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Pairings on Elliptic Curves

What is a pairing?

@ Many public-key cryptographic protocols are based on the
discrete logarithm problem (DLP) in a finite cyclic group G:
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e Given x, y in G, find integer a such that y = x4.
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Pairings on Elliptic Curves

What is a pairing?

@ Many public-key cryptographic protocols are based on the
discrete logarithm problem (DLP) in a finite cyclic group G:

e Given x, y in G, find integer a such that y = x4.
e For systems involving G to be secure, the DLP must be
computationally infeasible.

@ A cryptographic pairing is map
e:GxG—Gr

that is
@ Bilinear: e(x2,y?) = e(x, y)® in Gr.
@ Nondegenerate: for any x € G, x # 1, thereis a y € G such
that e(x, y) # 1in Gr.
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How to Use a Pairing

@ A cryptographic pairing maps the discrete logarithm
problem in G to the DLP in Gr:

David Freeman Constructing Pairing-Friendly Elliptic Curves for Cryptography



Pairings in Cryptography Introduction to Pairings

Pairings on Elliptic Curves

How to Use a Pairing

@ A cryptographic pairing maps the discrete logarithm
problem in G to the DLP in Gr:

e Givenxand y = x2in G:

David Freeman Constructing Pairing-Friendly Elliptic Curves for Cryptography



Pairings in Cryptography Introduction to Pairings

Pairings on Elliptic Curves

How to Use a Pairing

@ A cryptographic pairing maps the discrete logarithm
problem in G to the DLP in Gr:
e Givenxand y = x2in G:
@ Choose a z € G with e(x, z) # 1.
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How to Use a Pairing

@ A cryptographic pairing maps the discrete logarithm
problem in G to the DLP in Gr:
e Givenxand y = x2in G:
@ Choose a z € G with e(x, z) # 1.
@ Compute x' = e(x, 2), y' = e(y, 2).
© Try to compute afrom x’ and y’ = x2.
@ The pairing solves the Decision Diffie-Hellman Problem in
G:
e Given x, x2 xb, x°, determine if ¢ = ab.
@ Compute e(x, x°) = e(x, x)° and e(x?, x°) = e(x, x)®.
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Pairings on Elliptic Curves

How to Use a Pairing

@ A cryptographic pairing maps the discrete logarithm
problem in G to the DLP in Gr:
e Givenxand y = x2in G:
@ Choose a z € G with e(x, z) # 1.
@ Compute x' = e(x, 2), y' = e(y, 2).
© Try to compute afrom x’ and y’ = x2.
@ The pairing solves the Decision Diffie-Hellman Problem in
G:
e Given x, x2 xb, x°, determine if ¢ = ab.
@ Compute e(x, x°) = e(x, x)° and e(x?, x°) = e(x, x)®.
@ ab = cifand only if the two pairings are equal in Gr.
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Applications of Pairings

@ Attack on discrete logarithm problem for supersingular
elliptic curves (Menezes-Okamoto-Vanstone).
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Applications of Pairings

@ Attack on discrete logarithm problem for supersingular
elliptic curves (Menezes-Okamoto-Vanstone).

e Map discrete log on elliptic curve to easier discrete log in
finite field.
@ One-round 3-way key exchange (Joux).

@ Identity-based encryption (Sakai-Ohgishi-Kasahara;
Boneh-Franklin).

@ Short digital signatures (Boneh-Lynn-Shacham).

@ Many other applications:

e Group signatures, batch signatures, threshold
cryptography, broadcast encryption, private information
retrieval, electronic voting, etc.
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Diffie-Hellman property, we need:
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Pairings on Elliptic Curves

Requirements for Pairings

@ To be useful in applications using the Decision
Diffie-Hellman property, we need:
@ the discrete logarithm problem in G to be computationally
infeasible,
@ the discrete logarithm problem in G to be computationally
infeasible, and
© the pairing to be easy to compute.
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Elliptic Curves in Cryptography

@ An elliptic curve E over a finite field Fp, is defined by an
equation
E:y?=x3+ax+b (mod p)
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@ An elliptic curve E over a finite field Fp, is defined by an
equation
E:y?=x3+ax+b (mod p)
@ The set of points (x, y) on E, plus a “point at infinity” O,
forms a group (usually written additively).
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@ An elliptic curve E over a finite field Fp, is defined by an
equation
E:y?=x3+ax+b (mod p)
@ The set of points (x, y) on E, plus a “point at infinity” O,
forms a group (usually written additively).
e Adding two points P, Q gives a third point R = P + Q.
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@ An elliptic curve E over a finite field Fp, is defined by an
equation
E:y?=x3+ax+b (mod p)
@ The set of points (x, y) on E, plus a “point at infinity” O,
forms a group (usually written additively).
e Adding two points P, Q gives a third point R = P + Q.
e Adding a point to itself repeatedly gives multiplication:
P+.--+ P (mtimes) = mP.
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Elliptic Curves in Cryptography

@ An elliptic curve E over a finite field Fp, is defined by an
equation
E:y?=x3+ax+b (mod p)
@ The set of points (x, y) on E, plus a “point at infinity” O,
forms a group (usually written additively).
e Adding two points P, Q gives a third point R = P + Q.
e Adding a point to itself repeatedly gives multiplication:
P+ .-+ P (mtimes) = mP.
@ If P has prime order r, then computing a from P and aP
takes time ~ /.
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Elliptic Curves in Cryptography

@ An elliptic curve E over a finite field Fp, is defined by an
equation
E:y?=x3+ax+b (mod p)
@ The set of points (x, y) on E, plus a “point at infinity” O,
forms a group (usually written additively).
e Adding two points P, Q gives a third point R = P + Q.
e Adding a point to itself repeatedly gives multiplication:
P+ .-+ P (mtimes) = mP.
@ If P has prime order r, then computing a from P and aP
takes time ~ /.

e If ris alarge prime, then discrete log in elliptic curve
subgroup of order r is infeasible.

David Freeman Constructing Pairing-Friendly Elliptic Curves for Cryptography



Pairings in Cryptography Introduction to Pairings

Pairings on Elliptic Curves

The Weil and Tate Pairings

@ Let E be an elliptic curve defined over a finite field IF.

David Freeman Constructing Pairing-Friendly Elliptic Curves for Cryptography



Pairings in Cryptography Introduction to Pairings

Pairings on Elliptic Curves

The Weil and Tate Pairings

@ Let E be an elliptic curve defined over a finite field IF.

@ For any integer r the Weil pairing e, yej is a bilinear map
sending pairs of points of order r to r-th roots of unity in F:

er7we,'/: E[f] X E[r] — Mr.
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The Weil and Tate Pairings

@ Let E be an elliptic curve defined over a finite field IF.

@ For any integer r the Weil pairing e, yej is a bilinear map
sending pairs of points of order r to r-th roots of unity in F:

er7we,'/: E[f] X E[r] — Mr.
@ The Tate pairing e tate is similar:

ertate: E(F)[r] x E(F)/rE(F) — F*/(F*)".
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The Weil and Tate Pairings

@ Let E be an elliptic curve defined over a finite field IF.

@ For any integer r the Weil pairing e, yej is a bilinear map
sending pairs of points of order r to r-th roots of unity in F:

er7we,'/: E[f] X E[r] — Mr.
@ The Tate pairing e tate is similar:
ertate: E(F)[r] x E(F)/rE(F) — F*/(F*)".

@ If ris prime and F is the smallest field containing ., then
both pairings take values in F;k.
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The Weil and Tate Pairings

@ Let E be an elliptic curve defined over a finite field IF.

@ For any integer r the Weil pairing e, yej is a bilinear map
sending pairs of points of order r to r-th roots of unity in F:

er7we,'/: E[f] X E[r] — Mr.
@ The Tate pairing e tate is similar:
ertate: E(F)[r] x E(F)/rE(F) — F*/(F*)".

@ If ris prime and F is the smallest field containing ., then
both pairings take values in F;k.

@ Tate pairing generally can be computed more efficiently.
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Embedding degrees

@ Elliptic curve pairings used in cryptography use curves
E /Fp with a point of order r, and map into the rth roots of
unity in F .
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Embedding degrees

@ Elliptic curve pairings used in cryptography use curves
E /Fp with a point of order r, and map into the rth roots of
unity in F .

@ k is the embedding degree of E (with respect to r).
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Embedding degrees

@ Elliptic curve pairings used in cryptography use curves
E /Fp with a point of order r, and map into the rth roots of
unity in F .
@ k is the embedding degree of E (with respect to r).
e kis the smallest integer such that r | p* — 1.
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Embedding degrees

@ Elliptic curve pairings used in cryptography use curves
E /Fp with a point of order r, and map into the rth roots of
unity in F .

@ k is the embedding degree of E (with respect to r).

e kis the smallest integer such that r | p* — 1.
e kisthe orderof pin (Z/rz)*.
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Embedding degrees

@ Elliptic curve pairings used in cryptography use curves
E /Fp with a point of order r, and map into the rth roots of
unity in F .
@ k is the embedding degree of E (with respect to r).
e kis the smallest integer such that r | p* — 1.
e kisthe orderof pin (Z/rz)*.
e Want k large enough so that discrete log in ]F;k is
computationally infeasible, but small enough so that pairing
is easy to compute.
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Embedding degrees

@ Elliptic curve pairings used in cryptography use curves
E /Fp with a point of order r, and map into the rth roots of
unity in F .
@ k is the embedding degree of E (with respect to r).
e kis the smallest integer such that r | p* — 1.
e kisthe orderof pin (Z/rz)*.
e Want k large enough so that discrete log in ]F;k is
computationally infeasible, but small enough so that pairing
is easy to compute.

@ ris alarge prime dividing #E(F,)
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Embedding degrees

@ Elliptic curve pairings used in cryptography use curves
E /Fp with a point of order r, and map into the rth roots of
unity in F .

@ k is the embedding degree of E (with respect to r).

e kis the smallest integer such that r | p* — 1.

e kisthe orderof pin (Z/rz)*.

e Want k large enough so that discrete log in ]F;k is
computationally infeasible, but small enough so that pairing
is easy to compute.

