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What is a pairing?

Many public-key cryptographic protocols are based on the
discrete logarithm problem (DLP) in a finite cyclic group G:

Given x , y in G, find integer a such that y = xa.
For systems involving G to be secure, the DLP must be
computationally infeasible.

A cryptographic pairing is map

e : G×G → GT

that is
1 Bilinear: e(xa, yb) = e(x , y)ab in GT .
2 Nondegenerate: for any x ∈ G, x 6= 1, there is a y ∈ G such

that e(x , y) 6= 1 in GT .
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How to Use a Pairing

A cryptographic pairing maps the discrete logarithm
problem in G to the DLP in GT :

Given x and y = xa in G:
1 Choose a z ∈ G with e(x , z) 6= 1.
2 Compute x ′ = e(x , z), y ′ = e(y , z).
3 Try to compute a from x ′ and y ′ = x ′a.

The pairing solves the Decision Diffie-Hellman Problem in
G:

Given x , xa, xb, xc , determine if c = ab.
1 Compute e(x , xc) = e(x , x)c and e(xa, xb) = e(x , x)ab.
2 ab = c if and only if the two pairings are equal in GT .
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Applications of Pairings

Attack on discrete logarithm problem for supersingular
elliptic curves (Menezes-Okamoto-Vanstone).

Map discrete log on elliptic curve to easier discrete log in
finite field.

One-round 3-way key exchange (Joux).
Identity-based encryption (Sakai-Ohgishi-Kasahara;
Boneh-Franklin).
Short digital signatures (Boneh-Lynn-Shacham).
Many other applications:

Group signatures, batch signatures, threshold
cryptography, broadcast encryption, private information
retrieval, electronic voting, etc.
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Requirements for Pairings

To be useful in applications using the Decision
Diffie-Hellman property, we need:

1 the discrete logarithm problem in G to be computationally
infeasible,

2 the discrete logarithm problem in GT to be computationally
infeasible, and

3 the pairing to be easy to compute.
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Elliptic Curves in Cryptography

An elliptic curve E over a finite field Fp is defined by an
equation

E : y2 = x3 + ax + b (mod p)

The set of points (x , y) on E , plus a “point at infinity” O,
forms a group (usually written additively).

Adding two points P, Q gives a third point R = P + Q.
Adding a point to itself repeatedly gives multiplication:
P + · · ·+ P (m times) = mP.

If P has prime order r , then computing a from P and aP
takes time ∼

√
r .

If r is a large prime, then discrete log in elliptic curve
subgroup of order r is infeasible.
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The Weil and Tate Pairings

Let E be an elliptic curve defined over a finite field F.
For any integer r the Weil pairing er ,weil is a bilinear map
sending pairs of points of order r to r -th roots of unity in F:

er ,weil : E [r ]× E [r ] → µr .

The Tate pairing er ,tate is similar:

er ,tate : E(F)[r ]× E(F)/rE(F) → F×/(F×)r .

If r is prime and Fpk is the smallest field containing µr , then
both pairings take values in F×pk .

Tate pairing generally can be computed more efficiently.
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Embedding degrees

Elliptic curve pairings used in cryptography use curves
E/Fp with a point of order r , and map into the r th roots of
unity in Fpk .
k is the embedding degree of E (with respect to r ).

k is the smallest integer such that r | pk − 1.
k is the order of p in (Z/rZ)×.
Want k large enough so that discrete log in F×pk is
computationally infeasible, but small enough so that pairing
is easy to compute.

r is a large prime dividing #E(Fp)

Define ρ = log p/ log r = #bits of p/#bits of r .
If keys, signatures, ciphertexts, etc. are elements of E [r ],
we want ρ small to save bandwidth.
If curve has prime order, ρ = 1.
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Pairing-friendly elliptic curves

Balasubramanian-Koblitz: If E/Fp is a “random” elliptic
curve with an order-r subgroup, then k ∼ r .

