-Friendly Elliptic Curves

Ordinary Elliptic Curves: The General Strategy

To construct pairing-friendly ordinary elliptic curves:

- Fix k, find primes p and r such that there exists a curve E/F_p with a subgroup of order r and embedding degree k.
- Use Complex Multiplication method to construct the equation for *E*.

Ordinary vs. Supersingular The Complex Multiplication Method Classification of Pairing-Friendly Elliptic Curves

Outline

- Pairings in Cryptography
 - Introduction to Pairings
 - Pairings on Elliptic Curves
- 2 How to Construct Pairing-Friendly Elliptic Curves
 - Ordinary vs. Supersingular
 - The Complex Multiplication Method
 - Classification of Pairing-Friendly Elliptic Curves
- 3 Construction Methods
 - Curves with Arbitrary Embedding Degree
 Cocks-Pinch and Dupont-Enge-Morain Methods
 - Sparse Families of Pairing-Friendly Curves
 The Miyaji-Nakabayashi-Takano Method and Extensions
 - Complete Families of Curves
 - Cyclotomic, Sproadic, and Scott-Barreto Families

Ordinary vs. Supersingular The Complex Multiplication Method Classification of Pairing-Friendly Elliptic Curves

The Complex Multiplication Method

- Originally due to Atkin and Morain for primality testing application.
- Define the *trace* of *E* to be *t* such that #*E*(𝔽_{*p*}) = *p* + 1 − *t*.
 Hasse bound: if *E* ordinary then |*t*| < 2√*p*.
- Define the *Complex Multiplication (CM) discriminant* of *E* to be the square-free part of $4p t^2$.
- For given square-free D > 0, Complex Multiplication (CM) method constructs elliptic curve with CM discriminant D.

Used to construct curves with specified number of points.

くロト (過) (目) (日)

Ordinary vs. Supersingular The Complex Multiplication Method Classification of Pairing-Friendly Elliptic Curves

The Complex Multiplication Method

- Originally due to Atkin and Morain for primality testing application.
- Define the *trace* of *E* to be *t* such that $\#E(\mathbb{F}_p) = p + 1 t$.

• Hasse bound: if *E* ordinary then $|t| < 2\sqrt{p}$.

- Define the *Complex Multiplication (CM) discriminant* of *E* to be the square-free part of $4p t^2$.
- For given square-free *D* > 0, Complex Multiplication (CM) method constructs elliptic curve with CM discriminant *D*.

Used to construct curves with specified number of points.

イロン イ理 とく ヨン イヨン

Ordinary vs. Supersingular The Complex Multiplication Method Classification of Pairing-Friendly Elliptic Curves

The Complex Multiplication Method

- Originally due to Atkin and Morain for primality testing application.
- Define the *trace* of *E* to be *t* such that $#E(\mathbb{F}_p) = p + 1 t$.
 - Hasse bound: if *E* ordinary then $|t| < 2\sqrt{p}$.
- Define the *Complex Multiplication (CM) discriminant* of *E* to be the square-free part of $4p t^2$.
- For given square-free *D* > 0, Complex Multiplication (CM) method constructs elliptic curve with CM discriminant *D*.

Used to construct curves with specified number of points.

イロン イ理 とく ヨン イヨン

Ordinary vs. Supersingular The Complex Multiplication Method Classification of Pairing-Friendly Elliptic Curves

The Complex Multiplication Method

- Originally due to Atkin and Morain for primality testing application.
- Define the *trace* of *E* to be *t* such that #*E*(𝔽_{*p*}) = *p* + 1 − *t*.
 Hasse bound: if *E* ordinary then |*t*| < 2√*p*.
- Define the Complex Multiplication (CM) discriminant of E to be the square-free part of 4p - t².
- For given square-free D > 0, Complex Multiplication (CM) method constructs elliptic curve with CM discriminant D.

・ロト ・厚ト ・ヨト・
Ordinary vs. Supersingular The Complex Multiplication Method Classification of Pairing-Friendly Elliptic Curves

The Complex Multiplication Method

- Originally due to Atkin and Morain for primality testing application.
- Define the *trace* of *E* to be *t* such that #*E*(𝔽_{*p*}) = *p* + 1 − *t*.
 Hasse bound: if *E* ordinary then |*t*| < 2√*p*.
- Define the Complex Multiplication (CM) discriminant of E to be the square-free part of 4p - t².
- For given square-free *D* > 0, Complex Multiplication (CM) method constructs elliptic curve with CM discriminant *D*.

• Used to construct curves with specified number of points.

・ロット (雪) () () () ()

Ordinary vs. Supersingular The Complex Multiplication Method Classification of Pairing-Friendly Elliptic Curves

The Complex Multiplication Method

- Originally due to Atkin and Morain for primality testing application.
- Define the *trace* of *E* to be *t* such that #*E*(𝔽_{*p*}) = *p* + 1 − *t*.
 Hasse bound: if *E* ordinary then |*t*| < 2√*p*.
- Define the Complex Multiplication (CM) discriminant of E to be the square-free part of 4p - t².
- For given square-free *D* > 0, Complex Multiplication (CM) method constructs elliptic curve with CM discriminant *D*.
 - Used to construct curves with specified number of points.

Ordinary vs. Supersingular The Complex Multiplication Method Classification of Pairing-Friendly Elliptic Curves

Effectiveness of the CM Method

- Running time of CM method depends on the class number h_D of $\mathbb{Q}(\sqrt{-D})$.
 - Bottleneck is computing the *Hilbert class polynomial*, a polynomial of degree *h*_D.
 - Best known algorithms run in (roughly) $O(h_D^2) = O(D)$ (Enge).
- Can be efficiently implemented if h_D not too large.
 - Current record is $h_D = 10^5$.
 - Equivalent to $D \approx 10^{10}$.

Ordinary vs. Supersingular The Complex Multiplication Method Classification of Pairing-Friendly Elliptic Curves

Effectiveness of the CM Method

- Running time of CM method depends on the class number h_D of $\mathbb{Q}(\sqrt{-D})$.
 - Bottleneck is computing the *Hilbert class polynomial*, a polynomial of degree *h*_D.
 - Best known algorithms run in (roughly) $O(h_D^2) = O(D)$ (Enge).
- Can be efficiently implemented if h_D not too large.
 - Current record is $h_D = 10^5$.
 - Equivalent to $D \approx 10^{10}$.

ヘロト 人間 ト ヘヨト ヘヨト

Ordinary vs. Supersingular The Complex Multiplication Method Classification of Pairing-Friendly Elliptic Curves

Effectiveness of the CM Method

- Running time of CM method depends on the class number h_D of $\mathbb{Q}(\sqrt{-D})$.
 - Bottleneck is computing the Hilbert class polynomial, a polynomial of degree h_D.
 - Best known algorithms run in (roughly) $O(h_D^2) = O(D)$ (Enge).
- Can be efficiently implemented if h_D not too large.
 - Current record is $h_D = 10^5$.
 - Equivalent to $D \approx 10^{10}$.

ヘロト 人間 ト ヘヨト ヘヨト

Ordinary vs. Supersingular The Complex Multiplication Method Classification of Pairing-Friendly Elliptic Curves

Effectiveness of the CM Method

- Running time of CM method depends on the class number h_D of $\mathbb{Q}(\sqrt{-D})$.
 - Bottleneck is computing the Hilbert class polynomial, a polynomial of degree h_D.
 - Best known algorithms run in (roughly) $O(h_D^2) = O(D)$ (Enge).
- Can be efficiently implemented if h_D not too large.
 - Current record is $h_D = 10^5$.
 - Equivalent to $D \approx 10^{10}$.

くロト (過) (目) (日)

Ordinary vs. Supersingular The Complex Multiplication Method Classification of Pairing-Friendly Elliptic Curves

Effectiveness of the CM Method

- Running time of CM method depends on the class number h_D of $\mathbb{Q}(\sqrt{-D})$.
 - Bottleneck is computing the *Hilbert class polynomial*, a polynomial of degree *h*_D.
 - Best known algorithms run in (roughly) $O(h_D^2) = O(D)$ (Enge).
- Can be efficiently implemented if h_D not too large.
 - Current record is $h_D = 10^5$.
 - Equivalent to $D \approx 10^{10}$.

Ordinary vs. Supersingular The Complex Multiplication Method Classification of Pairing-Friendly Elliptic Curves

Effectiveness of the CM Method

- Running time of CM method depends on the class number h_D of $\mathbb{Q}(\sqrt{-D})$.
 - Bottleneck is computing the *Hilbert class polynomial*, a polynomial of degree *h*_D.
 - Best known algorithms run in (roughly) $O(h_D^2) = O(D)$ (Enge).
- Can be efficiently implemented if h_D not too large.
 - Current record is $h_D = 10^5$.
 - Equivalent to $D \approx 10^{10}$.

- Fix an embedding degree *k*, and look for parameters *t* = trace, *r* = subgroup size, *p* = field size, satisfying:
 - *p* and *r* are prime.
 - r divides p + 1 t.
 - $E(\mathbb{F}_p)$ has a point of order r.
 - *r* divides Φ_k(p), where Φ_k is the *k*th cyclotomic polynomial.
 p has exact order *k* in (Z/rZ)[×].
 - 4 $p t^2 = Dy^2$ for some sufficiently small *D* and some $y \in \mathbb{Z}$. (This is the "CM equation.")
- For such *t*, *r*, *p*, if *D* is not too large (~ 10¹⁰) we can construct an elliptic curve *E* over 𝔽_p with an order-*r* subgroup and embedding degree *k*.

イロト 不得 とくほと くほとう

ъ

- Fix an embedding degree *k*, and look for parameters *t* = trace, *r* = subgroup size, *p* = field size, satisfying:
 - *p* and *r* are prime.
 - r divides p + 1 t.
 - $E(\mathbb{F}_p)$ has a point of order r.
 - *r* divides Φ_k(p), where Φ_k is the *k*th cyclotomic polynomial.
 p has exact order *k* in (Z/rZ)[×].
 - 4 $p t^2 = Dy^2$ for some sufficiently small *D* and some $y \in \mathbb{Z}$. (This is the "CM equation.")
- For such *t*, *r*, *p*, if *D* is not too large (~ 10¹⁰) we can construct an elliptic curve *E* over 𝔽_p with an order-*r* subgroup and embedding degree *k*.

イロト 不得 とくほ とくほ とう

- Fix an embedding degree *k*, and look for parameters *t* = trace, *r* = subgroup size, *p* = field size, satisfying:
 - *p* and *r* are prime.
 - (2) r divides p+1-t.
 - $E(\mathbb{F}_p)$ has a point of order *r*.
 - *r* divides Φ_k(p), where Φ_k is the kth cyclotomic polynomial.
 p has exact order k in (Z/rZ)[×].
 - 4 $p t^2 = Dy^2$ for some sufficiently small *D* and some $y \in \mathbb{Z}$. (This is the "CM equation.")
- For such *t*, *r*, *p*, if *D* is not too large (~ 10¹⁰) we can construct an elliptic curve *E* over 𝔽_{*p*} with an order-*r* subgroup and embedding degree *k*.

ヘロア 人間 アメヨア 人口 ア

- Fix an embedding degree *k*, and look for parameters *t* = trace, *r* = subgroup size, *p* = field size, satisfying:
 - *p* and *r* are prime.
 - (2) r divides p+1-t.
 - $E(\mathbb{F}_p)$ has a point of order *r*.
 - *r* divides Φ_k(p), where Φ_k is the kth cyclotomic polynomial.
 p has exact order k in (Z/rZ)[×].
 - ④ $4p t^2 = Dy^2$ for some sufficiently small *D* and some *y* ∈ ℤ. (This is the "CM equation.")
- For such *t*, *r*, *p*, if *D* is not too large (~ 10¹⁰) we can construct an elliptic curve *E* over 𝔽_p with an order-*r* subgroup and embedding degree *k*.

ヘロア 人間 アメヨア 人口 ア

- Fix an embedding degree *k*, and look for parameters *t* = trace, *r* = subgroup size, *p* = field size, satisfying:
 - *p* and *r* are prime.
 - 2 r divides p + 1 t.
 - $E(\mathbb{F}_p)$ has a point of order *r*.
 - or divides $\Phi_k(p)$, where Φ_k is the *k*th cyclotomic polynomial.
 - *p* has exact order *k* in $(\mathbb{Z}/r\mathbb{Z})^{\times}$.
 - 4 $p t^2 = Dy^2$ for some sufficiently small *D* and some $y \in \mathbb{Z}$. (This is the "CM equation.")
- For such *t*, *r*, *p*, if *D* is not too large (~ 10¹⁰) we can construct an elliptic curve *E* over 𝔽_{*p*} with an order-*r* subgroup and embedding degree *k*.

- Fix an embedding degree *k*, and look for parameters *t* = trace, *r* = subgroup size, *p* = field size, satisfying:
 - *p* and *r* are prime.
 - 2 r divides p + 1 t.
 - $E(\mathbb{F}_p)$ has a point of order *r*.
 - or divides $\Phi_k(p)$, where Φ_k is the *k*th cyclotomic polynomial.
 - *p* has exact order *k* in $(\mathbb{Z}/r\mathbb{Z})^{\times}$.
 - 4 $p t^2 = Dy^2$ for some sufficiently small *D* and some $y \in \mathbb{Z}$. (This is the "CM equation.")
- For such *t*, *r*, *p*, if *D* is not too large (~ 10¹⁰) we can construct an elliptic curve *E* over 𝔽_{*p*} with an order-*r* subgroup and embedding degree *k*.

- Fix an embedding degree *k*, and look for parameters *t* = trace, *r* = subgroup size, *p* = field size, satisfying:
 - *p* and *r* are prime.
 - 2 r divides p + 1 t.
 - $E(\mathbb{F}_p)$ has a point of order *r*.
 - If r divides $\Phi_k(p)$, where Φ_k is the *k*th cyclotomic polynomial.
 - p has exact order k in $(\mathbb{Z}/r\mathbb{Z})^{\times}$.
 - 4 $p t^2 = Dy^2$ for some sufficiently small *D* and some $y \in \mathbb{Z}$. (This is the "CM equation.")
- For such *t*, *r*, *p*, if *D* is not too large (~ 10¹⁰) we can construct an elliptic curve *E* over 𝔽_{*p*} with an order-*r* subgroup and embedding degree *k*.

- Fix an embedding degree *k*, and look for parameters *t* = trace, *r* = subgroup size, *p* = field size, satisfying:
 - *p* and *r* are prime.
 - 2 r divides p + 1 t.
 - $E(\mathbb{F}_p)$ has a point of order *r*.
 - or divides $\Phi_k(p)$, where Φ_k is the *k*th cyclotomic polynomial.
 - p has exact order k in $(\mathbb{Z}/r\mathbb{Z})^{\times}$.
 - 4 $p t^2 = Dy^2$ for some sufficiently small *D* and some $y \in \mathbb{Z}$. (This is the "CM equation.")
- For such *t*, *r*, *p*, if *D* is not too large (~ 10¹⁰) we can construct an elliptic curve *E* over 𝔽_{*p*} with an order-*r* subgroup and embedding degree *k*.