@ ris alarge prime dividing #E(F,)
e Define p = logp/ log r = #bits of p/#bits of r.
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Embedding degrees

@ Elliptic curve pairings used in cryptography use curves
E /Fp with a point of order r, and map into the rth roots of
unity in F .

@ k is the embedding degree of E (with respect to r).

e kis the smallest integer such that r | p* — 1.

e kisthe orderof pin (Z/rz)*.

e Want k large enough so that discrete log in ]F;k is
computationally infeasible, but small enough so that pairing
is easy to compute.

@ ris alarge prime dividing #E(F,)

e Define p = logp/ log r = #bits of p/#bits of r.

o If keys, signatures, ciphertexts, etc. are elements of E[r],
we want p small to save bandwidth.
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Pairings on Elliptic Curves

Embedding degrees

@ Elliptic curve pairings used in cryptography use curves
E /Fp with a point of order r, and map into the rth roots of
unity in F .

@ k is the embedding degree of E (with respect to r).

e kis the smallest integer such that r | p* — 1.

e kisthe orderof pin (Z/rz)*.

e Want k large enough so that discrete log in ]F;k is
computationally infeasible, but small enough so that pairing
is easy to compute.

@ ris alarge prime dividing #E(F,)
e Define p = logp/ log r = #bits of p/#bits of r.
o If keys, signatures, ciphertexts, etc. are elements of E[r],

we want p small to save bandwidth.
e If curve has prime order, p = 1.
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Pairing-friendly elliptic curves

@ Balasubramanian-Koblitz: If E/F is a “random” elliptic
curve with an order-r subgroup, then k ~ r.
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Pairings on Elliptic Curves

Pairing-friendly elliptic curves

@ Balasubramanian-Koblitz: If E/F is a “random” elliptic
curve with an order-r subgroup, then k ~ r.
e Pairing computation on random curves is totally infeasible:
If r ~ p ~ 216°_ pairing is computed in field of size 22" .
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Pairings on Elliptic Curves

Pairing-friendly elliptic curves

@ Balasubramanian-Koblitz: If E/F is a “random” elliptic
curve with an order-r subgroup, then k ~ r.
e Pairing computation on random curves is totally infeasible:
If r ~ p ~ 216°_ pairing is computed in field of size 22" .
@ A pairing-friendly curve is an elliptic curve with a large

prime-order subgroup (p < 2) and small embedding
degree (k < 50).
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Pairings on Elliptic Curves

Pairing-friendly elliptic curves

@ Balasubramanian-Koblitz: If E/F is a “random” elliptic
curve with an order-r subgroup, then k ~ r.

e Pairing computation on random curves is totally infeasible:
If r ~ p ~ 216°_ pairing is computed in field of size 22" .

@ A pairing-friendly curve is an elliptic curve with a large
prime-order subgroup (p < 2) and small embedding
degree (k < 50).

@ Problem: construct pairing-friendly elliptic curves for
specified values of kK and number of bits in r.
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Pairings on Elliptic Curves

Our Goal

@ Provide a supply of pairing-friendly curves suitable for
many different performance and security requirements.
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Pairings on Elliptic Curves

Our Goal

@ Provide a supply of pairing-friendly curves suitable for
many different performance and security requirements.

@ Since discrete logarithm problem is easier in finite fields
than on elliptic curves, finite field size F« should be larger
than subgroup size r.
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Our Goal

@ Provide a supply of pairing-friendly curves suitable for
many different performance and security requirements.

@ Since discrete logarithm problem is easier in finite fields
than on elliptic curves, finite field size F« should be larger
than subgroup size r.

@ How much larger depends on level of security desired:
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Pairings on Elliptic Curves

Our Goal

@ Provide a supply of pairing-friendly curves suitable for
many different performance and security requirements.

@ Since discrete logarithm problem is easier in finite fields
than on elliptic curves, finite field size F« should be larger
than subgroup size r.

@ How much larger depends on level of security desired:

Security level | Subgroup size | Extension field size | Embedding degree k
(in bits) r (in bits) ok (in bits) p~1 pr2
80 160 960 — 1280 6-38 3-4
112 224 2200 — 3600 10-16 5-8
128 256 3000 — 5000 12-20 6-10
192 384 8000 — 10000 20 -26 10-13
256 512 14000 — 18000 28 — 36 14-18
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9 How to Construct Pairing-Friendly Elliptic Curves
@ Ordinary vs. Supersingular
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Supersingular Curves

@ An elliptic curve over Fp (p > 5) is supersingular if
#E(Fp) =p+1.
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Supersingular Curves

@ An elliptic curve over Fp (p > 5) is supersingular if
#E(Fp) =p+1.
e Supersingular curves easy to construct; e.g., y> = x3 + 1
forany p=2 (mod 3).
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Supersingular Curves

@ An elliptic curve over Fy, (p > 5) is supersingular if
#E(Fp) =p+1.
e Supersingular curves easy to construct; e.g., y> = x3 + 1
forany p=2 (mod 3).
@ If p > 5, then supersingular curves over I, have
embedding degree 2.
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Supersingular Curves

@ An elliptic curve over Fy, (p > 5) is supersingular if
#E(Fp) =p+1.
e Supersingular curves easy to construct; e.g., y> = x3 + 1
forany p=2 (mod 3).
@ If p > 5, then supersingular curves over I, have
embedding degree 2.

@ Supersingular curves over non-prime fields have
embedding degree < 6.
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Supersingular Curves

@ An elliptic curve over Fy, (p > 5) is supersingular if
#E(Fp) =p+1.
e Supersingular curves easy to construct; e.g., y> = x3 + 1
forany p=2 (mod 3).
@ If p > 5, then supersingular curves over I, have
embedding degree 2.

@ Supersingular curves over non-prime fields have
embedding degree < 6.

@ To obtain other embedding degrees, we must use ordinary
(i.e., non-supersingular) elliptic curves.
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Ordinary Elliptic Curves: The General Strategy

To construct pairing-friendly ordinary elliptic curves:

@ Fix k, find primes p and r such that there exists a curve
E /Fp with a subgroup of order r and embedding degree k.
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Ordinary Elliptic Curves: The General Strategy

To construct pairing-friendly ordinary elliptic curves:

@ Fix k, find primes p and r such that there exists a curve
E /Fp with a subgroup of order r and embedding degree k.

@ Use Complex Multiplication method to construct the
equation for E.
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9 How to Construct Pairing-Friendly Elliptic Curves

@ The Complex Multiplication Method
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The Complex Multiplication Method

@ Originally due to Atkin and Morain for primality testing
application.
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The Complex Multiplication Method

@ Originally due to Atkin and Morain for primality testing
application.
@ Define the trace of E to be t such that #E(Fp) = p+1—1t.
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The Complex Multiplication Method

@ Originally due to Atkin and Morain for primality testing
application.
@ Define the trace of E to be t such that #E(Fp) = p+1—1t.
e Hasse bound: if E ordinary then |{| < 2./p.
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The Complex Multiplication Method

@ Originally due to Atkin and Morain for primality testing
application.
@ Define the trace of E to be t such that #E(Fp) = p+1—1t.
e Hasse bound: if E ordinary then |{| < 2./p.
@ Define the Complex Multiplication (CM) discriminant of E
to be the square-free part of 4p — 2.
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The Complex Multiplication Method

@ Originally due to Atkin and Morain for primality testing
application.
@ Define the trace of E to be t such that #E(Fp) = p+1—1t.
e Hasse bound: if E ordinary then |{| < 2./p.
@ Define the Complex Multiplication (CM) discriminant of E
to be the square-free part of 4p — 2.

@ For given square-free D > 0, Complex Multiplication (CM)
method constructs elliptic curve with CM discriminant D.
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The Complex Multiplication Method

@ Originally due to Atkin and Morain for primality testing
application.
@ Define the trace of E to be t such that #E(Fp) = p+1—1t.
e Hasse bound: if E ordinary then |{| < 2./p.
@ Define the Complex Multiplication (CM) discriminant of E
to be the square-free part of 4p — 2.

@ For given square-free D > 0, Complex Multiplication (CM)
method constructs elliptic curve with CM discriminant D.

e Used to construct curves with specified number of points.
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Effectiveness of the CM Method

@ Running time of CM method depends on the class number

hD of @(\/TD)
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Effectiveness of the CM Method

@ Running time of CM method depends on the class number
hp of Q(v/—D).
e Bottleneck is computing the Hilbert class polynomial, a
polynomial of degree hp.
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Effectiveness of the CM Method

@ Running time of CM method depends on the class number
hp of Q(v/—D).
e Bottleneck is computing the Hilbert class polynomial, a
polynomial of degree hp.
e Best known algorithms run in (roughly) O(h3) = O(D)
(Enge).
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Effectiveness of the CM Method

@ Running time of CM method depends on the class number
hp of Q(v/—D).
e Bottleneck is computing the Hilbert class polynomial, a
polynomial of degree hp.
e Best known algorithms run in (roughly) O(h3) = O(D)
(Enge).
@ Can be efficiently implemented if hp not too large.
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Effectiveness of the CM Method

@ Running time of CM method depends on the class number
hp of Q(v/—D).
e Bottleneck is computing the Hilbert class polynomial, a
polynomial of degree hp.
e Best known algorithms run in (roughly) O(h3) = O(D)
(Enge).
@ Can be efficiently implemented if hp not too large.
e Current record is hp = 10°.
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Effectiveness of the CM Method

@ Running time of CM method depends on the class number
hp of Q(v/—D).
e Bottleneck is computing the Hilbert class polynomial, a
polynomial of degree hp.
e Best known algorithms run in (roughly) O(h3) = O(D)
(Enge).
@ Can be efficiently implemented if hp not too large.
e Current record is hp = 10°.
e Equivalentto D ~ 100,
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Existence Conditions for Pairing-Friendly Curves