Pairing computation on random curves is totally infeasible:
If r ∼ p ∼ 2160, pairing is computed in field of size 22160

.

A pairing-friendly curve is an elliptic curve with a large
prime-order subgroup (ρ ≤ 2) and small embedding
degree (k ≤ 50).
Problem: construct pairing-friendly elliptic curves for
specified values of k and number of bits in r .
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Our Goal

Provide a supply of pairing-friendly curves suitable for
many different performance and security requirements.
Since discrete logarithm problem is easier in finite fields
than on elliptic curves, finite field size Fpk should be larger
than subgroup size r .
How much larger depends on level of security desired:

Security level Subgroup size Extension field size Embedding degree k
(in bits) r (in bits) pk (in bits) ρ ≈ 1 ρ ≈ 2

80 160 960 – 1280 6 – 8 3 – 4
112 224 2200 – 3600 10 – 16 5 – 8
128 256 3000 – 5000 12 – 20 6 – 10
192 384 8000 – 10000 20 – 26 10 – 13
256 512 14000 – 18000 28 – 36 14 – 18
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Pairings on Elliptic Curves

2 How to Construct Pairing-Friendly Elliptic Curves
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The Complex Multiplication Method
Classification of Pairing-Friendly Elliptic Curves

3 Construction Methods
Curves with Arbitrary Embedding Degree

Cocks-Pinch and Dupont-Enge-Morain Methods
Sparse Families of Pairing-Friendly Curves

The Miyaji-Nakabayashi-Takano Method and Extensions
Complete Families of Curves

Cyclotomic, Sproadic, and Scott-Barreto Families
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Supersingular Curves

An elliptic curve over Fp (p ≥ 5) is supersingular if
#E(Fp) = p + 1.

Supersingular curves easy to construct; e.g., y2 = x3 + 1
for any p ≡ 2 (mod 3).

If p ≥ 5, then supersingular curves over Fp have
embedding degree 2.
Supersingular curves over non-prime fields have
embedding degree ≤ 6.
To obtain other embedding degrees, we must use ordinary
(i.e., non-supersingular) elliptic curves.
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Ordinary Elliptic Curves: The General Strategy

To construct pairing-friendly ordinary elliptic curves:
1 Fix k , find primes p and r such that there exists a curve

E/Fp with a subgroup of order r and embedding degree k .
2 Use Complex Multiplication method to construct the

equation for E .
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The Complex Multiplication Method

Originally due to Atkin and Morain for primality testing
application.
Define the trace of E to be t such that #E(Fp) = p + 1− t .

Hasse bound: if E ordinary then |t | < 2
√

p.

Define the Complex Multiplication (CM) discriminant of E
to be the square-free part of 4p − t2.
For given square-free D > 0, Complex Multiplication (CM)
method constructs elliptic curve with CM discriminant D.

Used to construct curves with specified number of points.
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Effectiveness of the CM Method

Running time of CM method depends on the class number
hD of Q(

√
−D).

Bottleneck is computing the Hilbert class polynomial, a
polynomial of degree hD.
Best known algorithms run in (roughly) O(h2

D) = O(D)
(Enge).

Can be efficiently implemented if hD not too large.
Current record is hD = 105.
Equivalent to D ≈ 1010.
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Existence Conditions for Pairing-Friendly Curves

Fix an embedding degree k , and look for parameters t =
trace, r = subgroup size, p = field size, satisfying:

1 p and r are prime.
2 r divides p + 1− t .

E(Fp) has a point of order r .
3 r divides Φk (p), where Φk is the k th cyclotomic polynomial.

p has exact order k in (Z/rZ)×.
4 4p − t2 = Dy2 for some sufficiently small D and some

y ∈ Z. (This is the “CM equation.”)