Ordinary vs. Supersingular The Complex Multiplication Method Classification of Pairing-Friendly Elliptic Curves

Observations about the CM Method

- The embedding degree condition r | Φ_k(p) can be replaced with r | Φ_k(t − 1).
 - *r* divides p + 1 t implies $p \equiv t 1 \pmod{r}$.
- We can use $#E(\mathbb{F}_p) = p + 1 t$ to write the "CM equation" in two ways:

$$Dy^2 = 4p - t^2$$

 $Dy^2 = 4hr - (t - 2)^2$.

h is a "cofactor" satisfying #*E*(𝔽_p) = *hr*.
 Set *h* = 1 if we want #*E*(𝔽_p) to be prime

イロン イボン イヨン イヨン

Ordinary vs. Supersingular The Complex Multiplication Method Classification of Pairing-Friendly Elliptic Curves

Observations about the CM Method

- The embedding degree condition r | Φ_k(p) can be replaced with r | Φ_k(t − 1).
 - *r* divides p + 1 t implies $p \equiv t 1 \pmod{r}$.
- We can use #E(𝔽_p) = p + 1 − t to write the "CM equation" in two ways:

$$Dy^2 = 4p - t^2$$

 $Dy^2 = 4hr - (t - 2)^2$.

h is a "cofactor" satisfying #*E*(𝔽_p) = *hr*.
 Set *h* = 1 if we want #*E*(𝔽_p) to be prime

イロン イボン イヨン イヨン

Ordinary vs. Supersingular The Complex Multiplication Method Classification of Pairing-Friendly Elliptic Curves

Observations about the CM Method

- The embedding degree condition r | Φ_k(p) can be replaced with r | Φ_k(t − 1).
 - *r* divides p + 1 t implies $p \equiv t 1 \pmod{r}$.
- We can use #E(𝔽_p) = p + 1 − t to write the "CM equation" in two ways:

$$Dy^{2} = 4p - t^{2}$$

$$Dy^{2} = 4hr - (t - 2)^{2}.$$

- *h* is a "cofactor" satisfying $\#E(\mathbb{F}_p) = hr$.
- Set h = 1 if we want $\#E(\mathbb{F}_p)$ to be prime.

・ロン ・ 同 と ・ ヨ と ・ ヨ と

Ordinary vs. Supersingular The Complex Multiplication Method Classification of Pairing-Friendly Elliptic Curves

Observations about the CM Method

- The embedding degree condition r | Φ_k(p) can be replaced with r | Φ_k(t − 1).
 - *r* divides p + 1 t implies $p \equiv t 1 \pmod{r}$.
- We can use #E(𝔽_p) = p + 1 − t to write the "CM equation" in two ways:

$$Dy^{2} = 4p - t^{2}$$

$$Dy^{2} = 4hr - (t - 2)^{2}.$$

h is a "cofactor" satisfying #*E*(𝔽_{*p*}) = *hr*.
Set *h* = 1 if we want #*E*(𝔽_{*p*}) to be prime.

Ordinary vs. Supersingular The Complex Multiplication Method Classification of Pairing-Friendly Elliptic Curves

Observations about the CM Method

- The embedding degree condition r | Φ_k(p) can be replaced with r | Φ_k(t − 1).
 - *r* divides p + 1 t implies $p \equiv t 1 \pmod{r}$.
- We can use #E(𝔽_p) = p + 1 − t to write the "CM equation" in two ways:

$$Dy^{2} = 4p - t^{2}$$

$$Dy^{2} = 4hr - (t - 2)^{2}.$$

- *h* is a "cofactor" satisfying $\#E(\mathbb{F}_p) = hr$.
- Set h = 1 if we want $\#E(\mathbb{F}_p)$ to be prime.

Ordinary vs. Supersingular The Complex Multiplication Method Classification of Pairing-Friendly Elliptic Curves

Outline

- Pairings in Cryptography
 - Introduction to Pairings
 - Pairings on Elliptic Curves

Provide the second struct Pairing-Friendly Elliptic Curves

- Ordinary vs. Supersingular
- The Complex Multiplication Method
- Classification of Pairing-Friendly Elliptic Curves

3 Construction Methods

- Curves with Arbitrary Embedding Degree
 Cocks-Pinch and Dupont-Enge-Morain Methods
- Sparse Families of Pairing-Friendly Curves
 The Miyaji-Nakabayashi-Takano Method and Extensions
- Complete Families of Curves
 - Cyclotomic, Sproadic, and Scott-Barreto Families

Ordinary vs. Supersingular The Complex Multiplication Method Classification of Pairing-Friendly Elliptic Curves

Our Classification

- Curves not in families: Construction gives t, r, p directly; repeat construction to get different curve parameters.
- Families of curves: Parametrize t, r, p as polynomials t(x), r(x), p(x); plug in x to get curve parameters.
 - Sparse families: Solutions (x, y) to 4p(x) t(x)² = Dy² grow exponentially.
 - Complete families: Solutions (x, y) to 4p(x) t(x)² = Dy² exist for any x.
 - Further classified by properties of r(x).

Ordinary vs. Supersingular The Complex Multiplication Method Classification of Pairing-Friendly Elliptic Curves

Our Classification

- Curves not in families: Construction gives t, r, p directly; repeat construction to get different curve parameters.
- Families of curves: Parametrize t, r, p as polynomials t(x), r(x), p(x); plug in x to get curve parameters.
 - Sparse families: Solutions (x, y) to $4p(x) t(x)^2 = Dy^2$ grow exponentially.
 - Complete families: Solutions (x, y) to 4p(x) t(x)² = Dy² exist for any x.
 - Further classified by properties of r(x).

Ordinary vs. Supersingular The Complex Multiplication Method Classification of Pairing-Friendly Elliptic Curves

Our Classification

- Curves not in families: Construction gives t, r, p directly; repeat construction to get different curve parameters.
- Families of curves: Parametrize t, r, p as polynomials t(x), r(x), p(x); plug in x to get curve parameters.
 - Sparse families: Solutions (x, y) to $4p(x) t(x)^2 = Dy^2$ grow exponentially.
 - 2 Complete families: Solutions (x, y) to $4p(x) t(x)^2 = Dy^2$ exist for any x.
 - Further classified by properties of r(x).

Ordinary vs. Supersingular The Complex Multiplication Method Classification of Pairing-Friendly Elliptic Curves

Our Classification

- Curves not in families: Construction gives t, r, p directly; repeat construction to get different curve parameters.
- Families of curves: Parametrize t, r, p as polynomials t(x), r(x), p(x); plug in x to get curve parameters.
 - Sparse families: Solutions (x, y) to $4p(x) t(x)^2 = Dy^2$ grow exponentially.
 - Complete families: Solutions (x, y) to $4p(x) t(x)^2 = Dy^2$ exist for any *x*.

• Further classified by properties of r(x).

Ordinary vs. Supersingular The Complex Multiplication Method Classification of Pairing-Friendly Elliptic Curves

Our Classification

- Curves not in families: Construction gives t, r, p directly; repeat construction to get different curve parameters.
- Families of curves: Parametrize t, r, p as polynomials t(x), r(x), p(x); plug in x to get curve parameters.
 - Sparse families: Solutions (x, y) to $4p(x) t(x)^2 = Dy^2$ grow exponentially.
 - Complete families: Solutions (x, y) to $4p(x) t(x)^2 = Dy^2$ exist for any *x*.
 - Further classified by properties of r(x).

Ordinary vs. Supersingular The Complex Multiplication Method Classification of Pairing-Friendly Elliptic Curves

Classification of Pairing-Friendly Elliptic Curves

- - E

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

Outline

- Pairings in Cryptography
 - Introduction to Pairings
 - Pairings on Elliptic Curves
- 2 How to Construct Pairing-Friendly Elliptic Curves
 - Ordinary vs. Supersingular
 - The Complex Multiplication Method
 - Classification of Pairing-Friendly Elliptic Curves

3 Construction Methods

- Curves with Arbitrary Embedding Degree
 Cocks-Pinch and Dupont-Enge-Morain Methods
- Sparse Families of Pairing-Friendly Curves
 The Miyaji-Nakabayashi-Takano Method and Extensions
- Complete Families of Curves
 - Cyclotomic, Sproadic, and Scott-Barreto Families

ヘロト ヘアト ヘヨト ヘ

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

Overview of the Cocks-Pinch Method

• Recall: for fixed *D*, *k*, we are looking for *t*, *r*, *p* satisfying certain divisibility conditions and the CM equation

$$Dy^2 = 4p - t^2.$$

- Cocks-Pinch strategy: Choose *r*, compute *t* satisfying divisibility conditions, compute *y*, *p* satisfying CM equation.
 - Good for constructing curves with arbitrary k.
 - Can't construct curves of prime order; usually $\rho \approx 2$.
 - Many curves possible, easy to specify bit sizes.
 - Has been generalized to produce families of curves.

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

Overview of the Cocks-Pinch Method

• Recall: for fixed *D*, *k*, we are looking for *t*, *r*, *p* satisfying certain divisibility conditions and the CM equation

$$Dy^2 = 4p - t^2.$$

- Cocks-Pinch strategy: Choose r, compute t satisfying divisibility conditions, compute y, p satisfying CM equation.
 - Good for constructing curves with arbitrary *k*.
 - Can't construct curves of prime order; usually $\rho \approx 2$.
 - Many curves possible, easy to specify bit sizes.
 - Has been generalized to produce families of curves.

ヘロト ヘアト ヘヨト ヘ

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

Overview of the Cocks-Pinch Method

 Recall: for fixed D, k, we are looking for t, r, p satisfying certain divisibility conditions and the CM equation

$$Dy^2 = 4p - t^2.$$

- Cocks-Pinch strategy: Choose r, compute t satisfying divisibility conditions, compute y, p satisfying CM equation.
 - Good for constructing curves with arbitrary *k*.
 - Can't construct curves of prime order; usually $\rho \approx$ 2.
 - Many curves possible, easy to specify bit sizes.
 - Has been generalized to produce families of curves.

ヘロト ヘアト ヘヨト ヘ

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

Overview of the Cocks-Pinch Method

• Recall: for fixed *D*, *k*, we are looking for *t*, *r*, *p* satisfying certain divisibility conditions and the CM equation

$$Dy^2 = 4p - t^2.$$

- Cocks-Pinch strategy: Choose r, compute t satisfying divisibility conditions, compute y, p satisfying CM equation.
 - Good for constructing curves with arbitrary *k*.
 - Can't construct curves of prime order; usually $\rho \approx$ 2.
 - Many curves possible, easy to specify bit sizes.
 - Has been generalized to produce families of curves.

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

Overview of the Cocks-Pinch Method

• Recall: for fixed *D*, *k*, we are looking for *t*, *r*, *p* satisfying certain divisibility conditions and the CM equation

$$Dy^2 = 4p - t^2.$$

- Cocks-Pinch strategy: Choose r, compute t satisfying divisibility conditions, compute y, p satisfying CM equation.
 - Good for constructing curves with arbitrary *k*.
 - Can't construct curves of prime order; usually $\rho \approx$ 2.
 - Many curves possible, easy to specify bit sizes.
 - Has been generalized to produce families of curves.

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

Overview of the Cocks-Pinch Method

• Recall: for fixed *D*, *k*, we are looking for *t*, *r*, *p* satisfying certain divisibility conditions and the CM equation

$$Dy^2 = 4p - t^2.$$

- Cocks-Pinch strategy: Choose r, compute t satisfying divisibility conditions, compute y, p satisfying CM equation.
 - Good for constructing curves with arbitrary *k*.
 - Can't construct curves of prime order; usually $\rho \approx$ 2.
 - Many curves possible, easy to specify bit sizes.
 - Has been generalized to produce families of curves.

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

The Cocks-Pinch Method

- Fix D, k, and choose a prime r.
 - Require that k divides r 1 and -D is a square mod r.
- ② Compute $t' = 1 + x^{(r-1)/k}$ for x a generator of $(\mathbb{Z}/r\mathbb{Z})^{\times}$.
- 3 Compute $y' = (t' 2)/\sqrt{-D} \pmod{r}$.
- I Lift t', y' to integers t, y, and compute $p = (t^2 + Dy^2)/4$ (in \mathbb{Q}).
- If *p* is an integer and prime, use CM method to construct elliptic curve over \mathbb{F}_p with an order-*r* subgroup.
- *y* is constructed so that CM equation $Dy^2 = 4p t^2$ is automatically satisfied.
- Since t', y' are essentially random integers in [0, r), p ≈ r², so ρ ≈ 2.

ヘロア 人間 アメヨア 人口 ア
Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

The Cocks-Pinch Method

- Fix D, k, and choose a prime r.
 - Require that k divides r 1 and -D is a square mod r.
- ② Compute $t' = 1 + x^{(r-1)/k}$ for x a generator of $(\mathbb{Z}/r\mathbb{Z})^{\times}$.
- 3 Compute $y' = (t' 2)/\sqrt{-D} \pmod{r}$.
- I Lift t', y' to integers t, y, and compute $p = (t^2 + Dy^2)/4$ (in \mathbb{Q}).
- If *p* is an integer and prime, use CM method to construct elliptic curve over \mathbb{F}_p with an order-*r* subgroup.
- *y* is constructed so that CM equation $Dy^2 = 4p t^2$ is automatically satisfied.
- Since t', y' are essentially random integers in [0, r), p ≈ r², so ρ ≈ 2.

ヘロア 人間 アメヨア 人口 ア

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

The Cocks-Pinch Method

- Fix D, k, and choose a prime r.
 - Require that k divides r 1 and -D is a square mod r.
- 2 Compute $t' = 1 + x^{(r-1)/k}$ for x a generator of $(\mathbb{Z}/r\mathbb{Z})^{\times}$.
- 3 Compute $y' = (t' 2)/\sqrt{-D} \pmod{r}$.
- I Lift t', y' to integers t, y, and compute $p = (t^2 + Dy^2)/4$ (in \mathbb{Q}).
- If *p* is an integer and prime, use CM method to construct elliptic curve over \mathbb{F}_p with an order-*r* subgroup.
- *y* is constructed so that CM equation $Dy^2 = 4p t^2$ is automatically satisfied.
- Since t', y' are essentially random integers in [0, r), p ≈ r², so ρ ≈ 2.

ヘロン ヘアン ヘビン ヘビン

÷.

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

The Cocks-Pinch Method

- Fix D, k, and choose a prime r.
 - Require that k divides r 1 and -D is a square mod r.
- 2 Compute $t' = 1 + x^{(r-1)/k}$ for x a generator of $(\mathbb{Z}/r\mathbb{Z})^{\times}$.
- Compute $y' = (t' 2)/\sqrt{-D} \pmod{r}$.
- I Lift t', y' to integers t, y, and compute $p = (t^2 + Dy^2)/4$ (in \mathbb{Q}).
- If p is an integer and prime, use CM method to construct elliptic curve over \mathbb{F}_p with an order-r subgroup.
- *y* is constructed so that CM equation $Dy^2 = 4p t^2$ is automatically satisfied.
- Since t', y' are essentially random integers in [0, r), p ≈ r², so ρ ≈ 2.