@ Fix an embedding degree k, and look for parameters t =
trace, r = subgroup size, p = field size, satisfying:
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Existence Conditions for Pairing-Friendly Curves

@ Fix an embedding degree k, and look for parameters t =
trace, r = subgroup size, p = field size, satisfying:
@ pand r are prime.
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Existence Conditions for Pairing-Friendly Curves

@ Fix an embedding degree k, and look for parameters t =
trace, r = subgroup size, p = field size, satisfying:
@ pand r are prime.
Q rdividesp+1 -t
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Existence Conditions for Pairing-Friendly Curves

@ Fix an embedding degree k, and look for parameters t =
trace, r = subgroup size, p = field size, satisfying:
@ pand r are prime.
Q rdividesp+1—t.
@ E(F,) has a point of order r.
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Existence Conditions for Pairing-Friendly Curves

@ Fix an embedding degree k, and look for parameters t =
trace, r = subgroup size, p = field size, satisfying:
@ pand r are prime.
Q rdividesp+1 -t
@ E(F,) has a point of order r.
© rdivides ®x(p), where ® is the kth cyclotomic polynomial.
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Existence Conditions for Pairing-Friendly Curves

@ Fix an embedding degree k, and look for parameters t =
trace, r = subgroup size, p = field size, satisfying:
@ pand r are prime.
Q rdividesp+1 -t
@ E(F,) has a point of order r.
© rdivides ®x(p), where ® is the kth cyclotomic polynomial.
@ p has exact order kin (Z/rz)*.
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Existence Conditions for Pairing-Friendly Curves

@ Fix an embedding degree k, and look for parameters t =
trace, r = subgroup size, p = field size, satisfying:
@ pand r are prime.
Q rdividesp+1—t.
@ E(F,) has a point of order r.
© rdivides ®x(p), where ® is the kth cyclotomic polynomial.
@ p has exact order kin (Z/rz)*.
© 4p — t? = Dy? for some sufficiently small D and some
y € Z. (This is the “CM equation.”)
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Existence Conditions for Pairing-Friendly Curves

@ Fix an embedding degree k, and look for parameters t =
trace, r = subgroup size, p = field size, satisfying:
@ pand r are prime.
Q rdividesp+1 -t
@ E(F,) has a point of order r.
© rdivides ®x(p), where ® is the kth cyclotomic polynomial.
@ p has exact order kin (Z/rz)*.
© 4p — t? = Dy? for some sufficiently small D and some
y € Z. (This is the “CM equation.”)
@ For such t, r,p, if D is not too large (~ 10'%) we can
construct an elliptic curve E over Fp, with an order-r
subgroup and embedding degree k.
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Observations about the CM Method

@ The embedding degree condition r | ®,(p) can be replaced
with r | &k (t —1).
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Observations about the CM Method

@ The embedding degree condition r | ®,(p) can be replaced
with r | &k (t —1).
o rdividesp+1—timpliesp=t—-1 (mod r).
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Observations about the CM Method

@ The embedding degree condition r | ®,(p) can be replaced
with r | &k (t —1).

o rdividesp+1—timpliesp=t—-1 (mod r).

@ We can use #E(Fp) = p+ 1 — t to write the “CM equation”
in two ways:

Dy? = 4p— ¢
Dy? = 4hr—(t-2)>2
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Observations about the CM Method

@ The embedding degree condition r | ®,(p) can be replaced
with r | &k (t —1).
o rdividesp+1—timpliesp=t—-1 (mod r).
@ We can use #E(Fp) = p+ 1 — t to write the “CM equation”
in two ways:

Dy? = 4p— ¢
Dy? = 4hr—(t-2)>2

e his a “cofactor” satisfying #E(F,) = hr.
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Observations about the CM Method

@ The embedding degree condition r | ®,(p) can be replaced
with r | &k (t —1).
o rdividesp+1—timpliesp=t—-1 (mod r).
@ We can use #E(Fp) = p+ 1 — t to write the “CM equation”
in two ways:

Dy? = 4p— ¢
Dy? = 4hr—(t-2)>2

e his a “cofactor” satisfying #E(F,) = hr.
e Set h=1if we want #E(F,) to be prime.
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9 How to Construct Pairing-Friendly Elliptic Curves

@ Classification of Pairing-Friendly Elliptic Curves
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Our Classification

@ Curves not in families: Construction gives t, r, p directly;
repeat construction to get different curve parameters.
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Our Classification

@ Curves not in families: Construction gives t, r, p directly;
repeat construction to get different curve parameters.

© Families of curves: Parametrize t, r, p as polynomials
t(x), r(x), p(x); plug in x to get curve parameters.
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Our Classification

@ Curves not in families: Construction gives t, r, p directly;
repeat construction to get different curve parameters.
© Families of curves: Parametrize t, r, p as polynomials
t(x), r(x), p(x); plug in x to get curve parameters.
@ Sparse families: Solutions (x, y) to 4p(x) — t(x)? = Dy?
grow exponentially.
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Our Classification

@ Curves not in families: Construction gives t, r, p directly;
repeat construction to get different curve parameters.
© Families of curves: Parametrize t, r, p as polynomials
t(x), r(x), p(x); plug in x to get curve parameters.
@ Sparse families: Solutions (x, y) to 4p(x) — t(x)? = Dy?
grow exponentially.
@ Complete families: Solutions (x, y) to 4p(x) — t(x)? = Dy?
exist for any x.
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Our Classification

@ Curves not in families: Construction gives t, r, p directly;
repeat construction to get different curve parameters.
© Families of curves: Parametrize t, r, p as polynomials
t(x), r(x), p(x); plug in x to get curve parameters.
@ Sparse families: Solutions (x, y) to 4p(x) — t(x)? = Dy?
grow exponentially.
@ Complete families: Solutions (x, y) to 4p(x) — t(x)? = Dy?
exist for any x.

@ Further classified by properties of r(x).
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Classification of Pairing-Friendly Elliptic Curves

Pairing-friendly
elliptic curves

/ IS

Families Curves not
of curves in families
Supersingular Cocks-Pinch Dupont-Enge-
curves curves Morain curves
Sparse Complete
families familes
MNT, GMV, Cyclotomic Sporadic Scott-Barreto
F. families families families
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Construction Methods Complete Families of Curves

Outline

Q Construction Methods

@ Curves with Arbitrary Embedding Degree
@ Cocks-Pinch and Dupont-Enge-Morain Methods

David Freeman Constructing Pairi iendly Elliptic Curves for Cryptography



Curves with Arbitrary Embedding Degree
Sparse Families of Pairing-Friendly Curves
Construction Methods Complete Families of Curves

Overview of the Cocks-Pinch Method

@ Recall: for fixed D, k, we are looking for t, r, p satisfying
certain divisibility conditions and the CM equation

Dy? = 4p — t2.
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Overview of the Cocks-Pinch Method

@ Recall: for fixed D, k, we are looking for t, r, p satisfying
certain divisibility conditions and the CM equation

Dy? = 4p — t2.

@ Cocks-Pinch strategy: Choose r, compute t satisfying
divisibility conditions, compute y, p satisfying CM equation.
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Overview of the Cocks-Pinch Method

@ Recall: for fixed D, k, we are looking for t, r, p satisfying
certain divisibility conditions and the CM equation

Dy? = 4p — t2.

@ Cocks-Pinch strategy: Choose r, compute t satisfying
divisibility conditions, compute y, p satisfying CM equation.

e Good for constructing curves with arbitrary k.
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Overview of the Cocks-Pinch Method

@ Recall: for fixed D, k, we are looking for t, r, p satisfying
certain divisibility conditions and the CM equation

Dy? = 4p — t2.

@ Cocks-Pinch strategy: Choose r, compute t satisfying
divisibility conditions, compute y, p satisfying CM equation.

e Good for constructing curves with arbitrary k.
e Can't construct curves of prime order; usually p ~ 2.
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Overview of the Cocks-Pinch Method

@ Recall: for fixed D, k, we are looking for t, r, p satisfying
certain divisibility conditions and the CM equation

Dy? = 4p — t2.

@ Cocks-Pinch strategy: Choose r, compute t satisfying
divisibility conditions, compute y, p satisfying CM equation.

e Good for constructing curves with arbitrary k.
e Can't construct curves of prime order; usually p ~ 2.
e Many curves possible, easy to specify bit sizes.
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Overview of the Cocks-Pinch Method

@ Recall: for fixed D, k, we are looking for t, r, p satisfying
certain divisibility conditions and the CM equation

Dy? = 4p — t2.

@ Cocks-Pinch strategy: Choose r, compute t satisfying
divisibility conditions, compute y, p satisfying CM equation.

Good for constructing curves with arbitrary k.

Can’t construct curves of prime order; usually p = 2.
Many curves possible, easy to specify bit sizes.

Has been generalized to produce families of curves.
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Sparse Families of Pairing-Friendly Curves
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The Cocks-Pinch Method

@ Fix D, k, and choose a prime r.
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Curves with Arbitrary Embedding Degree
Sparse Families of Pairing-Friendly Curves
Construction Methods Complete Families of Curves

The Cocks-Pinch Method

@ Fix D, k, and choose a prime r.
e Require that k divides r — 1 and —D is a square mod r.
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The Cocks-Pinch Method

@ Fix D, k, and choose a prime r.
e Require that k divides r — 1 and —D is a square mod r.

@ Compute t' = 1 + x("=1)/k for x a generator of (Z/rZ)*.
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The Cocks-Pinch Method

@ Fix D, k, and choose a prime r.
e Require that k divides r — 1 and —D is a square mod r.

@ Compute t' = 1 + x("=1)/k for x a generator of (Z/rZ)*.
© Compute y' = (¥ —2)/v/—D (mod r).
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The Cocks-Pinch Method

@ Fix D, k, and choose a prime r.
e Require that k divides r — 1 and —D is a square mod r.

@ Compute t' = 1 + x("=1)/k for x a generator of (Z/rZ)*.

© Compute y' = (¥ —2)/v/—D (mod r).