For such t , r , p, if D is not too large (∼ 1010) we can
construct an elliptic curve E over Fp with an order-r
subgroup and embedding degree k .
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Observations about the CM Method

The embedding degree condition r | Φk (p) can be replaced
with r | Φk (t − 1).

r divides p + 1− t implies p ≡ t − 1 (mod r).

We can use #E(Fp) = p + 1− t to write the “CM equation”
in two ways:

Dy2 = 4p − t2

Dy2 = 4hr − (t − 2)2.

h is a “cofactor” satisfying #E(Fp) = hr .
Set h = 1 if we want #E(Fp) to be prime.
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Pairings on Elliptic Curves

2 How to Construct Pairing-Friendly Elliptic Curves
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3 Construction Methods
Curves with Arbitrary Embedding Degree

Cocks-Pinch and Dupont-Enge-Morain Methods
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The Miyaji-Nakabayashi-Takano Method and Extensions
Complete Families of Curves

Cyclotomic, Sproadic, and Scott-Barreto Families
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Our Classification

1 Curves not in families: Construction gives t , r , p directly;
repeat construction to get different curve parameters.

2 Families of curves: Parametrize t , r , p as polynomials
t(x), r(x), p(x); plug in x to get curve parameters.

1 Sparse families: Solutions (x , y) to 4p(x)− t(x)2 = Dy2

grow exponentially.
2 Complete families: Solutions (x , y) to 4p(x)− t(x)2 = Dy2

exist for any x .
Further classified by properties of r(x).
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Overview of the Cocks-Pinch Method

Recall: for fixed D, k , we are looking for t , r , p satisfying
certain divisibility conditions and the CM equation

Dy2 = 4p − t2.

Cocks-Pinch strategy: Choose r , compute t satisfying
divisibility conditions, compute y , p satisfying CM equation.

Good for constructing curves with arbitrary k .
Can’t construct curves of prime order; usually ρ ≈ 2.
Many curves possible, easy to specify bit sizes.
Has been generalized to produce families of curves.
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The Cocks-Pinch Method

1 Fix D, k , and choose a prime r .
Require that k divides r − 1 and −D is a square mod r .

2 Compute t ′ = 1 + x (r−1)/k for x a generator of (Z/rZ)×.
3 Compute y ′ = (t ′ − 2)/

√
−D (mod r).

4 Lift t ′, y ′ to integers t , y , and compute p = (t2 + Dy2)/4 (in
Q).

5 If p is an integer and prime, use CM method to construct
elliptic curve over Fp with an order-r subgroup.

y is constructed so that CM equation Dy2 = 4p − t2 is
automatically satisfied.
Since t ′, y ′ are essentially random integers in [0, r), p ≈ r2,
so ρ ≈ 2.
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Overview of the Dupont-Enge-Morain Method

Recall: for fixed D, k , we are looking for t , r , p satisfying
certain divisibility conditions and the CM equation

Dy2 = 4p − t2

Dupont-Enge-Morain strategy: Choose D, y , use resultants
to find t and r simultaneously, compute p such that CM
equation is satisfied.

Good for constructing curves with arbitrary k .
Can’t construct curves of prime order; usually ρ ≈ 2.
Has not been generalized to produce families of curves.
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The Dupont-Enge-Morain Method

1 Fix k , choose D, y , compute resultant

Rest(Φk (t − 1), Dy2 − (t − 2)2).

2 If resultant has a large prime factor r , then can compute t ′

such that Φk (t − 1) ≡ Dy2 − (t − 2) ≡ 0 (mod r).
3 Lift t ′ to integer t , compute p = (t2 + Dy2)/4.
4 If p is an integer and prime, use CM method to construct

elliptic curve over Fp with an order-r subgroup and
embedding degree k .