ヘロン ヘアン ヘビン ヘビン

-

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

The Cocks-Pinch Method

- Fix D, k, and choose a prime r.
 - Require that k divides r 1 and -D is a square mod r.
- 2 Compute $t' = 1 + x^{(r-1)/k}$ for x a generator of $(\mathbb{Z}/r\mathbb{Z})^{\times}$.
- Compute $y' = (t' 2)/\sqrt{-D} \pmod{r}$.
- Solution Lift t', y' to integers t, y, and compute $p = (t^2 + Dy^2)/4$ (in \mathbb{Q}).
- If *p* is an integer and prime, use CM method to construct elliptic curve over \mathbb{F}_p with an order-*r* subgroup.
- y is constructed so that CM equation $Dy^2 = 4p t^2$ is automatically satisfied.
- Since t', y' are essentially random integers in [0, r), p ≈ r², so ρ ≈ 2.

・ロト ・ 理 ト ・ ヨ ト ・

э.

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

The Cocks-Pinch Method

- Fix D, k, and choose a prime r.
 - Require that k divides r 1 and -D is a square mod r.
- 2 Compute $t' = 1 + x^{(r-1)/k}$ for x a generator of $(\mathbb{Z}/r\mathbb{Z})^{\times}$.
- Compute $y' = (t' 2)/\sqrt{-D} \pmod{r}$.
- Solution Lift t', y' to integers t, y, and compute $p = (t^2 + Dy^2)/4$ (in \mathbb{Q}).
- Solution If p is an integer and prime, use CM method to construct elliptic curve over \mathbb{F}_p with an order-r subgroup.
 - y is constructed so that CM equation $Dy^2 = 4p t^2$ is automatically satisfied.
 - Since t', y' are essentially random integers in [0, r), p ≈ r², so ρ ≈ 2.

・ロト ・ 理 ト ・ ヨ ト ・

-

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

The Cocks-Pinch Method

- Fix D, k, and choose a prime r.
 - Require that k divides r 1 and -D is a square mod r.
- 2 Compute $t' = 1 + x^{(r-1)/k}$ for x a generator of $(\mathbb{Z}/r\mathbb{Z})^{\times}$.
- Compute $y' = (t' 2)/\sqrt{-D} \pmod{r}$.
- Solution Lift t', y' to integers t, y, and compute $p = (t^2 + Dy^2)/4$ (in \mathbb{Q}).
- Solution If p is an integer and prime, use CM method to construct elliptic curve over \mathbb{F}_p with an order-r subgroup.
 - y is constructed so that CM equation $Dy^2 = 4p t^2$ is automatically satisfied.
 - Since t', y' are essentially random integers in [0, r), p ≈ r², so ρ ≈ 2.

・ロト ・ 理 ト ・ ヨ ト ・

-

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

The Cocks-Pinch Method

- Fix D, k, and choose a prime r.
 - Require that k divides r 1 and -D is a square mod r.
- 2 Compute $t' = 1 + x^{(r-1)/k}$ for x a generator of $(\mathbb{Z}/r\mathbb{Z})^{\times}$.
- Compute $y' = (t' 2)/\sqrt{-D} \pmod{r}$.
- Solution Lift t', y' to integers t, y, and compute $p = (t^2 + Dy^2)/4$ (in \mathbb{Q}).
- Solution If p is an integer and prime, use CM method to construct elliptic curve over \mathbb{F}_p with an order-r subgroup.
 - y is constructed so that CM equation $Dy^2 = 4p t^2$ is automatically satisfied.
 - Since t', y' are essentially random integers in [0, r), p ≈ r², so ρ ≈ 2.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

Overview of the Dupont-Enge-Morain Method

• Recall: for fixed *D*, *k*, we are looking for *t*, *r*, *p* satisfying certain divisibility conditions and the CM equation

$$Dy^2 = 4p - t^2$$

- Dupont-Enge-Morain strategy: Choose *D*, *y*, use resultants to find *t* and *r* simultaneously, compute *p* such that CM equation is satisfied.
 - Good for constructing curves with arbitrary k.
 - Can't construct curves of prime order; usually ho pprox 2.
 - Has not been generalized to produce families of curves.

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

Overview of the Dupont-Enge-Morain Method

 Recall: for fixed D, k, we are looking for t, r, p satisfying certain divisibility conditions and the CM equation

$$Dy^2 = 4p - t^2$$

- Dupont-Enge-Morain strategy: Choose *D*, *y*, use resultants to find *t* and *r* simultaneously, compute *p* such that CM equation is satisfied.
 - Good for constructing curves with arbitrary *k*.
 - Can't construct curves of prime order; usually $\rho \approx$ 2.
 - Has not been generalized to produce families of curves.

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

Overview of the Dupont-Enge-Morain Method

 Recall: for fixed D, k, we are looking for t, r, p satisfying certain divisibility conditions and the CM equation

$$Dy^2 = 4p - t^2$$

- Dupont-Enge-Morain strategy: Choose *D*, *y*, use resultants to find *t* and *r* simultaneously, compute *p* such that CM equation is satisfied.
 - Good for constructing curves with arbitrary *k*.
 - Can't construct curves of prime order; usually $ho \approx$ 2.
 - Has not been generalized to produce families of curves.

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

Overview of the Dupont-Enge-Morain Method

 Recall: for fixed D, k, we are looking for t, r, p satisfying certain divisibility conditions and the CM equation

$$Dy^2 = 4p - t^2$$

- Dupont-Enge-Morain strategy: Choose *D*, *y*, use resultants to find *t* and *r* simultaneously, compute *p* such that CM equation is satisfied.
 - Good for constructing curves with arbitrary *k*.
 - Can't construct curves of prime order; usually $\rho \approx$ 2.
 - Has not been generalized to produce families of curves.

ヘロト ヘアト ヘヨト ヘ

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

Overview of the Dupont-Enge-Morain Method

 Recall: for fixed D, k, we are looking for t, r, p satisfying certain divisibility conditions and the CM equation

$$Dy^2 = 4p - t^2$$

- Dupont-Enge-Morain strategy: Choose *D*, *y*, use resultants to find *t* and *r* simultaneously, compute *p* such that CM equation is satisfied.
 - Good for constructing curves with arbitrary *k*.
 - Can't construct curves of prime order; usually $\rho \approx$ 2.
 - Has not been generalized to produce families of curves.

ヘロト ヘアト ヘヨト ヘ

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

The Dupont-Enge-Morain Method

Fix k, choose D, y, compute resultant

$$\text{Res}_t(\Phi_k(t-1), Dy^2 - (t-2)^2).$$

- 2 If resultant has a large prime factor *r*, then can compute *t'* such that $\Phi_k(t-1) \equiv Dy^2 (t-2) \equiv 0 \pmod{r}$.
- Solution Lift t' to integer t, compute $p = (t^2 + Dy^2)/4$.
- If *p* is an integer and prime, use CM method to construct elliptic curve over \mathbb{F}_p with an order-*r* subgroup and embedding degree *k*.
- Since t' is essentially random in [0, r), $p \approx r^2$, so $\rho \approx 2$.

・ロト ・ 同ト ・ ヨト ・ ヨト

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

The Dupont-Enge-Morain Method

Fix k, choose D, y, compute resultant

$$\text{Res}_t(\Phi_k(t-1), Dy^2 - (t-2)^2).$$

② If resultant has a large prime factor *r*, then can compute *t'* such that $\Phi_k(t-1) \equiv Dy^2 - (t-2) \equiv 0 \pmod{r}$.

Solution Lift t' to integer t, compute $p = (t^2 + Dy^2)/4$.

- If *p* is an integer and prime, use CM method to construct elliptic curve over \mathbb{F}_p with an order-*r* subgroup and embedding degree *k*.
- Since t' is essentially random in [0, r), $p \approx r^2$, so $\rho \approx 2$.

ヘロト ヘワト ヘビト ヘビト

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

The Dupont-Enge-Morain Method

Fix k, choose D, y, compute resultant

$$\text{Res}_t(\Phi_k(t-1), Dy^2 - (t-2)^2).$$

- ② If resultant has a large prime factor *r*, then can compute *t'* such that $\Phi_k(t-1) \equiv Dy^2 (t-2) \equiv 0 \pmod{r}$.
- So Lift t' to integer t, compute $p = (t^2 + Dy^2)/4$.
- If *p* is an integer and prime, use CM method to construct elliptic curve over \mathbb{F}_p with an order-*r* subgroup and embedding degree *k*.
- Since t' is essentially random in [0, r), $p \approx r^2$, so $\rho \approx 2$.

ヘロト ヘワト ヘビト ヘビト

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

The Dupont-Enge-Morain Method

Fix k, choose D, y, compute resultant

$$\text{Res}_t(\Phi_k(t-1), Dy^2 - (t-2)^2).$$

- ② If resultant has a large prime factor *r*, then can compute *t'* such that $\Phi_k(t-1) \equiv Dy^2 (t-2) \equiv 0 \pmod{r}$.
- So Lift t' to integer t, compute $p = (t^2 + Dy^2)/4$.
- If *p* is an integer and prime, use CM method to construct elliptic curve over \mathbb{F}_p with an order-*r* subgroup and embedding degree *k*.

• Since t' is essentially random in [0, r), $p \approx r^2$, so $\rho \approx 2$.

ヘロト ヘワト ヘビト ヘビト

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

The Dupont-Enge-Morain Method

Fix k, choose D, y, compute resultant

$$\text{Res}_t(\Phi_k(t-1), Dy^2 - (t-2)^2).$$

- 2 If resultant has a large prime factor *r*, then can compute *t'* such that $\Phi_k(t-1) \equiv Dy^2 (t-2) \equiv 0 \pmod{r}$.
- So Lift t' to integer t, compute $p = (t^2 + Dy^2)/4$.
- If *p* is an integer and prime, use CM method to construct elliptic curve over \mathbb{F}_p with an order-*r* subgroup and embedding degree *k*.
 - Since t' is essentially random in [0, r), $p \approx r^2$, so $\rho \approx 2$.

・ロト ・ ア・ ・ ヨト ・ ヨト

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

Outline

Pairings in Cryptography

- Introduction to Pairings
- Pairings on Elliptic Curves
- 2 How to Construct Pairing-Friendly Elliptic Curves
 - Ordinary vs. Supersingular
 - The Complex Multiplication Method
 - Classification of Pairing-Friendly Elliptic Curves

3 Construction Methods

- Curves with Arbitrary Embedding Degree
 Cocks-Pinch and Dupont-Enge-Morain Methods
- Sparse Families of Pairing-Friendly Curves
 The Miyaji-Nakabayashi-Takano Method and Extensions
- Complete Families of Curves
 - Cyclotomic, Sproadic, and Scott-Barreto Families

ヘロト ヘアト ヘビト ヘ

• Recall: for fixed *D*, *k*, we are looking for *t*, *r*, *p* satisfying certain divisibility conditions and the CM equation

$$Dy^2 = 4p - t^2 = 4hr - (t - 2)^2$$

for some y.

- Idea: Parametrize t, r, p, h as polynomials t(x), r(x), p(x), h(x).
- Miyaji-Nakabayashi-Takano method: Choose *t*(*x*), *h*(*x*), compute *r*(*x*) satisfying divisibility conditions, solve CM equation in 2 variables *x*, *y*.
 - Good for constructing curves of prime order.
 - Only 4 possible embedding degrees: k = 3, 4, 6, 10.
 - Solutions to CM equation grow exponentially.

• Recall: for fixed *D*, *k*, we are looking for *t*, *r*, *p* satisfying certain divisibility conditions and the CM equation

$$Dy^2 = 4p - t^2 = 4hr - (t - 2)^2$$

for some y.

- Idea: Parametrize t, r, p, h as polynomials
 t(x), r(x), p(x), h(x).
- Miyaji-Nakabayashi-Takano method: Choose *t*(*x*), *h*(*x*), compute *r*(*x*) satisfying divisibility conditions, solve CM equation in 2 variables *x*, *y*.
 - Good for constructing curves of prime order.
 - Only 4 possible embedding degrees: k = 3, 4, 6, 10.
 - Solutions to CM equation grow exponentially.

• Recall: for fixed *D*, *k*, we are looking for *t*, *r*, *p* satisfying certain divisibility conditions and the CM equation

$$Dy^2 = 4p - t^2 = 4hr - (t - 2)^2$$

for some y.

- Idea: Parametrize t, r, p, h as polynomials t(x), r(x), p(x), h(x).
- Miyaji-Nakabayashi-Takano method: Choose t(x), h(x), compute r(x) satisfying divisibility conditions, solve CM equation in 2 variables x, y.
 - Good for constructing curves of prime order.
 - Only 4 possible embedding degrees: k = 3, 4, 6, 10.
 - Solutions to CM equation grow exponentially.

• Recall: for fixed *D*, *k*, we are looking for *t*, *r*, *p* satisfying certain divisibility conditions and the CM equation

$$Dy^2 = 4p - t^2 = 4hr - (t - 2)^2$$

for some y.

- Idea: Parametrize t, r, p, h as polynomials
 t(x), r(x), p(x), h(x).
- Miyaji-Nakabayashi-Takano method: Choose t(x), h(x), compute r(x) satisfying divisibility conditions, solve CM equation in 2 variables x, y.
 - Good for constructing curves of prime order.
 - Only 4 possible embedding degrees: k = 3, 4, 6, 10.
 - Solutions to CM equation grow exponentially.

イロン イ理 とくほう くほ

• Recall: for fixed *D*, *k*, we are looking for *t*, *r*, *p* satisfying certain divisibility conditions and the CM equation

$$Dy^2 = 4p - t^2 = 4hr - (t - 2)^2$$

for some y.

- Idea: Parametrize t, r, p, h as polynomials
 t(x), r(x), p(x), h(x).
- Miyaji-Nakabayashi-Takano method: Choose t(x), h(x), compute r(x) satisfying divisibility conditions, solve CM equation in 2 variables x, y.
 - Good for constructing curves of prime order.
 - Only 4 possible embedding degrees: k = 3, 4, 6, 10.
 - Solutions to CM equation grow exponentially.

イロン イ理 とくほう くほ

• Recall: for fixed *D*, *k*, we are looking for *t*, *r*, *p* satisfying certain divisibility conditions and the CM equation

$$Dy^2 = 4p - t^2 = 4hr - (t - 2)^2$$

for some y.

- Idea: Parametrize t, r, p, h as polynomials
 t(x), r(x), p(x), h(x).
- Miyaji-Nakabayashi-Takano method: Choose t(x), h(x), compute r(x) satisfying divisibility conditions, solve CM equation in 2 variables x, y.
 - Good for constructing curves of prime order.
 - Only 4 possible embedding degrees: k = 3, 4, 6, 10.
 - Solutions to CM equation grow exponentially.