Q Lift t', ¥’ to integers t, y, and compute p = (#* 4+ Dy?)/4 (in
Q).
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The Cocks-Pinch Method

@ Fix D, k, and choose a prime r.
e Require that k divides r — 1 and —D is a square mod r.
@ Compute t' = 1 + x("=1)/k for x a generator of (Z/rZ)*.
@ Compute y' = (t' —2)/v/—D (mod r).
Q Lift t', ¥’ to integers t, y, and compute p = (#* 4+ Dy?)/4 (in
Q).

@ If pis an integer and prime, use CM method to construct
elliptic curve over F, with an order-r subgroup.
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Curves with Arbitrary Embedding Degree
Sparse Families of Pairing-Friendly Curves
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The Cocks-Pinch Method

@ Fix D, k, and choose a prime r.
e Require that k divides r — 1 and —D is a square mod r.
@ Compute t' = 1 + x("=1)/k for x a generator of (Z/rZ)*.
@ Compute y' = (t' —2)/v/—D (mod r).
Q Lift t', ¥’ to integers t, y, and compute p = (#* 4+ Dy?)/4 (in
Q).
@ If pis an integer and prime, use CM method to construct
elliptic curve over F, with an order-r subgroup.

@ y is constructed so that CM equation Dy? = 4p — ? is
automatically satisfied.
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The Cocks-Pinch Method

@ Fix D, k, and choose a prime r.
e Require that k divides r — 1 and —D is a square mod r.
@ Compute t' = 1 + x("=1)/k for x a generator of (Z/rZ)*.
@ Compute y' = (t' —2)/v/—D (mod r).
Q Lift t', ¥’ to integers t, y, and compute p = (#* 4+ Dy?)/4 (in
Q).
@ If pis an integer and prime, use CM method to construct
elliptic curve over F, with an order-r subgroup.

@ y is constructed so that CM equation Dy? = 4p — ? is
automatically satisfied.

@ Since t', y’ are essentially random integers in [0, r), p ~ r?,
SO p ~ 2.
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Overview of the Dupont-Enge-Morain Method

@ Recall: for fixed D, k, we are looking for t, r, p satisfying
certain divisibility conditions and the CM equation

Dy? = 4p — t?
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Overview of the Dupont-Enge-Morain Method

@ Recall: for fixed D, k, we are looking for t, r, p satisfying
certain divisibility conditions and the CM equation

Dy? = 4p — t?
@ Dupont-Enge-Morain strategy: Choose D, y, use resultants

to find t and r simultaneously, compute p such that CM
equation is satisfied.
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Overview of the Dupont-Enge-Morain Method

@ Recall: for fixed D, k, we are looking for t, r, p satisfying
certain divisibility conditions and the CM equation

Dy? = 4p — t?

@ Dupont-Enge-Morain strategy: Choose D, y, use resultants
to find t and r simultaneously, compute p such that CM
equation is satisfied.

e Good for constructing curves with arbitrary k.
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Overview of the Dupont-Enge-Morain Method

@ Recall: for fixed D, k, we are looking for t, r, p satisfying
certain divisibility conditions and the CM equation

Dy? = 4p — t?

@ Dupont-Enge-Morain strategy: Choose D, y, use resultants
to find t and r simultaneously, compute p such that CM
equation is satisfied.

e Good for constructing curves with arbitrary k.
e Can't construct curves of prime order; usually p ~ 2.
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Overview of the Dupont-Enge-Morain Method

@ Recall: for fixed D, k, we are looking for t, r, p satisfying
certain divisibility conditions and the CM equation

Dy? = 4p — t?

@ Dupont-Enge-Morain strategy: Choose D, y, use resultants
to find t and r simultaneously, compute p such that CM
equation is satisfied.

e Good for constructing curves with arbitrary k.
e Can't construct curves of prime order; usually p ~ 2.
e Has not been generalized to produce families of curves.
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The Dupont-Enge-Morain Method

@ Fix k, choose D, y, compute resultant

Res;(®x(t — 1), Dy? — (t — 2)2).
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The Dupont-Enge-Morain Method

@ Fix k, choose D, y, compute resultant
Res(®k(t — 1), Dy? — (t — 2)?).

@ If resultant has a large prime factor r, then can compute t’
such that &, (t — 1) = Dy? — (t —2) =0 (mod r).
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The Dupont-Enge-Morain Method

@ Fix k, choose D, y, compute resultant
Res(®k(t — 1), Dy? — (t — 2)?).

@ If resultant has a large prime factor r, then can compute t’
such that &, (t — 1) = Dy? — (t —2) =0 (mod r).
@ Lift t’ to integer t, compute p = (12 + Dy?)/4.
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The Dupont-Enge-Morain Method

@ Fix k, choose D, y, compute resultant
Res(®k(t — 1), Dy? — (t — 2)?).
@ If resultant has a large prime factor r, then can compute t’
such that &, (t — 1) = Dy? — (t —2) =0 (mod r).
@ Lift t’ to integer t, compute p = (12 + Dy?)/4.
© If pis an integer and prime, use CM method to construct

elliptic curve over F, with an order-r subgroup and
embedding degree k.

David Freeman Constructing Pairing-Friendly Elliptic Curves for Cryptography



Curves with Arbitrary Embedding Degree
Sparse Families of Pairing-Friendly Curves
Construction Methods Complete Families of Curves

The Dupont-Enge-Morain Method

@ Fix k, choose D, y, compute resultant
Res(®k(t — 1), Dy? — (t — 2)?).
@ If resultant has a large prime factor r, then can compute t’
such that &, (t — 1) = Dy? — (t —2) =0 (mod r).
@ Lift t’ to integer t, compute p = (12 + Dy?)/4.
© If pis an integer and prime, use CM method to construct

elliptic curve over F, with an order-r subgroup and
embedding degree k.

@ Since t' is essentially randomin [0, r), p ~ r?, so p ~ 2.
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Outline

Q Construction Methods

@ Sparse Families of Pairing-Friendly Curves
@ The Miyaji-Nakabayashi-Takano Method and Extensions
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Overview of the Miyaji-Nakabayashi-Takano Method

@ Recall: for fixed D, k, we are looking for t, r, p satisfying
certain divisibility conditions and the CM equation

Dy? = 4p — 2 = 4hr — (t — 2)?

for some y.
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Overview of the Miyaji-Nakabayashi-Takano Method

@ Recall: for fixed D, k, we are looking for t, r, p satisfying
certain divisibility conditions and the CM equation

Dy? = 4p — 2 = 4hr — (t — 2)?

for some y.

@ |dea: Parametrize t, r, p, h as polynomials
t(x), r(x), p(x), h(x).
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Overview of the Miyaji-Nakabayashi-Takano Method

@ Recall: for fixed D, k, we are looking for t, r, p satisfying
certain divisibility conditions and the CM equation

Dy? = 4p — 2 = 4hr — (t — 2)?

for some y.

@ |dea: Parametrize t, r, p, h as polynomials
t(x), r(x), p(x), h(x).

@ Miyaji-Nakabayashi-Takano method: Choose t(x), h(x),
compute r(x) satisfying divisibility conditions, solve CM
equation in 2 variables x, y.
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Overview of the Miyaji-Nakabayashi-Takano Method

@ Recall: for fixed D, k, we are looking for t, r, p satisfying
certain divisibility conditions and the CM equation

Dy? = 4p — 2 = 4hr — (t — 2)?

for some y.

@ |dea: Parametrize t, r, p, h as polynomials
t(x), r(x), p(x), h(x).

@ Miyaji-Nakabayashi-Takano method: Choose t(x), h(x),
compute r(x) satisfying divisibility conditions, solve CM
equation in 2 variables x, y.

e Good for constructing curves of prime order.
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Overview of the Miyaji-Nakabayashi-Takano Method

@ Recall: for fixed D, k, we are looking for t, r, p satisfying
certain divisibility conditions and the CM equation

Dy? = 4p — 2 = 4hr — (t — 2)?

for some y.

@ |dea: Parametrize t, r, p, h as polynomials
t(x), r(x), p(x), h(x).

@ Miyaji-Nakabayashi-Takano method: Choose t(x), h(x),
compute r(x) satisfying divisibility conditions, solve CM
equation in 2 variables x, y.

e Good for constructing curves of prime order.
e Only 4 possible embedding degrees: k = 3,4,6,10.
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Overview of the Miyaji-Nakabayashi-Takano Method

@ Recall: for fixed D, k, we are looking for t, r, p satisfying
certain divisibility conditions and the CM equation

Dy? = 4p — 2 = 4hr — (t — 2)?

for some y.

@ |dea: Parametrize t, r, p, h as polynomials
t(x), r(x), p(x), h(x).

@ Miyaji-Nakabayashi-Takano method: Choose t(x), h(x),
compute r(x) satisfying divisibility conditions, solve CM
equation in 2 variables x, y.

e Good for constructing curves of prime order.
e Only 4 possible embedding degrees: k = 3,4,6,10.
e Solutions to CM equation grow exponentially.
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The Miyaji-Nakabayshi-Takano (MNT) Method

@ Fix D, k, and choose polynomials t(x), h(x).
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The Miyaji-Nakabayshi-Takano (MNT) Method

@ Fix D, k, and choose polynomials t(x), h(x).
e h(x) = 1 if searching for curves of prime order.
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The Miyaji-Nakabayshi-Takano (MNT) Method

@ Fix D, k, and choose polynomials t(x), h(x).
e h(x) = 1 if searching for curves of prime order.
@ Choose r(x) an irreducible factor of ®,(t(x) — 1).
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The Miyaji-Nakabayshi-Takano (MNT) Method

@ Fix D, k, and choose polynomials t(x), h(x).
e h(x) = 1 if searching for curves of prime order.
@ Choose r(x) an irreducible factor of ®,(t(x) — 1).