Since t ′ is essentially random in [0, r), p ≈ r2, so ρ ≈ 2.
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Overview of the Miyaji-Nakabayashi-Takano Method

Recall: for fixed D, k , we are looking for t , r , p satisfying
certain divisibility conditions and the CM equation

Dy2 = 4p − t2 = 4hr − (t − 2)2

for some y .
Idea: Parametrize t , r , p, h as polynomials
t(x), r(x), p(x), h(x).
Miyaji-Nakabayashi-Takano method: Choose t(x), h(x),
compute r(x) satisfying divisibility conditions, solve CM
equation in 2 variables x , y .

Good for constructing curves of prime order.
Only 4 possible embedding degrees: k = 3, 4, 6, 10.
Solutions to CM equation grow exponentially.
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The Miyaji-Nakabayshi-Takano (MNT) Method

1 Fix D, k , and choose polynomials t(x), h(x).
h(x) = 1 if searching for curves of prime order.

2 Choose r(x) an irreducible factor of Φk (t(x)− 1).
3 Compute p(x) = h(x)r(x) + t(x)− 1.

4 Find integer solutions (x0, y0) to CM equation
Dy2 = 4h(x)r(x)− (t(x)− 2)2.

5 If p(x0), r(x0) are both prime for some x0, use CM method
to construct elliptic curve over Fp(x0) with h(x0)r(x0) points.

For the rest of this section, we will assume h(x) is a
constant.
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Dy2 = 4h(x)r(x)− (t(x)− 2)2.

5 If p(x0), r(x0) are both prime for some x0, use CM method
to construct elliptic curve over Fp(x0) with h(x0)r(x0) points.

For the rest of this section, we will assume h(x) is a
constant.
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Obstacles to the MNT Method

Step 4 is the difficult part: finding integer solutions (x0, y0)
to

Dy2 = 4hr(x)− (t(x)− 2)2.

If f (x) = 4hr(x)− (t(x)− 2)2 has degree ≥ 3 and no
multiple roots, then Dy2 = f (x) has only a finite number of
integer solutions! (Siegel’s Theorem)
Consequence: need to choose t(x), r(x) so that f (x) is
quadratic or has multiple roots.
This is hard to do for k > 6, since deg r(x) must be a
multiple of deg Φk > 2.
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The MNT Solution for k = 3, 4, 6

Goal: Choose t(x), find factor r(x) of Φk (t(x)− 1), such
that f (x) = 4hr(x)− (t(x)− 2)2 is quadratic.
Solution:

1 Choose t(x) linear; then r(x) is quadratic, and so is f (x).
2 Use standard algorithms to find solutions (x0, y0) to

Dy2 = f (x).
3 If no solutions of appropriate size, or p(x) or r(x) not prime,

choose different D and try again.

Since construction depends on solving a Pell-like equation,
MNT curves of prime order are sparse (Luca-Shparlinski).
Galbraith-McKee-Valença, Scott-Barreto extend MNT idea
by allowing cofactor h(x) 6= 1, so that #E(Fp) = h(x)r(x).

Find many more suitable curves than original MNT
construction.
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F. Solution for k = 10

Goal: Choose t(x), find factor r(x) of Φ10(t(x)− 1), such
that f (x) = 4r(x)− (t(x)− 2)2 is quadratic.

All irred. factors of Φ10(t(x)− 1) must have 4 | degree.
Key observation: Need to choose r(x), t(x) such that the
leading terms of 4r and t2 cancel out.

Smallest possible case: deg r = 4, deg t = 2.

Galbraith-McKee-Valença: Characterized quadratic t(x)
such that Φ10(t(x)− 1) factors into two quartics.
One of these t(x) gives the desired cancellation!
Construct curves via Pell-like equation as in MNT solution.

Like MNT curves, k = 10 curves are expected to be sparse.
Can’t be extended to allow cofactors h 6= 1.
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Overview of Complete Families

Recall: for fixed D, k , we are looking for t , r , p satisfying
certain divisibility conditions and the CM equation

Dy2 = 4p − t2 = 4hr − (t − 2)2

for some y .
Idea: Parametrize t , r , p, h as polynomials
t(x), r(x), p(x), h(x).
Complete families method: Choose r(x), use properties of
the number field K = Q[x ]/(r(x)) to compute t(x), p(x)
satisfying CM equation for any x .