• Fix *D*, *k*, and choose polynomials t(x), h(x).

- h(x) = 1 if searching for curves of prime order.
- ② Choose r(x) an irreducible factor of $\Phi_k(t(x) 1)$.
- 3 Compute p(x) = h(x)r(x) + t(x) 1.
- Find integer solutions (x_0, y_0) to CM equation $Dy^2 = 4h(x)r(x) - (t(x) - 2)^2.$
- If p(x₀), r(x₀) are both prime for some x₀, use CM method to construct elliptic curve over F_{p(x₀)} with h(x₀)r(x₀) points.
- For the rest of this section, we will assume *h*(*x*) is a constant.

- Fix D, k, and choose polynomials t(x), h(x).
 h(x) = 1 if searching for curves of prime order.
- 2 Choose r(x) an irreducible factor of $\Phi_k(t(x) 1)$.
- 3 Compute p(x) = h(x)r(x) + t(x) 1.
- Find integer solutions (x_0, y_0) to CM equation $Dy^2 = 4h(x)r(x) (t(x) 2)^2$.
- If p(x₀), r(x₀) are both prime for some x₀, use CM method to construct elliptic curve over F_{p(x₀)} with h(x₀)r(x₀) points.
- For the rest of this section, we will assume *h*(*x*) is a constant.

- Fix *D*, *k*, and choose polynomials t(x), h(x).
 - h(x) = 1 if searching for curves of prime order.
- 2 Choose r(x) an irreducible factor of $\Phi_k(t(x) 1)$.
- 3 Compute p(x) = h(x)r(x) + t(x) 1.
- Find integer solutions (x_0, y_0) to CM equation $Dy^2 = 4h(x)r(x) - (t(x) - 2)^2.$
- If p(x₀), r(x₀) are both prime for some x₀, use CM method to construct elliptic curve over F_{p(x₀)} with h(x₀)r(x₀) points.
- For the rest of this section, we will assume *h*(*x*) is a constant.

- Fix *D*, *k*, and choose polynomials t(x), h(x).
 - h(x) = 1 if searching for curves of prime order.
- 2 Choose r(x) an irreducible factor of $\Phi_k(t(x) 1)$.
- Compute p(x) = h(x)r(x) + t(x) 1.
- Find integer solutions (x_0, y_0) to CM equation $Dy^2 = 4h(x)r(x) - (t(x) - 2)^2.$
- If p(x₀), r(x₀) are both prime for some x₀, use CM method to construct elliptic curve over F_{p(x₀)} with h(x₀)r(x₀) points.
- For the rest of this section, we will assume *h*(*x*) is a constant.

- Fix *D*, *k*, and choose polynomials t(x), h(x).
 - h(x) = 1 if searching for curves of prime order.
- 2 Choose r(x) an irreducible factor of $\Phi_k(t(x) 1)$.
- Sompute p(x) = h(x)r(x) + t(x) 1.
- Find integer solutions (x_0, y_0) to CM equation $Dy^2 = 4h(x)r(x) (t(x) 2)^2$.
- If p(x₀), r(x₀) are both prime for some x₀, use CM method to construct elliptic curve over F_{p(x₀)} with h(x₀)r(x₀) points.
- For the rest of this section, we will assume *h*(*x*) is a constant.

- Fix *D*, *k*, and choose polynomials t(x), h(x).
 - h(x) = 1 if searching for curves of prime order.
- 2 Choose r(x) an irreducible factor of $\Phi_k(t(x) 1)$.
- Sompute p(x) = h(x)r(x) + t(x) 1.
- Find integer solutions (x_0, y_0) to CM equation $Dy^2 = 4h(x)r(x) (t(x) 2)^2$.
- Solution If $p(x_0)$, $r(x_0)$ are both prime for some x_0 , use CM method to construct elliptic curve over $\mathbb{F}_{p(x_0)}$ with $h(x_0)r(x_0)$ points.
 - For the rest of this section, we will assume *h*(*x*) is a constant.

ヘロト 人間 ト ヘヨト ヘヨト

- Fix *D*, *k*, and choose polynomials t(x), h(x).
 - h(x) = 1 if searching for curves of prime order.
- 2 Choose r(x) an irreducible factor of $\Phi_k(t(x) 1)$.
- Sompute p(x) = h(x)r(x) + t(x) 1.
- Find integer solutions (x_0, y_0) to CM equation $Dy^2 = 4h(x)r(x) (t(x) 2)^2$.
- Solution If $p(x_0)$, $r(x_0)$ are both prime for some x_0 , use CM method to construct elliptic curve over $\mathbb{F}_{p(x_0)}$ with $h(x_0)r(x_0)$ points.
 - For the rest of this section, we will assume *h*(*x*) is a constant.

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

Obstacles to the MNT Method

Step 4 is the difficult part: finding integer solutions (x₀, y₀) to

$$Dy^2 = 4hr(x) - (t(x) - 2)^2.$$

- If f(x) = 4hr(x) (t(x) 2)² has degree ≥ 3 and no multiple roots, then Dy² = f(x) has only a finite number of integer solutions! (Siegel's Theorem)
- Consequence: need to choose *t*(*x*), *r*(*x*) so that *f*(*x*) is quadratic or has multiple roots.
- This is hard to do for k > 6, since deg r(x) must be a multiple of deg Φ_k > 2.

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

Obstacles to the MNT Method

Step 4 is the difficult part: finding integer solutions (x₀, y₀) to

$$Dy^2 = 4hr(x) - (t(x) - 2)^2.$$

- If f(x) = 4hr(x) (t(x) 2)² has degree ≥ 3 and no multiple roots, then Dy² = f(x) has only a finite number of integer solutions! (Siegel's Theorem)
- Consequence: need to choose t(x), r(x) so that f(x) is quadratic or has multiple roots.
- This is hard to do for k > 6, since deg r(x) must be a multiple of deg Φ_k > 2.

イロン 不同 とくほ とくほ とう

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

Obstacles to the MNT Method

Step 4 is the difficult part: finding integer solutions (x₀, y₀) to

$$Dy^2 = 4hr(x) - (t(x) - 2)^2.$$

- If f(x) = 4hr(x) (t(x) 2)² has degree ≥ 3 and no multiple roots, then Dy² = f(x) has only a finite number of integer solutions! (Siegel's Theorem)
- Consequence: need to choose t(x), r(x) so that f(x) is quadratic or has multiple roots.
- This is hard to do for k > 6, since deg r(x) must be a multiple of deg Φ_k > 2.

イロト 不得 とくほ とくほとう

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

Obstacles to the MNT Method

Step 4 is the difficult part: finding integer solutions (x₀, y₀) to

$$Dy^2 = 4hr(x) - (t(x) - 2)^2.$$

- If f(x) = 4hr(x) (t(x) 2)² has degree ≥ 3 and no multiple roots, then Dy² = f(x) has only a finite number of integer solutions! (Siegel's Theorem)
- Consequence: need to choose t(x), r(x) so that f(x) is quadratic or has multiple roots.
- This is hard to do for k > 6, since deg r(x) must be a multiple of deg Φ_k > 2.

イロン 不同 とくほ とくほ とう

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

The MNT Solution for k = 3, 4, 6

- Goal: Choose t(x), find factor r(x) of $\Phi_k(t(x) 1)$, such that $f(x) = 4hr(x) (t(x) 2)^2$ is quadratic.
- Solution:
 - Choose t(x) linear; then r(x) is quadratic, and so is f(x).
 - Use standard algorithms to find solutions (x₀, y₀) to Dy² = f(x).
 - If no solutions of appropriate size, or p(x) or r(x) not prime, choose different D and try again.
- Since construction depends on solving a Pell-like equation, MNT curves of prime order are sparse (Luca-Shparlinski).
- Galbraith-McKee-Valença, Scott-Barreto extend MNT idea by allowing cofactor h(x) ≠ 1, so that #E(𝔽_p) = h(x)r(x).

 Find many more suitable curves than original MNT construction.

ヘロト 人間 ト ヘヨト ヘヨト
The MNT Solution for k = 3, 4, 6

• Goal: Choose t(x), find factor r(x) of $\Phi_k(t(x) - 1)$, such that $f(x) = 4hr(x) - (t(x) - 2)^2$ is quadratic.

Solution:

- Choose t(x) linear; then r(x) is quadratic, and so is f(x).
- Use standard algorithms to find solutions (x_0, y_0) to $Dy^2 = f(x)$.
- If no solutions of appropriate size, or p(x) or r(x) not prime, choose different *D* and try again.
- Since construction depends on solving a Pell-like equation, MNT curves of prime order are sparse (Luca-Shparlinski).
- Galbraith-McKee-Valença, Scott-Barreto extend MNT idea by allowing cofactor h(x) ≠ 1, so that #E(𝔽_p) = h(x)r(x).

 Find many more suitable curves than original MNT construction.

• Goal: Choose t(x), find factor r(x) of $\Phi_k(t(x) - 1)$, such that $f(x) = 4hr(x) - (t(x) - 2)^2$ is quadratic.

Solution:

- O Choose t(x) linear; then r(x) is quadratic, and so is f(x).
 - Use standard algorithms to find solutions (x₀, y₀) to Dy² = f(x).
- If no solutions of appropriate size, or p(x) or r(x) not prime, choose different *D* and try again.
- Since construction depends on solving a Pell-like equation, MNT curves of prime order are sparse (Luca-Shparlinski).
- Galbraith-McKee-Valença, Scott-Barreto extend MNT idea by allowing cofactor h(x) ≠ 1, so that #E(𝔽_p) = h(x)r(x).

 Find many more suitable curves than original MNT construction.

くロト (過) (目) (日)

- Goal: Choose t(x), find factor r(x) of $\Phi_k(t(x) 1)$, such that $f(x) = 4hr(x) (t(x) 2)^2$ is quadratic.
- Solution:
 - O Choose t(x) linear; then r(x) is quadratic, and so is f(x).
 - 2 Use standard algorithms to find solutions (x_0, y_0) to $Dy^2 = f(x)$.
 - If no solutions of appropriate size, or p(x) or r(x) not prime, choose different D and try again.
- Since construction depends on solving a Pell-like equation, MNT curves of prime order are sparse (Luca-Shparlinski).
- Galbraith-McKee-Valença, Scott-Barreto extend MNT idea by allowing cofactor h(x) ≠ 1, so that #E(𝔽_p) = h(x)r(x).

 Find many more suitable curves than original MNT construction.

ヘロト 人間 ト ヘヨト ヘヨト

- Goal: Choose t(x), find factor r(x) of $\Phi_k(t(x) 1)$, such that $f(x) = 4hr(x) (t(x) 2)^2$ is quadratic.
- Solution:
 - O Choose t(x) linear; then r(x) is quadratic, and so is f(x).
 - 2 Use standard algorithms to find solutions (x_0, y_0) to $Dy^2 = f(x)$.
 - If no solutions of appropriate size, or p(x) or r(x) not prime, choose different *D* and try again.
- Since construction depends on solving a Pell-like equation, MNT curves of prime order are sparse (Luca-Shparlinski).
- Galbraith-McKee-Valença, Scott-Barreto extend MNT idea by allowing cofactor h(x) ≠ 1, so that #E(𝔽_p) = h(x)r(x).

 Find many more suitable curves than original MNT construction.

ヘロト 人間 ト ヘヨト ヘヨト

- Goal: Choose t(x), find factor r(x) of $\Phi_k(t(x) 1)$, such that $f(x) = 4hr(x) (t(x) 2)^2$ is quadratic.
- Solution:
 - O Choose t(x) linear; then r(x) is quadratic, and so is f(x).
 - 2 Use standard algorithms to find solutions (x_0, y_0) to $Dy^2 = f(x)$.
 - If no solutions of appropriate size, or p(x) or r(x) not prime, choose different *D* and try again.
- Since construction depends on solving a Pell-like equation, MNT curves of prime order are sparse (Luca-Shparlinski).
- Galbraith-McKee-Valença, Scott-Barreto extend MNT idea by allowing cofactor h(x) ≠ 1, so that #E(𝔽_p) = h(x)r(x).
 - Find many more suitable curves than original MNT construction.

ヘロト 人間 ト ヘヨト ヘヨト

- Goal: Choose t(x), find factor r(x) of $\Phi_k(t(x) 1)$, such that $f(x) = 4hr(x) (t(x) 2)^2$ is quadratic.
- Solution:
 - O Choose t(x) linear; then r(x) is quadratic, and so is f(x).
 - 2 Use standard algorithms to find solutions (x_0, y_0) to $Dy^2 = f(x)$.
 - If no solutions of appropriate size, or p(x) or r(x) not prime, choose different *D* and try again.
- Since construction depends on solving a Pell-like equation, MNT curves of prime order are sparse (Luca-Shparlinski).
- Galbraith-McKee-Valença, Scott-Barreto extend MNT idea by allowing cofactor h(x) ≠ 1, so that #E(𝔽_p) = h(x)r(x).

• Find many more suitable curves than original MNT construction.

- Goal: Choose t(x), find factor r(x) of $\Phi_k(t(x) 1)$, such that $f(x) = 4hr(x) (t(x) 2)^2$ is quadratic.
- Solution:
 - O Choose t(x) linear; then r(x) is quadratic, and so is f(x).
 - 2 Use standard algorithms to find solutions (x_0, y_0) to $Dy^2 = f(x)$.
 - If no solutions of appropriate size, or p(x) or r(x) not prime, choose different *D* and try again.
- Since construction depends on solving a Pell-like equation, MNT curves of prime order are sparse (Luca-Shparlinski).
- Galbraith-McKee-Valença, Scott-Barreto extend MNT idea by allowing cofactor h(x) ≠ 1, so that #E(𝔽_p) = h(x)r(x).
 - Find many more suitable curves than original MNT construction.