© Compute p(x) = h(x)r(x) + t(x) — 1.
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The Miyaji-Nakabayshi-Takano (MNT) Method

@ Fix D, k, and choose polynomials t(x), h(x).
e h(x) = 1 if searching for curves of prime order.
@ Choose r(x) an irreducible factor of ®,(t(x) — 1).
© Compute p(x) = h(x)r(x) + t(x) — 1.
© Find integer solutions (X, yo) to CM equation
Dy? = 4h(x)r(x) — (t(x) — 2).
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The Miyaji-Nakabayshi-Takano (MNT) Method

@ Fix D, k, and choose polynomials t(x), h(x).
e h(x) = 1 if searching for curves of prime order.
@ Choose r(x) an irreducible factor of ®,(t(x) — 1).
© Compute p(x) = h(x)r(x) + t(x) — 1.
© Find integer solutions (X, yo) to CM equation
Dy? = 4h(x)r(x) — (t(x) — 2).
@ If p(xp), r(xo) are both prime for some Xy, use CM method
to construct elliptic curve over IFp,(4,) With h(xo)r(xo) points.
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The Miyaji-Nakabayshi-Takano (MNT) Method

@ Fix D, k, and choose polynomials t(x), h(x).
e h(x) = 1 if searching for curves of prime order.

@ Choose r(x) an irreducible factor of ®,(t(x) — 1).

© Compute p(x) = h(x)r(x) + t(x) — 1.

© Find integer solutions (X, yo) to CM equation
Dy? = 4h(x)r(x) — (t(x) — 2).

@ If p(xp), r(xo) are both prime for some Xy, use CM method
to construct elliptic curve over IFp,(4,) With h(xo)r(xo) points.

@ For the rest of this section, we will assume h(x) is a
constant.
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Obstacles to the MNT Method

@ Step 4 is the difficult part: finding integer solutions (xo, ¥o)
to
Dy? = 4hr(x) — (t(x) — 2)2.
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Obstacles to the MNT Method

@ Step 4 is the difficult part: finding integer solutions (xo, ¥o)
to

Dy? = 4hr(x) — (t(x) — 2)2.

o If f(x) = 4hr(x) — (t(x) — 2)? has degree > 3 and no
multiple roots, then Dy? = f(x) has only a finite number of
integer solutions! (Siegel’s Theorem)
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Obstacles to the MNT Method

@ Step 4 is the difficult part: finding integer solutions (xo, ¥o)
to

Dy? = 4hr(x) — (t(x) — 2)2.
o If f(x) = 4hr(x) — (t(x) — 2)? has degree > 3 and no
multiple roots, then Dy? = f(x) has only a finite number of
integer solutions! (Siegel’s Theorem)

@ Consequence: need to choose f(x), r(x) so that f(x) is
quadratic or has multiple roots.
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Obstacles to the MNT Method

@ Step 4 is the difficult part: finding integer solutions (xo, ¥o)
to
Dy? = 4hr(x) — (t(x) — 2)2.
o If f(x) = 4hr(x) — (t(x) — 2)? has degree > 3 and no
multiple roots, then Dy? = f(x) has only a finite number of
integer solutions! (Siegel’s Theorem)

@ Consequence: need to choose f(x), r(x) so that f(x) is
quadratic or has multiple roots.

@ This is hard to do for k > 6, since deg r(x) must be a
multiple of deg &4 > 2.
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The MNT Solution for k = 3,4.6

@ Goal: Choose t(x), find factor r(x) of ®,(f(x) — 1), such
that f(x) = 4hr(x) — (t(x) — 2)? is quadratic.
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The MNT Solution for k = 3,4.6

@ Goal: Choose t(x), find factor r(x) of ®,(f(x) — 1), such
that f(x) = 4hr(x) — (t(x) — 2)? is quadratic.
@ Solution:
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The MNT Solution for k = 3,4.6

@ Goal: Choose t(x), find factor r(x) of ®(t(x) — 1), such
that f(x) = 4hr(x) — (t(x) — 2)? is quadratic.
@ Solution:
@ Choose t(x) linear; then r(x) is quadratic, and so is f(x).
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The MNT Solution for k = 3,4.6

@ Goal: Choose t(x), find factor r(x) of ®(t(x) — 1), such
that f(x) = 4hr(x) — (t(x) — 2)? is quadratic.
@ Solution:
@ Choose t(x) linear; then r(x) is quadratic, and so is f(x).

@ Use standard algorithms to find solutions (xo, yo) to
Dy? = f(x).
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The MNT Solution for k = 3,4.6

@ Goal: Choose t(x), find factor r(x) of ®(t(x) — 1), such
that f(x) = 4hr(x) — (t(x) — 2)? is quadratic.
@ Solution:
@ Choose t(x) linear; then r(x) is quadratic, and so is f(x).
@ Use standard algorithms to find solutions (xo, yo) to
Dy? = f(x).
© If no solutions of appropriate size, or p(x) or r(x) not prime,
choose different D and try again.
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The MNT Solution for k = 3,4.6

@ Goal: Choose t(x), find factor r(x) of ®(t(x) — 1), such
that f(x) = 4hr(x) — (t(x) — 2)? is quadratic.
@ Solution:
@ Choose t(x) linear; then r(x) is quadratic, and so is f(x).
@ Use standard algorithms to find solutions (xo, yo) to
Dy? = f(x).
© If no solutions of appropriate size, or p(x) or r(x) not prime,
choose different D and try again.
@ Since construction depends on solving a Pell-like equation,
MNT curves of prime order are sparse (Luca-Shparlinski).
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The MNT Solution for k = 3,4.6

@ Goal: Choose t(x), find factor r(x) of ®,(f(x) — 1), such
that f(x) = 4hr(x) — (t(x) — 2)? is quadratic.
@ Solution:
@ Choose t(x) linear; then r(x) is quadratic, and so is f(x).
@ Use standard algorithms to find solutions (xo, yo) to
Dy? = f(x).
© If no solutions of appropriate size, or p(x) or r(x) not prime,
choose different D and try again.
@ Since construction depends on solving a Pell-like equation,
MNT curves of prime order are sparse (Luca-Shparlinski).
@ Galbraith-McKee-Valenga, Scott-Barreto extend MNT idea
by allowing cofactor h(x) # 1, so that #E(Fp) = h(x)r(x).
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The MNT Solution for k = 3,4.6

@ Goal: Choose t(x), find factor r(x) of ®,(f(x) — 1), such
that f(x) = 4hr(x) — (t(x) — 2)? is quadratic.
@ Solution:
@ Choose t(x) linear; then r(x) is quadratic, and so is f(x).
@ Use standard algorithms to find solutions (xo, yo) to
Dy? = f(x).
© If no solutions of appropriate size, or p(x) or r(x) not prime,
choose different D and try again.
@ Since construction depends on solving a Pell-like equation,
MNT curves of prime order are sparse (Luca-Shparlinski).
@ Galbraith-McKee-Valenga, Scott-Barreto extend MNT idea
by allowing cofactor h(x) # 1, so that #E(Fp) = h(x)r(x).
e Find many more suitable curves than original MNT
construction.
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F. Solution for k = 10

@ Goal: Choose t(x), find factor r(x) of ®4o(f(x) — 1), such
that f(x) = 4r(x) — (t(x) — 2)? is quadratic.
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F. Solution for k = 10

@ Goal: Choose t(x), find factor r(x) of ®4o(f(x) — 1), such
that f(x) = 4r(x) — (t(x) — 2)? is quadratic.
e Allirred. factors of ®4¢(¢(x) — 1) must have 4 | degree.
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F. Solution for k = 10

@ Goal: Choose t(x), find factor r(x) of ®4o(f(x) — 1), such
that f(x) = 4r(x) — (t(x) — 2)? is quadratic.
e Allirred. factors of ®4¢(¢(x) — 1) must have 4 | degree.
@ Key observation: Need to choose r(x), t(x) such that the
leading terms of 4r and t? cancel out.
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F. Solution for k = 10

@ Goal: Choose t(x), find factor r(x) of ®4o(f(x) — 1), such
that f(x) = 4r(x) — (t(x) — 2)? is quadratic.
e Allirred. factors of ®4¢(¢(x) — 1) must have 4 | degree.
@ Key observation: Need to choose r(x), t(x) such that the
leading terms of 4r and t? cancel out.
e Smallest possible case: degr = 4, degt = 2.
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F. Solution for k = 10

@ Goal: Choose t(x), find factor r(x) of ®4o(f(x) — 1), such
that f(x) = 4r(x) — (t(x) — 2)? is quadratic.
e Allirred. factors of ®4¢(¢(x) — 1) must have 4 | degree.
@ Key observation: Need to choose r(x), t(x) such that the
leading terms of 4r and t? cancel out.
e Smallest possible case: degr = 4, degt = 2.

@ Galbraith-McKee-Valenga: Characterized quadratic t(x)
such that ®4¢(f(x) — 1) factors into two quartics.
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F. Solution for k = 10

@ Goal: Choose t(x), find factor r(x) of ®4o(f(x) — 1), such
that f(x) = 4r(x) — (t(x) — 2)? is quadratic.
e Allirred. factors of ®4¢(¢(x) — 1) must have 4 | degree.
@ Key observation: Need to choose r(x), t(x) such that the
leading terms of 4r and t? cancel out.
e Smallest possible case: degr = 4, degt = 2.
@ Galbraith-McKee-Valenga: Characterized quadratic t(x)
such that ®4¢(f(x) — 1) factors into two quartics.