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

F. Solution for k = 10

- Goal: Choose t(x), find factor r(x) of $\Phi_{10}(t(x) 1)$, such that $f(x) = 4r(x) (t(x) 2)^2$ is quadratic.
 - All irred. factors of $\Phi_{10}(t(x) 1)$ must have 4 | degree.
- Key observation: Need to choose r(x), t(x) such that the leading terms of 4r and t^2 cancel out.
 - Smallest possible case: deg r = 4, deg t = 2.
- Galbraith-McKee-Valença: Characterized quadratic t(x) such that $\Phi_{10}(t(x) 1)$ factors into two quartics.
- One of these *t*(*x*) gives the desired cancellation!
- Construct curves via Pell-like equation as in MNT solution.
 - Like MNT curves, k = 10 curves are expected to be sparse.
 - Can't be extended to allow cofactors $h \neq 1$

ヘロン 人間 とくほ とくほ とう

ъ

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

F. Solution for k = 10

- Goal: Choose t(x), find factor r(x) of $\Phi_{10}(t(x) 1)$, such that $f(x) = 4r(x) (t(x) 2)^2$ is quadratic.
 - All irred. factors of $\Phi_{10}(t(x) 1)$ must have 4 | degree.
- Key observation: Need to choose r(x), t(x) such that the leading terms of 4r and t^2 cancel out.
 - Smallest possible case: deg r = 4, deg t = 2.
- Galbraith-McKee-Valença: Characterized quadratic t(x) such that $\Phi_{10}(t(x) 1)$ factors into two quartics.
- One of these *t*(*x*) gives the desired cancellation!
- Construct curves via Pell-like equation as in MNT solution.
 - Like MNT curves, k = 10 curves are expected to be sparse.
 - Can't be extended to allow cofactors $h \neq 1$

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

F. Solution for k = 10

- Goal: Choose t(x), find factor r(x) of Φ₁₀(t(x) 1), such that f(x) = 4r(x) (t(x) 2)² is quadratic.
 - All irred. factors of $\Phi_{10}(t(x) 1)$ must have 4 | degree.
- Key observation: Need to choose r(x), t(x) such that the leading terms of 4r and t² cancel out.
 - Smallest possible case: deg r = 4, deg t = 2.
- Galbraith-McKee-Valença: Characterized quadratic t(x) such that $\Phi_{10}(t(x) 1)$ factors into two quartics.
- One of these *t*(*x*) gives the desired cancellation!
- Construct curves via Pell-like equation as in MNT solution.
 - Like MNT curves, k = 10 curves are expected to be sparse.
 - Can't be extended to allow cofactors $h \neq 1$

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

F. Solution for k = 10

- Goal: Choose t(x), find factor r(x) of Φ₁₀(t(x) 1), such that f(x) = 4r(x) (t(x) 2)² is quadratic.
 - All irred. factors of $\Phi_{10}(t(x) 1)$ must have 4 | degree.
- Key observation: Need to choose r(x), t(x) such that the leading terms of 4r and t² cancel out.
 - Smallest possible case: deg r = 4, deg t = 2.
- Galbraith-McKee-Valença: Characterized quadratic t(x) such that $\Phi_{10}(t(x) 1)$ factors into two quartics.
- One of these *t*(*x*) gives the desired cancellation!
- Construct curves via Pell-like equation as in MNT solution.
 - Like MNT curves, k = 10 curves are expected to be sparse.
 - Can't be extended to allow cofactors $h \neq 1$

F. Solution for k = 10

- Goal: Choose t(x), find factor r(x) of $\Phi_{10}(t(x) 1)$, such that $f(x) = 4r(x) (t(x) 2)^2$ is quadratic.
 - All irred. factors of $\Phi_{10}(t(x) 1)$ must have 4 | degree.
- Key observation: Need to choose r(x), t(x) such that the leading terms of 4r and t² cancel out.
 - Smallest possible case: deg r = 4, deg t = 2.
- Galbraith-McKee-Valença: Characterized quadratic t(x) such that $\Phi_{10}(t(x) 1)$ factors into two quartics.
- One of these *t*(*x*) gives the desired cancellation!
- Construct curves via Pell-like equation as in MNT solution.
 - Like MNT curves, k = 10 curves are expected to be sparse.
 Can't be extended to allow cofactors h ≠ 1.

F. Solution for k = 10

- Goal: Choose t(x), find factor r(x) of $\Phi_{10}(t(x) 1)$, such that $f(x) = 4r(x) (t(x) 2)^2$ is quadratic.
 - All irred. factors of $\Phi_{10}(t(x) 1)$ must have 4 | degree.
- Key observation: Need to choose r(x), t(x) such that the leading terms of 4r and t² cancel out.
 - Smallest possible case: deg r = 4, deg t = 2.
- Galbraith-McKee-Valença: Characterized quadratic t(x) such that $\Phi_{10}(t(x) 1)$ factors into two quartics.
- One of these *t*(*x*) gives the desired cancellation!
- Construct curves via Pell-like equation as in MNT solution.
 - Like MNT curves, k = 10 curves are expected to be sparse.
 Can't be extended to allow cofactors h ≠ 1.

F. Solution for k = 10

- Goal: Choose t(x), find factor r(x) of $\Phi_{10}(t(x) 1)$, such that $f(x) = 4r(x) (t(x) 2)^2$ is quadratic.
 - All irred. factors of $\Phi_{10}(t(x) 1)$ must have 4 | degree.
- Key observation: Need to choose r(x), t(x) such that the leading terms of 4r and t² cancel out.
 - Smallest possible case: deg r = 4, deg t = 2.
- Galbraith-McKee-Valença: Characterized quadratic t(x) such that $\Phi_{10}(t(x) 1)$ factors into two quartics.
- One of these *t*(*x*) gives the desired cancellation!
- Construct curves via Pell-like equation as in MNT solution.
 - Like MNT curves, k = 10 curves are expected to be sparse.
 - Can't be extended to allow cofactors $h \neq 1$.

・ロト ・ 理 ト ・ ヨ ト ・

F. Solution for k = 10

- Goal: Choose t(x), find factor r(x) of $\Phi_{10}(t(x) 1)$, such that $f(x) = 4r(x) (t(x) 2)^2$ is quadratic.
 - All irred. factors of $\Phi_{10}(t(x) 1)$ must have 4 | degree.
- Key observation: Need to choose r(x), t(x) such that the leading terms of 4r and t² cancel out.
 - Smallest possible case: deg r = 4, deg t = 2.
- Galbraith-McKee-Valença: Characterized quadratic t(x) such that $\Phi_{10}(t(x) 1)$ factors into two quartics.
- One of these *t*(*x*) gives the desired cancellation!
- Construct curves via Pell-like equation as in MNT solution.
 - Like MNT curves, k = 10 curves are expected to be sparse.
 - Can't be extended to allow cofactors $h \neq 1$.

イロト 不得 とくほ とくほとう

F. Solution for k = 10

- Goal: Choose t(x), find factor r(x) of $\Phi_{10}(t(x) 1)$, such that $f(x) = 4r(x) (t(x) 2)^2$ is quadratic.
 - All irred. factors of $\Phi_{10}(t(x) 1)$ must have 4 | degree.
- Key observation: Need to choose r(x), t(x) such that the leading terms of 4r and t² cancel out.
 - Smallest possible case: deg r = 4, deg t = 2.
- Galbraith-McKee-Valença: Characterized quadratic t(x) such that $\Phi_{10}(t(x) 1)$ factors into two quartics.
- One of these *t*(*x*) gives the desired cancellation!
- Construct curves via Pell-like equation as in MNT solution.
 - Like MNT curves, k = 10 curves are expected to be sparse.
 - Can't be extended to allow cofactors $h \neq 1$.

ヘロト ヘアト ヘビト ヘビト

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

Classification of Pairing-Friendly Elliptic Curves

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

Outline

Pairings in Cryptography

- Introduction to Pairings
- Pairings on Elliptic Curves
- 2 How to Construct Pairing-Friendly Elliptic Curves
 - Ordinary vs. Supersingular
 - The Complex Multiplication Method
 - Classification of Pairing-Friendly Elliptic Curves

Construction Methods

- Curves with Arbitrary Embedding Degree
 Cocks-Pinch and Dupont-Enge-Morain Methods
- Sparse Families of Pairing-Friendly Curves
 The Miyaji-Nakabayashi-Takano Method and Extensions

Complete Families of Curves

Cyclotomic, Sproadic, and Scott-Barreto Families

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

Overview of Complete Families

• Recall: for fixed *D*, *k*, we are looking for *t*, *r*, *p* satisfying certain divisibility conditions and the CM equation

$$Dy^2 = 4p - t^2 = 4hr - (t - 2)^2$$

for some y.

- Idea: Parametrize t, r, p, h as polynomials t(x), r(x), p(x), h(x).
- Complete families method: Choose r(x), use properties of the number field K = Q[x]/(r(x)) to compute t(x), p(x) satisfying CM equation for any x.
 - Good for constructing curves with arbitrary k.
 - Usually gives curves with $1 < \rho < 2$.
 - Easy to specify bit sizes of curves (if k not too large).

ヘロト ヘアト ヘビト ヘビ

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

Overview of Complete Families

• Recall: for fixed *D*, *k*, we are looking for *t*, *r*, *p* satisfying certain divisibility conditions and the CM equation

$$Dy^2 = 4p - t^2 = 4hr - (t - 2)^2$$

for some y.

- Idea: Parametrize t, r, p, h as polynomials
 t(x), r(x), p(x), h(x).
- Complete families method: Choose r(x), use properties of the number field K = Q[x]/(r(x)) to compute t(x), p(x) satisfying CM equation for any x.
 - Good for constructing curves with arbitrary k.
 - Usually gives curves with $1 < \rho < 2$.
 - Easy to specify bit sizes of curves (if k not too large).

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

Overview of Complete Families

• Recall: for fixed *D*, *k*, we are looking for *t*, *r*, *p* satisfying certain divisibility conditions and the CM equation

$$Dy^2 = 4p - t^2 = 4hr - (t - 2)^2$$

for some y.

- Idea: Parametrize t, r, p, h as polynomials
 t(x), r(x), p(x), h(x).
- Complete families method: Choose r(x), use properties of the number field K = Q[x]/(r(x)) to compute t(x), p(x) satisfying CM equation for any x.
 - Good for constructing curves with arbitrary *k*.
 - Usually gives curves with $1 < \rho < 2$.
 - Easy to specify bit sizes of curves (if *k* not too large).

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

Overview of Complete Families

• Recall: for fixed *D*, *k*, we are looking for *t*, *r*, *p* satisfying certain divisibility conditions and the CM equation

$$Dy^2 = 4p - t^2 = 4hr - (t - 2)^2$$

for some y.

- Idea: Parametrize t, r, p, h as polynomials
 t(x), r(x), p(x), h(x).
- Complete families method: Choose r(x), use properties of the number field K = Q[x]/(r(x)) to compute t(x), p(x) satisfying CM equation for any x.
 - Good for constructing curves with arbitrary k.
 - Usually gives curves with $1 < \rho < 2$.
 - Easy to specify bit sizes of curves (if *k* not too large).

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

Overview of Complete Families

• Recall: for fixed *D*, *k*, we are looking for *t*, *r*, *p* satisfying certain divisibility conditions and the CM equation

$$Dy^2 = 4p - t^2 = 4hr - (t - 2)^2$$

for some y.

- Idea: Parametrize t, r, p, h as polynomials
 t(x), r(x), p(x), h(x).
- Complete families method: Choose r(x), use properties of the number field K = Q[x]/(r(x)) to compute t(x), p(x) satisfying CM equation for any x.
 - Good for constructing curves with arbitrary k.
 - Usually gives curves with $1 < \rho < 2$.
 - Easy to specify bit sizes of curves (if *k* not too large).

イロン イ理 とくほう くほ

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

Overview of Complete Families

• Recall: for fixed *D*, *k*, we are looking for *t*, *r*, *p* satisfying certain divisibility conditions and the CM equation

$$Dy^2 = 4p - t^2 = 4hr - (t - 2)^2$$

for some y.

- Idea: Parametrize t, r, p, h as polynomials
 t(x), r(x), p(x), h(x).
- Complete families method: Choose r(x), use properties of the number field K = Q[x]/(r(x)) to compute t(x), p(x) satisfying CM equation for any x.
 - Good for constructing curves with arbitrary k.
 - Usually gives curves with $1 < \rho < 2$.
 - Easy to specify bit sizes of curves (if *k* not too large).

・ロト ・同ト ・ヨト ・ヨ

• Fix D, k, choose an irreducible polynomial r(x).

- Let *K* be the number field $\mathbb{Q}[x]/(r(x))$.
- Require that *K* contain a *k*th root of unity ζ_k .
- ② Choose t(x) to be a polynomial representing $1 + \zeta_k \in K$.
- Ompute y(x) so that CM equation is satisfied in K.
- Ompute $p(x) = (t(x)^2 + Dy(x)^2)/4$ (in $\mathbb{Q}[x]$).
- So If $p(x_0)$ is an integer for some x_0 and $p(x_0)$, $r(x_0)$ are prime, use CM method to construct elliptic curve over $\mathbb{F}_{p(x_0)}$ with an order- $r(x_0)$ subgroup and embedding degree k.

• Fix D, k, choose an irreducible polynomial r(x).

• Let *K* be the number field $\mathbb{Q}[x]/(r(x))$.

• Require that *K* contain a *k*th root of unity ζ_k .

- ② Choose t(x) to be a polynomial representing $1 + \zeta_k \in K$.
- Ompute y(x) so that CM equation is satisfied in K.
- Compute $p(x) = (t(x)^2 + Dy(x)^2)/4$ (in $\mathbb{Q}[x]$).
- So If $p(x_0)$ is an integer for some x_0 and $p(x_0)$, $r(x_0)$ are prime, use CM method to construct elliptic curve over $\mathbb{F}_{p(x_0)}$ with an order- $r(x_0)$ subgroup and embedding degree k.

• Fix D, k, choose an irreducible polynomial r(x).

- Let *K* be the number field $\mathbb{Q}[x]/(r(x))$.
- Require that K contain a kth root of unity ζ_k .
- ② Choose t(x) to be a polynomial representing $1 + \zeta_k \in K$.
- Ompute y(x) so that CM equation is satisfied in K.
- Compute $p(x) = (t(x)^2 + Dy(x)^2)/4$ (in $\mathbb{Q}[x]$).
- So If $p(x_0)$ is an integer for some x_0 and $p(x_0)$, $r(x_0)$ are prime, use CM method to construct elliptic curve over $\mathbb{F}_{p(x_0)}$ with an order- $r(x_0)$ subgroup and embedding degree k.

• Fix D, k, choose an irreducible polynomial r(x).

- Let *K* be the number field $\mathbb{Q}[x]/(r(x))$.
- Require that K contain a kth root of unity ζ_k .
- 2 Choose t(x) to be a polynomial representing $1 + \zeta_k \in K$.
- 3 Compute y(x) so that CM equation is satisfied in K.
- Compute $p(x) = (t(x)^2 + Dy(x)^2)/4$ (in $\mathbb{Q}[x]$).
- So If $p(x_0)$ is an integer for some x_0 and $p(x_0)$, $r(x_0)$ are prime, use CM method to construct elliptic curve over $\mathbb{F}_{p(x_0)}$ with an order- $r(x_0)$ subgroup and embedding degree k.

• Fix D, k, choose an irreducible polynomial r(x).

- Let *K* be the number field $\mathbb{Q}[x]/(r(x))$.
- Require that *K* contain a *k*th root of unity ζ_k .
- 2 Choose t(x) to be a polynomial representing $1 + \zeta_k \in K$.
- Sompute y(x) so that CM equation is satisfied in K.
- Ompute $p(x) = (t(x)^2 + Dy(x)^2)/4$ (in $\mathbb{Q}[x]$).
- So If $p(x_0)$ is an integer for some x_0 and $p(x_0)$, $r(x_0)$ are prime, use CM method to construct elliptic curve over $\mathbb{F}_{p(x_0)}$ with an order- $r(x_0)$ subgroup and embedding degree k.