@ One of these t(x) gives the desired cancellation!
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F. Solution for k = 10

@ Goal: Choose t(x), find factor r(x) of ®4o(f(x) — 1), such
that f(x) = 4r(x) — (t(x) — 2)? is quadratic.
e Allirred. factors of ®4¢(¢(x) — 1) must have 4 | degree.
@ Key observation: Need to choose r(x), t(x) such that the
leading terms of 4r and t? cancel out.
e Smallest possible case: degr = 4, degt = 2.
@ Galbraith-McKee-Valenga: Characterized quadratic t(x)
such that ®4¢(f(x) — 1) factors into two quartics.
@ One of these t(x) gives the desired cancellation!
@ Construct curves via Pell-like equation as in MNT solution.
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F. Solution for k = 10

@ Goal: Choose t(x), find factor r(x) of ®4o(f(x) — 1), such
that f(x) = 4r(x) — (t(x) — 2)? is quadratic.
e Allirred. factors of ®4¢(¢(x) — 1) must have 4 | degree.
@ Key observation: Need to choose r(x), t(x) such that the
leading terms of 4r and t? cancel out.
o Smallest possible case: degr =4, degt = 2.
@ Galbraith-McKee-Valenga: Characterized quadratic t(x)
such that ®4¢(f(x) — 1) factors into two quartics.
@ One of these t(x) gives the desired cancellation!
@ Construct curves via Pell-like equation as in MNT solution.
o Like MNT curves, k = 10 curves are expected to be sparse.
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F. Solution for k = 10

@ Goal: Choose t(x), find factor r(x) of ®4o(f(x) — 1), such
that f(x) = 4r(x) — (t(x) — 2)? is quadratic.
e Allirred. factors of ®4¢(¢(x) — 1) must have 4 | degree.
@ Key observation: Need to choose r(x), t(x) such that the
leading terms of 4r and t? cancel out.
e Smallest possible case: degr = 4, degt = 2.
@ Galbraith-McKee-Valenga: Characterized quadratic t(x)
such that ®4¢(f(x) — 1) factors into two quartics.
@ One of these t(x) gives the desired cancellation!
@ Construct curves via Pell-like equation as in MNT solution.

o Like MNT curves, k = 10 curves are expected to be sparse.
e Can't be extended to allow cofactors h #£ 1.
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Classification of Pairing-Friendly Elliptic Curves

Pairing-friendly
elliptic curves

/ IS

Families Curves not
of curves in families
Supersingular Cocks-Pinch Dupont-Enge-
curves curves Morain curves
Sparse Complete
families familes
MNT, GMV, Cyclotomic Sporadic Scott-Barreto
F. families families families

avid Freeman Constructing Pairing-Friendly Elliptic Curves for Cryptograp!



Curves with Arbitrary Embedding Degree
Sparse Families of Pairing-Friendly Curves
Construction Methods Complete Families of Curves

Outline

Q Construction Methods

@ Complete Families of Curves
@ Cyclotomic, Sproadic, and Scott-Barreto Families
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Overview of Complete Families

@ Recall: for fixed D, k, we are looking for t, r, p satisfying
certain divisibility conditions and the CM equation

Dy? = 4p — 2 = 4hr — (t — 2)?

for some y.
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Overview of Complete Families

@ Recall: for fixed D, k, we are looking for t, r, p satisfying
certain divisibility conditions and the CM equation

Dy? = 4p — 2 = 4hr — (t — 2)?

for some y.

@ |dea: Parametrize t, r, p, h as polynomials
t(x), r(x), p(x), h(x).
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Overview of Complete Families

@ Recall: for fixed D, k, we are looking for t, r, p satisfying
certain divisibility conditions and the CM equation

Dy? = 4p — 2 = 4hr — (t — 2)?

for some y.

@ |dea: Parametrize t, r, p, h as polynomials
t(x), r(x), p(x), h(x).

@ Complete families method: Choose r(x), use properties of
the number field K = Q[x]/(r(x)) to compute (x), p(x)
satisfying CM equation for any x.
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Overview of Complete Families

@ Recall: for fixed D, k, we are looking for t, r, p satisfying
certain divisibility conditions and the CM equation

Dy? = 4p — 2 = 4hr — (t — 2)?

for some y.

@ |dea: Parametrize t, r, p, h as polynomials
t(x), r(x), p(x), h(x).

@ Complete families method: Choose r(x), use properties of
the number field K = Q[x]/(r(x)) to compute (x), p(x)
satisfying CM equation for any x.

e Good for constructing curves with arbitrary k.

David Freeman Constructing Pairing-Friendly Elliptic Curves for Cryptography



Curves with Arbitrary Embedding Degree
Sparse Families of Pairing-Friendly Curves
Construction Methods Complete Families of Curves

Overview of Complete Families

@ Recall: for fixed D, k, we are looking for t, r, p satisfying
certain divisibility conditions and the CM equation

Dy? = 4p — 2 = 4hr — (t — 2)?

for some y.

@ |dea: Parametrize t, r, p, h as polynomials
t(x), r(x), p(x), h(x).

@ Complete families method: Choose r(x), use properties of
the number field K = Q[x]/(r(x)) to compute (x), p(x)
satisfying CM equation for any x.

e Good for constructing curves with arbitrary k.
e Usually gives curves with 1 < p < 2.
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Overview of Complete Families

@ Recall: for fixed D, k, we are looking for t, r, p satisfying
certain divisibility conditions and the CM equation

Dy? = 4p — 2 = 4hr — (t — 2)?

for some y.

@ |dea: Parametrize t, r, p, h as polynomials
t(x), r(x), p(x), h(x).

@ Complete families method: Choose r(x), use properties of
the number field K = Q[x]/(r(x)) to compute (x), p(x)
satisfying CM equation for any x.

e Good for constructing curves with arbitrary k.

e Usually gives curves with 1 < p < 2.
e Easy to specify bit sizes of curves (if k not too large).
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Constructing Complete Families of Curves

@ Fix D, k, choose an irreducible polynomial r(x).
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Constructing Complete Families of Curves

@ Fix D, k, choose an irreducible polynomial r(x).
o Let K be the number field Q[x]/(r(x)).
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Constructing Complete Families of Curves

@ Fix D, k, choose an irreducible polynomial r(x).

o Let K be the number field Q[x]/(r(x)).
e Require that K contain a kth root of unity (k.
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Constructing Complete Families of Curves

@ Fix D, k, choose an irreducible polynomial r(x).

o Let K be the number field Q[x]/(r(x)).
e Require that K contain a kth root of unity (k.

@ Choose t(x) to be a polynomial representing 1 + (4 € K.
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Constructing Complete Families of Curves

@ Fix D, k, choose an irreducible polynomial r(x).

o Let K be the number field Q[x]/(r(x)).
e Require that K contain a kth root of unity (k.

@ Choose t(x) to be a polynomial representing 1 + (4 € K.
© Compute y(x) so that CM equation is satisfied in K.
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Constructing Complete Families of Curves

@ Fix D, k, choose an irreducible polynomial r(x).

o Let K be the number field Q[x]/(r(x)).
e Require that K contain a kth root of unity (k.

@ Choose t(x) to be a polynomial representing 1 + (4 € K.
© Compute y(x) so that CM equation is satisfied in K.
@ Compute p(x) = ((x) + Dy(x)?)/4 (in Q[x]).
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Constructing Complete Families of Curves

@ Fix D, k, choose an irreducible polynomial r(x).

o Let K be the number field Q[x]/(r(x)).
e Require that K contain a kth root of unity (k.

@ Choose t(x) to be a polynomial representing 1 + (4 € K.
© Compute y(x) so that CM equation is satisfied in K.

@ Compute p(x) = ({(x)? + Dy(x)?)/4 (in Q[x]).

@ If p(xo) is an integer for some xg and p(xp), r(xo) are prime,

use CM method to construct elliptic curve over ) with
an order-r(xp) subgroup and embedding degree k.
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Properties of Complete Families

@ Forlarge x, p ~degp/degr.
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Properties of Complete Families

@ Forlarge x, p ~degp/degr.

@ Working modulo r(x), we can choose t(x), y(x) such that
degt,degy < degr,sodegp <2degr— 2.
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Properties of Complete Families

@ Forlarge x, p ~degp/degr.

@ Working modulo r(x), we can choose t(x), y(x) such that
degt,degy < degr,sodegp <2degr— 2.
e Can always get p < 2, improving on CP, DEM methods.
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Properties of Complete Families

@ Forlarge x, p ~degp/degr.
@ Working modulo r(x), we can choose t(x), y(x) such that
degt,degy < degr,sodegp <2degr— 2.
e Can always get p < 2, improving on CP, DEM methods.
e With clever choices of r(x), t(x), p can be decreased even
further.
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Properties of Complete Families

@ Forlarge x, p ~degp/degr.

@ Working modulo r(x), we can choose t(x), y(x) such that
degt,degy < degr,sodegp <2degr—2
e Can always get p < 2, improving on CP, DEM methods.
e With clever choices of r(x), t(x), p can be decreased even
further.
o Best current results: p = k*‘ for k prime = 3 (mod 4).
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Properties of Complete Families

@ Forlarge x, p ~degp/degr.
@ Working modulo r(x), we can choose t(x), y(x) such that
degt,degy < degr,sodegp <2degr—2
e Can always get p < 2, improving on CP, DEM methods.
e With clever choices of r(x), t(x), p can be decreased even

further.
e Best current results: p = 1 for k prime = 3 (mod 4).
@ No restrictions on k, and many values of xg, D produce
curves.
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Properties of Complete Families

@ Forlarge x, p ~degp/degr.
@ Working modulo r(x), we can choose t(x), y(x) such that
degt,degy < degr,sodegp <2degr—2
e Can always get p < 2, improving on CP, DEM methods.
e With clever choices of r(x), t(x), p can be decreased even

further.
e Best current results: p = 1 for k prime = 3 (mod 4).
@ No restrictions on k, and many values of xg, D produce
curves.

e Compare with sparse families: k < 10, and values of xg
grow exponentially.
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Properties of Complete Families

@ Forlarge x, p ~degp/degr.
@ Working modulo r(x), we can choose t(x), y(x) such that
degt,degy < degr,sodegp <2degr— 2.
e Can always get p < 2, improving on CP, DEM methods.
e With clever choices of r(x), t(x), p can be decreased even
further.
e Best current results: p = 1 for k prime = 3 (mod 4).