• Fix D, k, choose an irreducible polynomial r(x).

- Let *K* be the number field $\mathbb{Q}[x]/(r(x))$.
- Require that *K* contain a *k*th root of unity ζ_k .
- 2 Choose t(x) to be a polynomial representing $1 + \zeta_k \in K$.
- Sompute y(x) so that CM equation is satisfied in K.
- Compute $p(x) = (t(x)^2 + Dy(x)^2)/4$ (in $\mathbb{Q}[x]$).
- If $p(x_0)$ is an integer for some x_0 and $p(x_0)$, $r(x_0)$ are prime, use CM method to construct elliptic curve over $\mathbb{F}_{p(x_0)}$ with an order- $r(x_0)$ subgroup and embedding degree k.

• Fix D, k, choose an irreducible polynomial r(x).

- Let *K* be the number field $\mathbb{Q}[x]/(r(x))$.
- Require that K contain a kth root of unity ζ_k .
- 2 Choose t(x) to be a polynomial representing $1 + \zeta_k \in K$.
- Sompute y(x) so that CM equation is satisfied in K.
- Compute $p(x) = (t(x)^2 + Dy(x)^2)/4$ (in $\mathbb{Q}[x]$).
- Solution If $p(x_0)$ is an integer for some x_0 and $p(x_0)$, $r(x_0)$ are prime, use CM method to construct elliptic curve over $\mathbb{F}_{p(x_0)}$ with an order- $r(x_0)$ subgroup and embedding degree k.

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

Properties of Complete Families

• For large x, $\rho \approx \deg p / \deg r$.

- Working modulo r(x), we can choose t(x), y(x) such that deg t, deg y < deg r, so deg p ≤ 2 deg r − 2.
 - Can always get ρ < 2, improving on CP, DEM methods.
 - With clever choices of r(x), t(x), ρ can be decreased even further.
 - Best current results: $\rho = \frac{k+1}{k-1}$ for k prime $\equiv 3 \pmod{4}$.
- No restrictions on *k*, and many values of *x*₀, *D* produce curves.
 - Compare with sparse families: k ≤ 10, and values of x₀ grow exponentially.
- Complete families subdivided according to type of number field K = Q[x]/(r(x)).

イロト 不得 とくほと くほとう

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

Properties of Complete Families

- For large x, $\rho \approx \deg p / \deg r$.
- Working modulo r(x), we can choose t(x), y(x) such that deg t, deg y < deg r, so deg p ≤ 2 deg r − 2.
 - Can always get ρ < 2, improving on CP, DEM methods.
 - With clever choices of *r*(*x*), *t*(*x*), *ρ* can be decreased even further.
 - Best current results: $\rho = \frac{k+1}{k-1}$ for k prime \equiv 3 (mod 4).
- No restrictions on *k*, and many values of *x*₀, *D* produce curves.
 - Compare with sparse families: k ≤ 10, and values of x₀ grow exponentially.
- Complete families subdivided according to type of number field K = Q[x]/(r(x)).

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

Properties of Complete Families

- For large x, $\rho \approx \deg p / \deg r$.
- Working modulo r(x), we can choose t(x), y(x) such that deg t, deg y < deg r, so deg p ≤ 2 deg r − 2.
 - Can always get ρ < 2, improving on CP, DEM methods.
 - With clever choices of *r*(*x*), *t*(*x*), *ρ* can be decreased even further.
 - Best current results: $\rho = \frac{k+1}{k-1}$ for *k* prime \equiv 3 (mod 4).
- No restrictions on *k*, and many values of *x*₀, *D* produce curves.
 - Compare with sparse families: k ≤ 10, and values of x₀ grow exponentially.
- Complete families subdivided according to type of number field K = Q[x]/(r(x)).

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

Properties of Complete Families

- For large x, $\rho \approx \deg p / \deg r$.
- Working modulo r(x), we can choose t(x), y(x) such that deg t, deg y < deg r, so deg p ≤ 2 deg r − 2.
 - Can always get ρ < 2, improving on CP, DEM methods.
 - With clever choices of r(x), t(x), ρ can be decreased even further.
 - Best current results: $\rho = \frac{k+1}{k-1}$ for *k* prime \equiv 3 (mod 4).
- No restrictions on *k*, and many values of *x*₀, *D* produce curves.
 - Compare with sparse families: k ≤ 10, and values of x₀ grow exponentially.
- Complete families subdivided according to type of number field K = Q[x]/(r(x)).

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

Properties of Complete Families

- For large x, $\rho \approx \deg p / \deg r$.
- Working modulo r(x), we can choose t(x), y(x) such that deg t, deg y < deg r, so deg p ≤ 2 deg r − 2.
 - Can always get ρ < 2, improving on CP, DEM methods.
 - With clever choices of r(x), t(x), ρ can be decreased even further.
 - Best current results: $\rho = \frac{k+1}{k-1}$ for k prime \equiv 3 (mod 4).
- No restrictions on *k*, and many values of *x*₀, *D* produce curves.
 - Compare with sparse families: k ≤ 10, and values of x₀ grow exponentially.
- Complete families subdivided according to type of number field K = Q[x]/(r(x)).
Properties of Complete Families

- For large x, $\rho \approx \deg p / \deg r$.
- Working modulo r(x), we can choose t(x), y(x) such that deg t, deg y < deg r, so deg p ≤ 2 deg r − 2.
 - Can always get ρ < 2, improving on CP, DEM methods.
 - With clever choices of r(x), t(x), ρ can be decreased even further.
 - Best current results: $\rho = \frac{k+1}{k-1}$ for *k* prime \equiv 3 (mod 4).
- No restrictions on *k*, and many values of *x*₀, *D* produce curves.
 - Compare with sparse families: *k* ≤ 10, and values of *x*₀ grow exponentially.
- Complete families subdivided according to type of number field K = Q[x]/(r(x)).

イロト 不得 とくほ とくほとう

Properties of Complete Families

- For large x, $\rho \approx \deg p / \deg r$.
- Working modulo r(x), we can choose t(x), y(x) such that deg t, deg y < deg r, so deg p ≤ 2 deg r − 2.
 - Can always get ρ < 2, improving on CP, DEM methods.
 - With clever choices of r(x), t(x), ρ can be decreased even further.
 - Best current results: $\rho = \frac{k+1}{k-1}$ for *k* prime \equiv 3 (mod 4).
- No restrictions on *k*, and many values of *x*₀, *D* produce curves.
 - Compare with sparse families: *k* ≤ 10, and values of *x*₀ grow exponentially.
- Complete families subdivided according to type of number field K = Q[x]/(r(x)).

イロン 不同 とくほ とくほ とう

Properties of Complete Families

- For large x, $\rho \approx \deg p / \deg r$.
- Working modulo r(x), we can choose t(x), y(x) such that deg t, deg y < deg r, so deg p ≤ 2 deg r − 2.
 - Can always get ρ < 2, improving on CP, DEM methods.
 - With clever choices of r(x), t(x), ρ can be decreased even further.
 - Best current results: $\rho = \frac{k+1}{k-1}$ for *k* prime \equiv 3 (mod 4).
- No restrictions on *k*, and many values of *x*₀, *D* produce curves.
 - Compare with sparse families: *k* ≤ 10, and values of *x*₀ grow exponentially.
- Complete families subdivided according to type of number field K = Q[x]/(r(x)).

ヘロン ヘアン ヘビン ヘビン

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

Cyclotomic Families

- Idea of Barreto-Lynn-Scott, Brezing-Weng: Fix k, D, choose r(x) to be cyclotomic polynomial Φ_ℓ(x) with k | ℓ, 4D | ℓ.
 - Then $K = \mathbb{Q}[x]/(r(x)) \cong \mathbb{Q}(\zeta_{\ell})$, and K contains $\zeta_k, \sqrt{-D}$.
 - E.g., k = 8, D = 3, $r(x) = \Phi_{24}(x)$, $K \cong \mathbb{Q}(\zeta_{24})$.

• CM equation $Dy^2 = 4h(x)r(x) - (t(x) - 2)^2$ factors in K as

$$\left(\zeta_k - 1 + y\sqrt{-D}\right)\left(\zeta_k - 1 - y\sqrt{-D}\right) \equiv 0 \pmod{r(x)}.$$

- If y(x) is a polynomial mapping to $(\zeta_k 1)/\sqrt{-D}$ in *K*, then CM equation automatically satisfied.
- Restriction: $\sqrt{-D}$ in $\mathbb{Q}(\zeta_{\ell})$ implies *D* divides ℓ .
 - In practice, usually set D = 1, 2, or 3.

ヘロト ヘワト ヘビト ヘビト

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

Cyclotomic Families

- Idea of Barreto-Lynn-Scott, Brezing-Weng: Fix k, D, choose r(x) to be cyclotomic polynomial Φ_ℓ(x) with k | ℓ, 4D | ℓ.
 - Then K = Q[x]/(r(x)) ≅ Q(ζ_ℓ), and K contains ζ_k, √-D.
 E.g., k = 8, D = 3, r(x) = Φ₂₄(x), K ≅ O(ζ₂₄).
- CM equation $Dy^2 = 4h(x)r(x) (t(x) 2)^2$ factors in K as

$$\left(\zeta_k - 1 + y\sqrt{-D}\right)\left(\zeta_k - 1 - y\sqrt{-D}\right) \equiv 0 \pmod{r(x)}.$$

- If y(x) is a polynomial mapping to $(\zeta_k 1)/\sqrt{-D}$ in *K*, then CM equation automatically satisfied.
- Restriction: $\sqrt{-D}$ in $\mathbb{Q}(\zeta_{\ell})$ implies *D* divides ℓ .
 - In practice, usually set D = 1, 2, or 3.

ヘロト ヘワト ヘビト ヘビト

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

Cyclotomic Families

- Idea of Barreto-Lynn-Scott, Brezing-Weng: Fix k, D, choose r(x) to be cyclotomic polynomial Φ_ℓ(x) with k | ℓ, 4D | ℓ.
 - Then $K = \mathbb{Q}[x]/(r(x)) \cong \mathbb{Q}(\zeta_{\ell})$, and K contains $\zeta_k, \sqrt{-D}$.
 - E.g., k = 8, D = 3, $r(x) = \Phi_{24}(x)$, $K \cong \mathbb{Q}(\zeta_{24})$.

• CM equation $Dy^2 = 4h(x)r(x) - (t(x) - 2)^2$ factors in K as

$$\left(\zeta_k - 1 + y\sqrt{-D}\right)\left(\zeta_k - 1 - y\sqrt{-D}\right) \equiv 0 \pmod{r(x)}.$$

- If y(x) is a polynomial mapping to $(\zeta_k 1)/\sqrt{-D}$ in *K*, then CM equation automatically satisfied.
- Restriction: $\sqrt{-D}$ in $\mathbb{Q}(\zeta_{\ell})$ implies *D* divides ℓ .
 - In practice, usually set D = 1, 2, or 3.

ヘロア 人間 アメヨア 人口 ア

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

Cyclotomic Families

- Idea of Barreto-Lynn-Scott, Brezing-Weng: Fix k, D, choose r(x) to be cyclotomic polynomial Φ_ℓ(x) with k | ℓ, 4D | ℓ.
 - Then $K = \mathbb{Q}[x]/(r(x)) \cong \mathbb{Q}(\zeta_{\ell})$, and K contains $\zeta_k, \sqrt{-D}$.
 - E.g., k = 8, D = 3, $r(x) = \Phi_{24}(x)$, $K \cong \mathbb{Q}(\zeta_{24})$.

• CM equation $Dy^2 = 4h(x)r(x) - (t(x) - 2)^2$ factors in K as

$$\left(\zeta_k - 1 + y\sqrt{-D}\right)\left(\zeta_k - 1 - y\sqrt{-D}\right) \equiv 0 \pmod{r(x)}.$$

- If y(x) is a polynomial mapping to $(\zeta_k 1)/\sqrt{-D}$ in *K*, then CM equation automatically satisfied.
- Restriction: $\sqrt{-D}$ in $\mathbb{Q}(\zeta_{\ell})$ implies *D* divides ℓ .
 - In practice, usually set D = 1, 2, or 3.

ヘロア 人間 アメヨア 人口 ア

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

Cyclotomic Families

- Idea of Barreto-Lynn-Scott, Brezing-Weng: Fix k, D, choose r(x) to be cyclotomic polynomial Φ_ℓ(x) with k | ℓ, 4D | ℓ.
 - Then $K = \mathbb{Q}[x]/(r(x)) \cong \mathbb{Q}(\zeta_{\ell})$, and K contains $\zeta_k, \sqrt{-D}$.
 - E.g., k = 8, D = 3, $r(x) = \Phi_{24}(x)$, $K \cong \mathbb{Q}(\zeta_{24})$.

• CM equation $Dy^2 = 4h(x)r(x) - (t(x) - 2)^2$ factors in K as

$$\left(\zeta_k - 1 + y\sqrt{-D}\right)\left(\zeta_k - 1 - y\sqrt{-D}\right) \equiv 0 \pmod{r(x)}.$$

- If y(x) is a polynomial mapping to $(\zeta_k 1)/\sqrt{-D}$ in *K*, then CM equation automatically satisfied.
- Restriction: $\sqrt{-D}$ in $\mathbb{Q}(\zeta_{\ell})$ implies *D* divides ℓ .
 - In practice, usually set D = 1, 2, or 3.

ヘロア 人間 アメヨア 人口 ア

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

Cyclotomic Families

- Idea of Barreto-Lynn-Scott, Brezing-Weng: Fix k, D, choose r(x) to be cyclotomic polynomial Φ_ℓ(x) with k | ℓ, 4D | ℓ.
 - Then $K = \mathbb{Q}[x]/(r(x)) \cong \mathbb{Q}(\zeta_{\ell})$, and K contains $\zeta_k, \sqrt{-D}$.
 - E.g., k = 8, D = 3, $r(x) = \Phi_{24}(x)$, $K \cong \mathbb{Q}(\zeta_{24})$.

• CM equation $Dy^2 = 4h(x)r(x) - (t(x) - 2)^2$ factors in K as

$$\left(\zeta_k - 1 + y\sqrt{-D}\right)\left(\zeta_k - 1 - y\sqrt{-D}\right) \equiv 0 \pmod{r(x)}.$$

- If y(x) is a polynomial mapping to $(\zeta_k 1)/\sqrt{-D}$ in *K*, then CM equation automatically satisfied.
- Restriction: $\sqrt{-D}$ in $\mathbb{Q}(\zeta_{\ell})$ implies *D* divides ℓ .

• In practice, usually set D = 1, 2, or 3.

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

Cyclotomic Families

- Idea of Barreto-Lynn-Scott, Brezing-Weng: Fix k, D, choose r(x) to be cyclotomic polynomial Φ_ℓ(x) with k | ℓ, 4D | ℓ.
 - Then $K = \mathbb{Q}[x]/(r(x)) \cong \mathbb{Q}(\zeta_{\ell})$, and K contains $\zeta_k, \sqrt{-D}$.
 - E.g., k = 8, D = 3, $r(x) = \Phi_{24}(x)$, $K \cong \mathbb{Q}(\zeta_{24})$.