@ No restrictions on k, and many values of xg, D produce
curves.
e Compare with sparse families: k < 10, and values of xg
grow exponentially.
@ Complete families subdivided according to type of number

field K = Q[x]/(r(x)).
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Cyclotomic Families

@ |dea of Barreto-Lynn-Scott, Brezing-Weng: Fix k, D,
choose r(x) to be cyclotomic polynomial ®,(x) with k | ¢,
4D | 0.
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Cyclotomic Families

@ |dea of Barreto-Lynn-Scott, Brezing-Weng: Fix k, D,
choose r(x) to be cyclotomic polynomial ®,(x) with k | ¢,
4D | 0.

e Then K = Q[x]/(r(x)) = Q(¢), and K contains ¢k, +/—D.
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Cyclotomic Families

@ |dea of Barreto-Lynn-Scott, Brezing-Weng: Fix k, D,
choose r(x) to be cyclotomic polynomial ®,(x) with k | ¢,
4D | 0.

e Then K = Q[x]/(r(x)) = Q(¢,), and K contains ¢k, v—D.

o E.g., k=8,D =3, r(x) = da(x), K= Q(24).
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Cyclotomic Families

@ |dea of Barreto-Lynn-Scott, Brezing-Weng: Fix k, D,
choose r(x) to be cyclotomic polynomial ®,(x) with k | ¢,
4D | 0.

e Then K = Q[x]/(r(x)) =2 Q

e Eg.,.k=8,D=3,r(x

) =
@ CM equation Dy? = 4h(x)r(x

(6—1+yvV=D) (G—1-yV=D) =0 (mod r(x)).

Q(&), and K contains ¢k, v/—D.
b24(X), K = Q(Caa)-
) — (t(x) — 2)? factors in K as
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Cyclotomic Families

@ |dea of Barreto-Lynn-Scott, Brezing-Weng: Fix k, D,
choose r(x) to be cyclotomic polynomial ®,(x) with k | ¢,
4D | 0.

e Then K = Q[x]/(r(x)) =2 Q

e Eg.,.k=8,D=3,r(x

) =
@ CM equation Dy? = 4h(x)r(x

(6—1+yvV=D) (G—1-yV=D) =0 (mod r(x)).

Q(&), and K contains ¢k, v/—D.
b24(X), K = Q(Caa)-
) — (t(x) — 2)? factors in K as

@ If y(x) is a polynomial mapping to (¢x — 1)/v—Din K, then
CM equation automatically satisfied.
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Cyclotomic Families

@ |dea of Barreto-Lynn-Scott, Brezing-Weng: Fix k, D,
choose r(x) to be cyclotomic polynomial ®,(x) with k | ¢,
4D | 0.

e Then K = Q[x]/(r(x)) =2 Q

e Eg.,.k=8,D=3,r(x

) =
@ CM equation Dy? = 4h(x)r(x

(6—1+yvV=D) (G—1-yV=D) =0 (mod r(x)).

Q(&), and K contains ¢k, v/—D.
b24(X), K = Q(Caa)-
) — (t(x) — 2)? factors in K as

@ If y(x) is a polynomial mapping to (¢x — 1)/v—Din K, then
CM equation automatically satisfied.

@ Restriction: v/—D in Q(¢,) implies D divides /.

David Freeman Constructing Pairing-Friendly Elliptic Curves for Cryptography



Curves with Arbitrary Embedding Degree
Sparse Families of Pairing-Friendly Curves
Construction Methods Complete Families of Curves

Cyclotomic Families

@ |dea of Barreto-Lynn-Scott, Brezing-Weng: Fix k, D,
choose r(x) to be cyclotomic polynomial ®,(x) with k | ¢,
4D | 0.

e Then K = Q[x]/(r(x)) =2 Q

e Eg.,.k=8,D=3,r(x

) =
@ CM equation Dy? = 4h(x)r(x

(6—1+yvV=D) (G—1-yV=D) =0 (mod r(x)).

Q(&), and K contains ¢k, v/—D.
b24(X), K = Q(Caa)-
) — (t(x) — 2)? factors in K as

@ If y(x) is a polynomial mapping to (¢x — 1)/v/—D in K, then
CM equation automatically satisfied.
@ Restriction: v/—D in Q(¢,) implies D divides ¢.
e In practice, usually set D = 1,2, or 3.
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Example of a Cyclotomic Family (Brezing-Weng)

@ Fixk=8,D=3.
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Example of a Cyclotomic Family (Brezing-Weng)

@ Fixk=8,D= 3
@ r(x) = ®og(x) = x® — x* 4 1 defines

)
K =Qlx]/(r (X)g Q(C24)-
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Example of a Cyclotomic Family (Brezing-Weng)

@ Fixk=8,D=3.
@ r(x) = dpg(x) = x8 — x* + 1 defines

K =QIx]/(r(x)) = Q(Cza).

@ (g — x° — xin K, so choose #(x) = x°> — x + 1.
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Example of a Cyclotomic Family (Brezing-Weng)

@ Fixk=8,D=3.
@ r(x) = ®og(x) = x® — x* 4 1 defines
K = Q[x]/(r(x)) = Q(Cz4)-
@ (g — x° — xin K, so choose #(x) = x°> — x + 1.
@ /-3 2x* —1in K, so choose
G — 1 —1(X5+2X4+X—1)
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Example of a Cyclotomic Family (Brezing-Weng)

@ Fixk=8,D=3.
@ r(x) = ®og(x) = x® — x* 4 1 defines
K = Q[x]/(r(x)) = Q(¢z4)-
@ (g+— x° — xin K, so choose f(x) = x°> — x + 1.
@ v/—3— 2x* —1in K, so choose

y(X):C?/;f; :§(X5+2X4+X—1)
@ Compute
2 2
p(X)lefy(X):;( — 12— x* 1)+
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Example of a Cyclotomic Family (Brezing-Weng)

@ Fixk=8,D=3.
@ r(x) = ®og(x) = x® — x* 4 1 defines
K = Q[x]/(r(x)) = Q(¢z4)-
@ (g+— x° — xin K, so choose f(x) = x°> — x + 1.
@ v/—3— 2x* —1in K, so choose

_G—=1_1 5 4.,
y(x) = 3 —3(X +2x"+x—1)
@ Compute
p() = LZEDYC® 1 28 x4y 1 x0

4 3

@ Evaluating at x = 1000726 gives 160-bit prime r and
198-bit prime p.
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Example of a Cyclotomic Family (Brezing-Weng)

@ Fixk=8,D=3.
@ r(x) = ®og(x) = x® — x* 4 1 defines
K = Q[x]/(r(x)) = Q(¢z4)-
@ (g+— x° — xin K, so choose f(x) = x°> — x + 1.
@ v/—3— 2x* —1in K, so choose

_G—=1_1 5 4.,
y(x) = 3 —3(X +2x"+x—1)
@ Compute
p() = LZEDYC® 1 28 x4y 1 x0

4 3
@ Evaluating at x = 1000726 gives 160-bit prime r and
198-bit prime p.
e y? = x3+ 14 over F,, has point of order r, embedding
degree 8, and p = 5/4
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Sporadic Families

@ Idea of Barreto-Naehrig: Fix k, D, choose r(x) so that
K = Q[x]/(r(x)) is an extension of a cyclotomic field
containing (x, v —D.
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Sporadic Families

@ Idea of Barreto-Naehrig: Fix k, D, choose r(x) so that
K = Q[x]/(r(x)) is an extension of a cyclotomic field
containing (x, v —D.

@ How? Choose u(x) so that ®,(u(x)) = r(x)r'(x), set

K =Q(x)/(r(x)).
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Sporadic Families

@ Idea of Barreto-Naehrig: Fix k, D, choose r(x) so that
K = Q[x]/(r(x)) is an extension of a cyclotomic field
containing (x, v/—D.

@ How? Choose u(x) so that ®,(u(x)) = r(x)r'(x), set
K =Q(x)/(r(x)).

@ Construct t(x), y(x), p(x) as with cyclotomic families.
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Example: Barreto-Naehrig Curves

@ Set k =12, D = 3. Look for u(x) such that ®12(u(x))
factors.
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Example: Barreto-Naehrig Curves

@ Set k =12, D = 3. Look for u(x) such that ®12(u(x))
factors.

@ Galbraith-McKee-Valenga: only 2 such quadratic u(x).
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Example: Barreto-Naehrig Curves

@ Set k =12, D = 3. Look for u(x) such that ®12(u(x))
factors.

@ Galbraith-McKee-Valenga: only 2 such quadratic u(x).
@ u(x) = 6x2 gives r(x) = 36x* + 36x3 + 18x% + 6x + 1.
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Example: Barreto-Naehrig Curves

@ Set k =12, D = 3. Look for u(x) such that ®12(u(x))
factors.

@ Galbraith-McKee-Valenga: only 2 such quadratic u(x).
@ u(x) = 6x2 gives r(x) = 36x* +36x3 + 18x% + 6x + 1.
@ Compute t(x) = 6x% +1,

p(x) = 36x* 4 36x3 + 24x2 + 6x + 1.
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Example: Barreto-Naehrig Curves

@ Set k =12, D = 3. Look for u(x) such that ®12(u(x))
factors.

@ Galbraith-McKee-Valenga: only 2 such quadratic u(x).
@ u(x) = 6x2 gives r(x) = 36x* +36x3 + 18x% + 6x + 1.
@ Compute t(x) = 6x% +1,

p(x) = 36x* 4 36x3 + 24x2 + 6x + 1.