• CM equation $Dy^2 = 4h(x)r(x) - (t(x) - 2)^2$ factors in K as

$$\left(\zeta_k - 1 + y\sqrt{-D}\right)\left(\zeta_k - 1 - y\sqrt{-D}\right) \equiv 0 \pmod{r(x)}.$$

- If y(x) is a polynomial mapping to $(\zeta_k 1)/\sqrt{-D}$ in *K*, then CM equation automatically satisfied.
- Restriction: $\sqrt{-D}$ in $\mathbb{Q}(\zeta_{\ell})$ implies *D* divides ℓ .
 - In practice, usually set D = 1, 2, or 3.

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

Example of a Cyclotomic Family (Brezing-Weng)

•
$$r(x) = \Phi_{24}(x) = x^8 - x^4 + 1$$
 defines
 $K = \mathbb{Q}[x]/(r(x)) \cong \mathbb{Q}(\zeta_{24}).$

- $\zeta_8 \mapsto x^5 x$ in *K*, so choose $t(x) = x^5 x + 1$.
- $\sqrt{-3} \mapsto 2x^4 1$ in *K*, so choose

$$y(x) = \frac{\zeta_8 - 1}{\sqrt{-3}} = \frac{1}{3}(x^5 + 2x^4 + x - 1)$$

Compute

$$p(x) = \frac{t(x)^2 + Dy(x)^2}{4} = \frac{1}{3}(x-1)^2(x^8 - x^4 + 1) + x^9$$

• Evaluating at *x* = 1000726 gives 160-bit prime *r* and 198-bit prime *p*.

• $y^2 = x^3 + 14$ over \mathbb{F}_{ρ} has point of order *r*, embedding degree 8, and $\rho \approx 5/4$

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

Example of a Cyclotomic Family (Brezing-Weng)

• Fix
$$k = 8$$
, $D = 3$.
• $r(x) = \Phi_{24}(x) = x^8 - x^4 + 1$ defines
 $K = \mathbb{Q}[x]/(r(x)) \cong \mathbb{Q}(\zeta_{24})$.
• $\zeta_8 \mapsto x^5 - x$ in K , so choose $t(x) = x^5 - x + 1$.
• $\sqrt{-3} \mapsto 2x^4 - 1$ in K , so choose
 $y(x) = \frac{\zeta_8 - 1}{\sqrt{-3}} = \frac{1}{3}(x^5 + 2x^4 + x - 1)$

Compute

$$p(x) = \frac{t(x)^2 + Dy(x)^2}{4} = \frac{1}{3}(x-1)^2(x^8 - x^4 + 1) + x^9$$

• Evaluating at *x* = 1000726 gives 160-bit prime *r* and 198-bit prime *p*.

• $y^2 = x^3 + 14$ over \mathbb{F}_{ρ} has point of order r, embedding degree 8, and $\rho \approx 5/4$

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

Example of a Cyclotomic Family (Brezing-Weng)

• Fix
$$k = 8$$
, $D = 3$.
• $r(x) = \Phi_{24}(x) = x^8 - x^4 + 1$ defines
 $K = \mathbb{Q}[x]/(r(x)) \cong \mathbb{Q}(\zeta_{24})$.
• $\zeta_8 \mapsto x^5 - x$ in K , so choose $t(x) = x^5 - x + 1$.
• $\sqrt{-3} \mapsto 2x^4 - 1$ in K , so choose
 $y(x) = \frac{\zeta_8 - 1}{\sqrt{-3}} = \frac{1}{3}(x^5 + 2x^4 + x - 1)$

Compute

$$p(x) = \frac{t(x)^2 + Dy(x)^2}{4} = \frac{1}{3}(x-1)^2(x^8 - x^4 + 1) + x^9$$

• Evaluating at *x* = 1000726 gives 160-bit prime *r* and 198-bit prime *p*.

• $y^2 = x^3 + 14$ over \mathbb{F}_p has point of order *r*, embedding degree 8, and $p \approx 5/4$

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

Example of a Cyclotomic Family (Brezing-Weng)

• Fix
$$k = 8$$
, $D = 3$.
• $r(x) = \Phi_{24}(x) = x^8 - x^4 + 1$ defines
 $K = \mathbb{Q}[x]/(r(x)) \cong \mathbb{Q}(\zeta_{24})$.
• $\zeta_8 \mapsto x^5 - x$ in K , so choose $t(x) = x^5 - x + 1$.
• $\sqrt{-3} \mapsto 2x^4 - 1$ in K , so choose
 $y(x) = \frac{\zeta_8 - 1}{\sqrt{-3}} = \frac{1}{3}(x^5 + 2x^4 + x - 1)$

Compute

$$p(x) = \frac{t(x)^2 + Dy(x)^2}{4} = \frac{1}{3}(x-1)^2(x^8 - x^4 + 1) + x^9$$

• Evaluating at *x* = 1000726 gives 160-bit prime *r* and 198-bit prime *p*.

• $y^2 = x^3 + 14$ over \mathbb{F}_p has point of order *r*, embedding degree 8, and $p \approx 5/4$

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

Example of a Cyclotomic Family (Brezing-Weng)

• Fix
$$k = 8$$
, $D = 3$.
• $r(x) = \Phi_{24}(x) = x^8 - x^4 + 1$ defines
 $K = \mathbb{Q}[x]/(r(x)) \cong \mathbb{Q}(\zeta_{24})$.
• $\zeta_8 \mapsto x^5 - x$ in K , so choose $t(x) = x^5 - x + 1$.
• $\sqrt{-3} \mapsto 2x^4 - 1$ in K , so choose
 $y(x) = \frac{\zeta_8 - 1}{\sqrt{-3}} = \frac{1}{3}(x^5 + 2x^4 + x - 1)$

Compute

$$p(x) = \frac{t(x)^2 + Dy(x)^2}{4} = \frac{1}{3}(x-1)^2(x^8 - x^4 + 1) + x^9$$

• Evaluating at *x* = 1000726 gives 160-bit prime *r* and 198-bit prime *p*.

• $y^2 = x^3 + 14$ over \mathbb{F}_{ρ} has point of order *r*, embedding degree 8, and $\rho \approx 5/4$

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

Example of a Cyclotomic Family (Brezing-Weng)

• Fix
$$k = 8$$
, $D = 3$.
• $r(x) = \Phi_{24}(x) = x^8 - x^4 + 1$ defines
 $K = \mathbb{Q}[x]/(r(x)) \cong \mathbb{Q}(\zeta_{24})$.
• $\zeta_8 \mapsto x^5 - x$ in K , so choose $t(x) = x^5 - x + 1$.
• $\sqrt{-3} \mapsto 2x^4 - 1$ in K , so choose
 $y(x) = \frac{\zeta_8 - 1}{\sqrt{-3}} = \frac{1}{3}(x^5 + 2x^4 + x - 1)$

Compute

$$p(x) = \frac{t(x)^2 + Dy(x)^2}{4} = \frac{1}{3}(x-1)^2(x^8 - x^4 + 1) + x^9$$

• Evaluating at *x* = 1000726 gives 160-bit prime *r* and 198-bit prime *p*.

• $y^2 = x^3 + 14$ over \mathbb{F}_{ρ} has point of order *r*, embedding degree 8, and $\rho \approx 5/4$

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

Example of a Cyclotomic Family (Brezing-Weng)

• Fix
$$k = 8$$
, $D = 3$.
• $r(x) = \Phi_{24}(x) = x^8 - x^4 + 1$ defines
 $K = \mathbb{Q}[x]/(r(x)) \cong \mathbb{Q}(\zeta_{24})$.
• $\zeta_8 \mapsto x^5 - x$ in K , so choose $t(x) = x^5 - x + 1$.
• $\sqrt{-3} \mapsto 2x^4 - 1$ in K , so choose
 $y(x) = \frac{\zeta_8 - 1}{\sqrt{-3}} = \frac{1}{3}(x^5 + 2x^4 + x - 1)$

Compute

$$p(x) = \frac{t(x)^2 + Dy(x)^2}{4} = \frac{1}{3}(x-1)^2(x^8 - x^4 + 1) + x^9$$

- Evaluating at *x* = 1000726 gives 160-bit prime *r* and 198-bit prime *p*.
 - $y^2 = x^3 + 14$ over \mathbb{F}_p has point of order r, embedding degree 8, and $\rho \approx 5/4$

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

Sporadic Families

- Idea of Barreto-Naehrig: Fix k, D, choose r(x) so that K = ℚ[x]/(r(x)) is an *extension* of a cyclotomic field containing ζ_k, √-D.
- How? Choose u(x) so that $\Phi_k(u(x)) = r(x)r'(x)$, set $K = \mathbb{Q}(x)/(r(x))$.
- Construct t(x), y(x), p(x) as with cyclotomic families.

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

Sporadic Families

- Idea of Barreto-Naehrig: Fix k, D, choose r(x) so that K = ℚ[x]/(r(x)) is an *extension* of a cyclotomic field containing ζ_k, √−D.
- How? Choose u(x) so that $\Phi_k(u(x)) = r(x)r'(x)$, set $K = \mathbb{Q}(x)/(r(x))$.
- Construct t(x), y(x), p(x) as with cyclotomic families.

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

Sporadic Families

- Idea of Barreto-Naehrig: Fix k, D, choose r(x) so that K = ℚ[x]/(r(x)) is an *extension* of a cyclotomic field containing ζ_k, √−D.
- How? Choose u(x) so that $\Phi_k(u(x)) = r(x)r'(x)$, set $K = \mathbb{Q}(x)/(r(x))$.
- Construct t(x), y(x), p(x) as with cyclotomic families.

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

Example: Barreto-Naehrig Curves

- Set k = 12, D = 3. Look for u(x) such that $\Phi_{12}(u(x))$ factors.
- Galbraith-McKee-Valença: only 2 such quadratic u(x).
- $u(x) = 6x^2$ gives $r(x) = 36x^4 + 36x^3 + 18x^2 + 6x + 1$.
- Compute $t(x) = 6x^2 + 1$, $p(x) = 36x^4 + 36x^3 + 24x^2 + 6x + 1$.
- Since p(x) + 1 t(x) = r(x) (not just divisible by r(x)), r(x) is the size of the full group of points.
 - When p(x₀), r(x₀) are both prime for some x₀, E is a curve of prime order and k = 12.
- BN family is only family of prime-order curves that is not sparse easy to specify the bit sizes of *p*, *r*.

イロト 不得 とくほ とくほとう

æ

Example: Barreto-Naehrig Curves

- Set k = 12, D = 3. Look for u(x) such that $\Phi_{12}(u(x))$ factors.
- Galbraith-McKee-Valença: only 2 such quadratic u(x).
- $u(x) = 6x^2$ gives $r(x) = 36x^4 + 36x^3 + 18x^2 + 6x + 1$.
- Compute $t(x) = 6x^2 + 1$, $p(x) = 36x^4 + 36x^3 + 24x^2 + 6x + 1$.
- Since p(x) + 1 t(x) = r(x) (not just divisible by r(x)), r(x) is the size of the full group of points.
 - When p(x₀), r(x₀) are both prime for some x₀, E is a curve of prime order and k = 12.
- BN family is only family of prime-order curves that is not sparse easy to specify the bit sizes of *p*, *r*.

イロト 不得 とくほ とくほとう

1

Example: Barreto-Naehrig Curves

- Set k = 12, D = 3. Look for u(x) such that $\Phi_{12}(u(x))$ factors.
- Galbraith-McKee-Valença: only 2 such quadratic u(x).
- $u(x) = 6x^2$ gives $r(x) = 36x^4 + 36x^3 + 18x^2 + 6x + 1$.
- Compute $t(x) = 6x^2 + 1$, $p(x) = 36x^4 + 36x^3 + 24x^2 + 6x + 1$.
- Since p(x) + 1 t(x) = r(x) (not just divisible by r(x)), r(x) is the size of the full group of points.
 - When p(x₀), r(x₀) are both prime for some x₀, E is a curve of prime order and k = 12.
- BN family is only family of prime-order curves that is not sparse – easy to specify the bit sizes of p, r.

イロト 不得 とくほと くほとう

ъ

Example: Barreto-Naehrig Curves

- Set k = 12, D = 3. Look for u(x) such that $\Phi_{12}(u(x))$ factors.
- Galbraith-McKee-Valença: only 2 such quadratic u(x).
- $u(x) = 6x^2$ gives $r(x) = 36x^4 + 36x^3 + 18x^2 + 6x + 1$.
- Compute $t(x) = 6x^2 + 1$, $p(x) = 36x^4 + 36x^3 + 24x^2 + 6x + 1$.
- Since p(x) + 1 t(x) = r(x) (not just divisible by r(x)), r(x) is the size of the full group of points.
 - When p(x₀), r(x₀) are both prime for some x₀, E is a curve of prime order and k = 12.
- BN family is only family of prime-order curves that is not sparse – easy to specify the bit sizes of p, r.

イロト 不得 とくほと くほとう

ъ

Example: Barreto-Naehrig Curves

- Set k = 12, D = 3. Look for u(x) such that $\Phi_{12}(u(x))$ factors.
- Galbraith-McKee-Valença: only 2 such quadratic u(x).
- $u(x) = 6x^2$ gives $r(x) = 36x^4 + 36x^3 + 18x^2 + 6x + 1$.
- Compute $t(x) = 6x^2 + 1$, $p(x) = 36x^4 + 36x^3 + 24x^2 + 6x + 1$.
- Since p(x) + 1 t(x) = r(x) (not just divisible by r(x)), r(x) is the size of the full group of points.
 - When p(x₀), r(x₀) are both prime for some x₀, E is a curve of prime order and k = 12.
- BN family is only family of prime-order curves that is not sparse – easy to specify the bit sizes of p, r.

・ロット (雪) () () () ()

Example: Barreto-Naehrig Curves

- Set k = 12, D = 3. Look for u(x) such that $\Phi_{12}(u(x))$ factors.
- Galbraith-McKee-Valença: only 2 such quadratic u(x).
- $u(x) = 6x^2$ gives $r(x) = 36x^4 + 36x^3 + 18x^2 + 6x + 1$.
- Compute $t(x) = 6x^2 + 1$, $p(x) = 36x^4 + 36x^3 + 24x^2 + 6x + 1$.
- Since p(x) + 1 t(x) = r(x) (not just divisible by r(x)), r(x) is the size of the full group of points.
 - When $p(x_0), r(x_0)$ are both prime for some x_0, E is a curve of prime order and k = 12.
- BN family is only family of prime-order curves that is not sparse – easy to specify the bit sizes of p, r.

・ロット (雪) () () () ()

Example: Barreto-Naehrig Curves

- Set k = 12, D = 3. Look for u(x) such that $\Phi_{12}(u(x))$ factors.
- Galbraith-McKee-Valença: only 2 such quadratic u(x).
- $u(x) = 6x^2$ gives $r(x) = 36x^4 + 36x^3 + 18x^2 + 6x + 1$.
- Compute $t(x) = 6x^2 + 1$, $p(x) = 36x^4 + 36x^3 + 24x^2 + 6x + 1$.
- Since p(x) + 1 t(x) = r(x) (not just divisible by r(x)), r(x) is the size of the full group of points.
 - When $p(x_0), r(x_0)$ are both prime for some x_0, E is a curve of prime order and k = 12.
- BN family is only family of prime-order curves that is not sparse – easy to specify the bit sizes of p, r.

くロト (過) (目) (日)

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

Scott-Barreto Families

- Scott-Barreto idea: Fix k, choose r(x) so that
 K = Q(x)/(r(x)) is an extension of a cyclotomic field
 containing ζ_k and not containing √−D for small D.
- Compute *t*(*x*), search (via computer) for *h*(*x*) that makes right side of CM equation

$$Dy^{2} = 4h(x)r(x) - (t(x) - 2)^{2}$$

a linear factor times a perfect square.

- Compute *D* and *y*(*x*) such that CM equation is satisfied for any *x*.
- Method gives families with $1 < \rho < 2$.
 - Known examples have $k \le 6$.

イロン 不同 とくほ とくほ とう

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

Scott-Barreto Families

- Scott-Barreto idea: Fix k, choose r(x) so that
 K = Q(x)/(r(x)) is an extension of a cyclotomic field
 containing ζ_k and not containing √−D for small D.
- Compute *t*(*x*), search (via computer) for *h*(*x*) that makes right side of CM equation

$$Dy^2 = 4h(x)r(x) - (t(x) - 2)^2$$

a linear factor times a perfect square.

- Compute D and y(x) such that CM equation is satisfied for any x.
- Method gives families with $1 < \rho < 2$.
 - Known examples have $k \le 6$.

ヘロン ヘアン ヘビン ヘビン

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

Scott-Barreto Families

- Scott-Barreto idea: Fix k, choose r(x) so that
 K = Q(x)/(r(x)) is an extension of a cyclotomic field
 containing ζ_k and not containing √−D for small D.
- Compute *t*(*x*), search (via computer) for *h*(*x*) that makes right side of CM equation

$$Dy^2 = 4h(x)r(x) - (t(x) - 2)^2$$

a linear factor times a perfect square.

- Compute D and y(x) such that CM equation is satisfied for any x.
- Method gives families with $1 < \rho < 2$.

ヘロン ヘアン ヘビン ヘビン

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

Scott-Barreto Families

- Scott-Barreto idea: Fix k, choose r(x) so that
 K = Q(x)/(r(x)) is an extension of a cyclotomic field
 containing ζ_k and not containing √−D for small D.
- Compute *t*(*x*), search (via computer) for *h*(*x*) that makes right side of CM equation

$$Dy^2 = 4h(x)r(x) - (t(x) - 2)^2$$

a linear factor times a perfect square.

- Compute D and y(x) such that CM equation is satisfied for any x.
- Method gives families with $1 < \rho < 2$.
 - Known examples have $k \leq 6$.

・ロット (雪) () () () ()

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

Scott-Barreto Families

- Scott-Barreto idea: Fix k, choose r(x) so that
 K = Q(x)/(r(x)) is an extension of a cyclotomic field
 containing ζ_k and not containing √−D for small D.
- Compute *t*(*x*), search (via computer) for *h*(*x*) that makes right side of CM equation

$$Dy^2 = 4h(x)r(x) - (t(x) - 2)^2$$

a linear factor times a perfect square.

- Compute D and y(x) such that CM equation is satisfied for any x.
- Method gives families with $1 < \rho < 2$.
 - Known examples have $k \leq 6$.

・ロット (雪) () () () ()

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

Summary: Pairing-Friendly Elliptic Curves

Curves not in families (Cocks-Pinch, Dupont-Enge-Morain):

- Good for constructing curves with arbitrary *k*.
- Can't construct curves of prime order ($\rho \approx$ 2).
- Many curves possible, easy to specify bit sizes.
- ② Sparse families (Miyaji-Nakabayashi-Takano, F.):
 - Good for constructing curves of prime order.
 - Only 4 possible embedding degrees (k = 3, 4, 6, 10).
 - Curves are rare.
- Complete families (Barreto-Lynn-Scott, Brezing-Weng, Scott-Barreto, others):
 - Good for constructing curves with arbitrary k.
 - Usually can't construct curves of prime order (1 < ρ < 2).
 - Exception: Barreto-Naehing curves with k=122
 - Many curves possible, easy to specify bit sizes.

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

Summary: Pairing-Friendly Elliptic Curves

- Curves not in families (Cocks-Pinch, Dupont-Enge-Morain):
 - Good for constructing curves with arbitrary k.
 - Can't construct curves of prime order ($\rho \approx 2$).
 - Many curves possible, easy to specify bit sizes.
- Sparse families (Miyaji-Nakabayashi-Takano, F.):
 - Good for constructing curves of prime order.
 - Only 4 possible embedding degrees (k = 3, 4, 6, 10).
 - Curves are rare.
- Complete families (Barreto-Lynn-Scott, Brezing-Weng, Scott-Barreto, others):
 - Good for constructing curves with arbitrary k.
 - Usually can't construct curves of prime order (1 < ρ < 2).
 - Exception: Barreto-Naebing curves with k=12
 - Many curves possible, easy to specify bit sizes.

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

Summary: Pairing-Friendly Elliptic Curves

- Curves not in families (Cocks-Pinch, Dupont-Enge-Morain):
 - Good for constructing curves with arbitrary k.
 - Can't construct curves of prime order ($\rho \approx$ 2).
 - Many curves possible, easy to specify bit sizes.
- Sparse families (Miyaji-Nakabayashi-Takano, F.):
 - Good for constructing curves of prime order.
 - Only 4 possible embedding degrees (k = 3, 4, 6, 10).
 - Curves are rare.
- Complete families (Barreto-Lynn-Scott, Brezing-Weng, Scott-Barreto, others):
 - Good for constructing curves with arbitrary k.
 - Usually can't construct curves of prime order (1 < ρ < 2).
 - Exception: Barreto-Naehing curves with k = 12
 - Many curves possible, easy to specify bit sizes.

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

Summary: Pairing-Friendly Elliptic Curves

- Curves not in families (Cocks-Pinch, Dupont-Enge-Morain):
 - Good for constructing curves with arbitrary k.
 - Can't construct curves of prime order ($\rho \approx 2$).
 - Many curves possible, easy to specify bit sizes.
- Sparse families (Miyaji-Nakabayashi-Takano, F.):
 - Good for constructing curves of prime order.
 - Only 4 possible embedding degrees (k = 3, 4, 6, 10).
 - Curves are rare
- Complete families (Barreto-Lynn-Scott, Brezing-Weng, Scott-Barreto, others):
 - Good for constructing curves with arbitrary k.
 - Usually can't construct curves of prime order (1 < ρ < 2).
 - Exception: Barreto-Naeling curves with k = 12
 - Many curves possible, easy to specify bit sizes.
Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

Summary: Pairing-Friendly Elliptic Curves

- Curves not in families (Cocks-Pinch, Dupont-Enge-Morain):
 - Good for constructing curves with arbitrary k.
 - Can't construct curves of prime order ($\rho \approx$ 2).
 - Many curves possible, easy to specify bit sizes.

Sparse families (Miyaji-Nakabayashi-Takano, F.):

- Good for constructing curves of prime order.
- Only 4 possible embedding degrees (k = 3, 4, 6, 10).
- Curves are rare.
- Complete families (Barreto-Lynn-Scott, Brezing-Weng, Scott-Barreto, others):
 - Good for constructing curves with arbitrary k.
 - Usually can't construct curves of prime order (1 < ρ < 2).
 - Many curves possible, easy to specify bit sizes.

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

- Curves not in families (Cocks-Pinch, Dupont-Enge-Morain):
 - Good for constructing curves with arbitrary k.
 - Can't construct curves of prime order ($\rho \approx$ 2).
 - Many curves possible, easy to specify bit sizes.
- Sparse families (Miyaji-Nakabayashi-Takano, F.):
 - Good for constructing curves of prime order.
 - Only 4 possible embedding degrees (k = 3, 4, 6, 10).
 - Curves are rare.
- Complete families (Barreto-Lynn-Scott, Brezing-Weng, Scott-Barreto, others):
 - Good for constructing curves with arbitrary k.
 - Usually can't construct curves of prime order (1 < ρ < 2).

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

Summary: Pairing-Friendly Elliptic Curves

- Curves not in families (Cocks-Pinch, Dupont-Enge-Morain):
 - Good for constructing curves with arbitrary k.
 - Can't construct curves of prime order ($\rho \approx$ 2).
 - Many curves possible, easy to specify bit sizes.
- Sparse families (Miyaji-Nakabayashi-Takano, F.):
 - Good for constructing curves of prime order.
 - Only 4 possible embedding degrees (k = 3, 4, 6, 10).
 - Curves are rare.
- Complete families (Barreto-Lynn-Scott, Brezing-Weng, Scott-Barreto, others):
 - Good for constructing curves with arbitrary k.
 - Usually can't construct curves of prime order (1 < ρ < 2).
 - Many curves possible, easy to specify bit sizes.

ヘロト ヘアト ヘヨト ヘ

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

- Curves not in families (Cocks-Pinch, Dupont-Enge-Morain):
 - Good for constructing curves with arbitrary k.
 - Can't construct curves of prime order ($\rho \approx 2$).
 - Many curves possible, easy to specify bit sizes.
- Sparse families (Miyaji-Nakabayashi-Takano, F.):
 - Good for constructing curves of prime order.
 - Only 4 possible embedding degrees (k = 3, 4, 6, 10).
 - Curves are rare.
- Complete families (Barreto-Lynn-Scott, Brezing-Weng, Scott-Barreto, others):
 - Good for constructing curves with arbitrary k.
 - Usually can't construct curves of prime order (1 < ρ < 2).
 - Exception: Battelorikaeting curves with k = 122
 - Many curves possible, easy to specify bit sizes.

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

- Curves not in families (Cocks-Pinch, Dupont-Enge-Morain):
 - Good for constructing curves with arbitrary k.
 - Can't construct curves of prime order ($\rho \approx 2$).
 - Many curves possible, easy to specify bit sizes.
- Sparse families (Miyaji-Nakabayashi-Takano, F.):
 - Good for constructing curves of prime order.
 - Only 4 possible embedding degrees (k = 3, 4, 6, 10).
 - Curves are rare.
- Complete families (Barreto-Lynn-Scott, Brezing-Weng, Scott-Barreto, others):
 - Good for constructing curves with arbitrary *k*.
 - Usually can't construct curves of prime order (1 < ρ < 2).
 Exception: Barreto-Naehrig curves with k = 12.
 - Many curves possible, easy to specify bit sizes.

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

- Curves not in families (Cocks-Pinch, Dupont-Enge-Morain):
 - Good for constructing curves with arbitrary k.
 - Can't construct curves of prime order ($\rho \approx 2$).
 - Many curves possible, easy to specify bit sizes.
- Sparse families (Miyaji-Nakabayashi-Takano, F.):
 - Good for constructing curves of prime order.
 - Only 4 possible embedding degrees (k = 3, 4, 6, 10).
 - Curves are rare.
- Complete families (Barreto-Lynn-Scott, Brezing-Weng, Scott-Barreto, others):
 - Good for constructing curves with arbitrary k.
 - Usually can't construct curves of prime order (1 < ρ < 2).
 Exception: Barreto-Naehrig curves with k = 12.
 - Many curves possible, easy to specify bit sizes.

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

Summary: Pairing-Friendly Elliptic Curves

- Curves not in families (Cocks-Pinch, Dupont-Enge-Morain):
 - Good for constructing curves with arbitrary k.
 - Can't construct curves of prime order ($\rho \approx 2$).
 - Many curves possible, easy to specify bit sizes.
- Sparse families (Miyaji-Nakabayashi-Takano, F.):
 - Good for constructing curves of prime order.
 - Only 4 possible embedding degrees (k = 3, 4, 6, 10).
 - Curves are rare.
- Complete families (Barreto-Lynn-Scott, Brezing-Weng, Scott-Barreto, others):
 - Good for constructing curves with arbitrary *k*.
 - Usually can't construct curves of prime order (1 < ρ < 2).
 - Exception: Barreto-Naehrig curves with k = 12.
 - Many curves possible, easy to specify bit sizes.

ロト (得) (見) (見)

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

- Curves not in families (Cocks-Pinch, Dupont-Enge-Morain):
 - Good for constructing curves with arbitrary k.
 - Can't construct curves of prime order ($\rho \approx 2$).
 - Many curves possible, easy to specify bit sizes.
- Sparse families (Miyaji-Nakabayashi-Takano, F.):
 - Good for constructing curves of prime order.
 - Only 4 possible embedding degrees (k = 3, 4, 6, 10).
 - Curves are rare.
- Complete families (Barreto-Lynn-Scott, Brezing-Weng, Scott-Barreto, others):
 - Good for constructing curves with arbitrary k.
 - Usually can't construct curves of prime order (1 < ρ < 2).
 - Exception: Barreto-Naehrig curves with k = 12.
 - Many curves possible, easy to specify bit sizes.

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

- Curves not in families (Cocks-Pinch, Dupont-Enge-Morain):
 - Good for constructing curves with arbitrary k.
 - Can't construct curves of prime order ($\rho \approx 2$).
 - Many curves possible, easy to specify bit sizes.
- Sparse families (Miyaji-Nakabayashi-Takano, F.):
 - Good for constructing curves of prime order.
 - Only 4 possible embedding degrees (k = 3, 4, 6, 10).
 - Curves are rare.
- Complete families (Barreto-Lynn-Scott, Brezing-Weng, Scott-Barreto, others):
 - Good for constructing curves with arbitrary *k*.
 - Usually can't construct curves of prime order (1 < ρ < 2).
 - Exception: Barreto-Naehrig curves with k = 12.
 - Many curves possible, easy to specify bit sizes.

Curves with Arbitrary Embedding Degree Sparse Families of Pairing-Friendly Curves Complete Families of Curves

The State of the Art

Smallest known ρ -values for families with even embedding degrees k.

k	ρ	Туре	k	ρ	Туре
4	1	Sparse	22	13/10	Cyclotomic
6	1	Sparse	24	5/4	Cyclotomic
8	5/4	Cyclotomic	26	7/6	Cyclotomic
10	1	Sparse	28	4/3	Cyclotomic
12	1	Sporadic	30	3/2	Cyclotomic
14	4/3	Cyclotomic	32	17/16	Cyclotomic
16	5/4	Cyclotomic	34	9/8	Cyclotomic
18	4/3	Cyclotomic	36	17/12	Cyclotomic
20	11/8	Cyclotomic	38	7/6	Cyclotomic

イロト イポト イヨト イヨト