@ Since p(x) + 1 — t(x) = r(x) (not just divisible by r(x)),
r(x) is the size of the full group of points.
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Example: Barreto-Naehrig Curves

@ Set k =12, D = 3. Look for u(x) such that ®12(u(x))
factors.
@ Galbraith-McKee-Valenga: only 2 such quadratic u(x).
@ u(x) = 6x2 gives r(x) = 36x* +36x3 + 18x% + 6x + 1.
@ Compute t(x) = 6x% +1,
p(x) = 36x% 4+ 36x3 +24x2 +6x + 1.
@ Since p(x) + 1 — t(x) = r(x) (not just divisible by r(x)),
r(x) is the size of the full group of points.

e When p(xo), r(xo) are both prime for some xp, E is a curve
of prime order and k = 12.
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Example: Barreto-Naehrig Curves

@ Set k =12, D = 3. Look for u(x) such that ®12(u(x))
factors.
@ Galbraith-McKee-Valenga: only 2 such quadratic u(x).
@ u(x) = 6x2 gives r(x) = 36x* + 36x3 + 18x% + 6x + 1.
@ Compute t(x) = 6x% +1,
p(x) = 36x* 4 36x3 + 24x2 + 6x + 1.
@ Since p(x) + 1 — t(x) = r(x) (not just divisible by r(x)),
r(x) is the size of the full group of points.
e When p(xo), r(xo) are both prime for some xp, E is a curve
of prime order and k = 12.
@ BN family is only family of prime-order curves that is not
sparse — easy to specify the bit sizes of p, r.
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Scott-Barreto Families

@ Scott-Barreto idea: Fix k, choose r(x) so that
K = Q(x)/(r(x)) is an extension of a cyclotomic field
containing ¢, and not containing v/ — D for small D.
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Scott-Barreto Families

@ Scott-Barreto idea: Fix k, choose r(x) so that
K = Q(x)/(r(x)) is an extension of a cyclotomic field
containing ¢, and not containing v/ — D for small D.

@ Compute t(x), search (via computer) for h(x) that makes
right side of CM equation

Dy? = 4h(x)r(x) — (t(x) — 2)

a linear factor times a perfect square.
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Scott-Barreto Families

@ Scott-Barreto idea: Fix k, choose r(x) so that
K = Q(x)/(r(x)) is an extension of a cyclotomic field
containing ¢, and not containing v/ — D for small D.

@ Compute t(x), search (via computer) for h(x) that makes
right side of CM equation

Dy? = 4h(x)r(x) — (t(x) — 2)

a linear factor times a perfect square.

@ Compute D and y(x) such that CM equation is satisfied for
any x.
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Scott-Barreto Families

@ Scott-Barreto idea: Fix k, choose r(x) so that
K = Q(x)/(r(x)) is an extension of a cyclotomic field
containing ¢, and not containing v/ — D for small D.

@ Compute t(x), search (via computer) for h(x) that makes
right side of CM equation

Dy? = 4h(x)r(x) — (t(x) — 2)

a linear factor times a perfect square.

@ Compute D and y(x) such that CM equation is satisfied for
any x.

@ Method gives families with 1 < p < 2.
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Scott-Barreto Families

@ Scott-Barreto idea: Fix k, choose r(x) so that
K = Q(x)/(r(x)) is an extension of a cyclotomic field
containing ¢, and not containing v/ — D for small D.

@ Compute t(x), search (via computer) for h(x) that makes
right side of CM equation

Dy? = 4h(x)r(x) — (t(x) — 2)

a linear factor times a perfect square.
@ Compute D and y(x) such that CM equation is satisfied for
any x.
@ Method gives families with 1 < p < 2.
e Known examples have k < 6.
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Summary: Pairing-Friendly Elliptic Curves

@ Curves not in families (Cocks-Pinch,
Dupont-Enge-Morain):
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Summary: Pairing-Friendly Elliptic Curves

@ Curves not in families (Cocks-Pinch,
Dupont-Enge-Morain):
e Good for constructing curves with arbitrary k.
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Summary: Pairing-Friendly Elliptic Curves

@ Curves not in families (Cocks-Pinch,
Dupont-Enge-Morain):
e Good for constructing curves with arbitrary k.
e Can't construct curves of prime order (p = 2).
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Summary: Pairing-Friendly Elliptic Curves

@ Curves not in families (Cocks-Pinch,
Dupont-Enge-Morain):
e Good for constructing curves with arbitrary k.
e Can't construct curves of prime order (p = 2).
e Many curves possible, easy to specify bit sizes.
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Summary: Pairing-Friendly Elliptic Curves

@ Curves not in families (Cocks-Pinch,
Dupont-Enge-Morain):
e Good for constructing curves with arbitrary k.
e Can't construct curves of prime order (p = 2).
e Many curves possible, easy to specify bit sizes.

© Sparse families (Miyaji-Nakabayashi-Takano, F.):
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Summary: Pairing-Friendly Elliptic Curves

@ Curves not in families (Cocks-Pinch,
Dupont-Enge-Morain):
e Good for constructing curves with arbitrary k.
e Can't construct curves of prime order (p = 2).
e Many curves possible, easy to specify bit sizes.

© Sparse families (Miyaji-Nakabayashi-Takano, F.):
e Good for constructing curves of prime order.
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Summary: Pairing-Friendly Elliptic Curves

@ Curves not in families (Cocks-Pinch,
Dupont-Enge-Morain):
e Good for constructing curves with arbitrary k.
e Can't construct curves of prime order (p = 2).
e Many curves possible, easy to specify bit sizes.

© Sparse families (Miyaji-Nakabayashi-Takano, F.):
e Good for constructing curves of prime order.
@ Only 4 possible embedding degrees (k = 3,4,6,10).
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Summary: Pairing-Friendly Elliptic Curves

@ Curves not in families (Cocks-Pinch,
Dupont-Enge-Morain):
e Good for constructing curves with arbitrary k.
e Can't construct curves of prime order (p = 2).
e Many curves possible, easy to specify bit sizes.
© Sparse families (Miyaji-Nakabayashi-Takano, F.):
e Good for constructing curves of prime order.
@ Only 4 possible embedding degrees (k = 3,4,6,10).
o Curves are rare.
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Summary: Pairing-Friendly Elliptic Curves

@ Curves not in families (Cocks-Pinch,
Dupont-Enge-Morain):
e Good for constructing curves with arbitrary k.
e Can't construct curves of prime order (p = 2).
e Many curves possible, easy to specify bit sizes.
© Sparse families (Miyaji-Nakabayashi-Takano, F.):
e Good for constructing curves of prime order.
@ Only 4 possible embedding degrees (k = 3,4,6,10).
o Curves are rare.
© Complete families (Barreto-Lynn-Scott, Brezing-Weng,
Scott-Barreto, others):
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Summary: Pairing-Friendly Elliptic Curves

@ Curves not in families (Cocks-Pinch,
Dupont-Enge-Morain):
e Good for constructing curves with arbitrary k.
e Can't construct curves of prime order (p = 2).
e Many curves possible, easy to specify bit sizes.
© Sparse families (Miyaji-Nakabayashi-Takano, F.):
e Good for constructing curves of prime order.
@ Only 4 possible embedding degrees (k = 3,4,6,10).
o Curves are rare.
© Complete families (Barreto-Lynn-Scott, Brezing-Weng,
Scott-Barreto, others):
e Good for constructing curves with arbitrary k.
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Summary: Pairing-Friendly Elliptic Curves

@ Curves not in families (Cocks-Pinch,
Dupont-Enge-Morain):
e Good for constructing curves with arbitrary k.
e Can't construct curves of prime order (p = 2).
e Many curves possible, easy to specify bit sizes.
© Sparse families (Miyaji-Nakabayashi-Takano, F.):
e Good for constructing curves of prime order.
@ Only 4 possible embedding degrees (k = 3,4,6,10).
o Curves are rare.
© Complete families (Barreto-Lynn-Scott, Brezing-Weng,
Scott-Barreto, others):

e Good for constructing curves with arbitrary k.
e Usually can’t construct curves of prime order (1 < p < 2).
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Summary: Pairing-Friendly Elliptic Curves

@ Curves not in families (Cocks-Pinch,
Dupont-Enge-Morain):
e Good for constructing curves with arbitrary k.
e Can't construct curves of prime order (p = 2).
e Many curves possible, easy to specify bit sizes.
© Sparse families (Miyaji-Nakabayashi-Takano, F.):
e Good for constructing curves of prime order.
@ Only 4 possible embedding degrees (k = 3,4,6,10).
o Curves are rare.
© Complete families (Barreto-Lynn-Scott, Brezing-Weng,
Scott-Barreto, others):

e Good for constructing curves with arbitrary k.
e Usually can’t construct curves of prime order (1 < p < 2).

@ Exception: Barreto-Naehrig curves with k = 12.

David Freeman Constructing Pairing-Friendly Elliptic Curves for Cryptography



Curves with Arbitrary Embedding Degree
Sparse Families of Pairing-Friendly Curves
Construction Methods Complete Families of Curves

Summary: Pairing-Friendly Elliptic Curves

@ Curves not in families (Cocks-Pinch,
Dupont-Enge-Morain):
e Good for constructing curves with arbitrary k.
e Can't construct curves of prime order (p = 2).
e Many curves possible, easy to specify bit sizes.
© Sparse families (Miyaji-Nakabayashi-Takano, F.):
e Good for constructing curves of prime order.
@ Only 4 possible embedding degrees (k = 3,4,6,10).
o Curves are rare.
© Complete families (Barreto-Lynn-Scott, Brezing-Weng,
Scott-Barreto, others):

e Good for constructing curves with arbitrary k.
e Usually can’t construct curves of prime order (1 < p < 2).

@ Exception: Barreto-Naehrig curves with k = 12.
e Many curves possible, easy to specify bit sizes.

David Freeman Constructing Pairing-Friendly Elliptic Curves for Cryptography



Curves with Arbitrary Embedding Degree
Sparse Families of Pairing-Friendly Curves
Construction Methods Complete Families of Curves

The State of the Art

Smallest known p-values for families with even embedding

degrees k.
k p Type k P Type
4 1 Sparse 22 | 13/10 | Cyclotomic
6 1 Sparse 24 | 5/4 | Cyclotomic
8 | 5/4 | Cyclotomic || 26 | 7/6 | Cyclotomic
10 1 Sparse 28 | 4/3 | Cyclotomic
12 1 Sporadic || 30 | 3/2 | Cyclotomic

14 | 4/3 | Cyclotomic || 32 | 17/16 | Cyclotomic
16 | 5/4 | Cyclotomic | 34 | 9/8 | Cyclotomic
18 | 4/3 | Cyclotomic || 36 | 17/12 | Cyclotomic
20 | 11/8 | Cyclotomic || 38 | 7/6 | Cyclotomic
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