Good for constructing curves with arbitrary k .
Usually gives curves with 1 < ρ < 2.
Easy to specify bit sizes of curves (if k not too large).
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Constructing Complete Families of Curves

1 Fix D, k , choose an irreducible polynomial r(x).
Let K be the number field Q[x ]/(r(x)).
Require that K contain a k th root of unity ζk .

2 Choose t(x) to be a polynomial representing 1 + ζk ∈ K .
3 Compute y(x) so that CM equation is satisfied in K .
4 Compute p(x) = (t(x)2 + Dy(x)2)/4 (in Q[x ]).
5 If p(x0) is an integer for some x0 and p(x0), r(x0) are prime,

use CM method to construct elliptic curve over Fp(x0) with
an order-r(x0) subgroup and embedding degree k .
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Properties of Complete Families

For large x , ρ ≈ deg p/ deg r .
Working modulo r(x), we can choose t(x), y(x) such that
deg t , deg y < deg r , so deg p ≤ 2 deg r − 2.

Can always get ρ < 2, improving on CP, DEM methods.
With clever choices of r(x), t(x), ρ can be decreased even
further.
Best current results: ρ = k+1

k−1 for k prime ≡ 3 (mod 4).

No restrictions on k , and many values of x0, D produce
curves.

Compare with sparse families: k ≤ 10, and values of x0
grow exponentially.

Complete families subdivided according to type of number
field K = Q[x ]/(r(x)).
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Construction Methods
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Cyclotomic Families

Idea of Barreto-Lynn-Scott, Brezing-Weng: Fix k , D,
choose r(x) to be cyclotomic polynomial Φ`(x) with k | `,
4D | `.

Then K = Q[x ]/(r(x)) ∼= Q(ζ`), and K contains ζk ,
√
−D.

E.g., k = 8, D = 3, r(x) = Φ24(x), K ∼= Q(ζ24).

CM equation Dy2 = 4h(x)r(x)− (t(x)− 2)2 factors in K as(
ζk − 1 + y

√
−D

) (
ζk − 1− y

√
−D

)
≡ 0 (mod r(x)).

If y(x) is a polynomial mapping to (ζk − 1)/
√
−D in K , then

CM equation automatically satisfied.
Restriction:

√
−D in Q(ζ`) implies D divides `.

In practice, usually set D = 1, 2, or 3.
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Sparse Families of Pairing-Friendly Curves
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Example of a Cyclotomic Family (Brezing-Weng)

Fix k = 8, D = 3.
r(x) = Φ24(x) = x8 − x4 + 1 defines
K = Q[x ]/(r(x)) ∼= Q(ζ24).
ζ8 7→ x5 − x in K , so choose t(x) = x5 − x + 1.√
−3 7→ 2x4 − 1 in K , so choose

y(x) =
ζ8 − 1√
−3

=
1
3
(x5 + 2x4 + x − 1)

Compute

p(x) =
t(x)2 + Dy(x)2

4
=

1
3
(x − 1)2(x8 − x4 + 1) + x9

Evaluating at x = 1000726 gives 160-bit prime r and
198-bit prime p.

y2 = x3 + 14 over Fp has point of order r , embedding
degree 8, and ρ ≈ 5/4
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ζ8 7→ x5 − x in K , so choose t(x) = x5 − x + 1.√
−3 7→ 2x4 − 1 in K , so choose

y(x) =
ζ8 − 1√
−3

=
1
3
(x5 + 2x4 + x − 1)

Compute

p(x) =
t(x)2 + Dy(x)2

4
=

1
3
(x − 1)2(x8 − x4 + 1) + x9

Evaluating at x = 1000726 gives 160-bit prime r and
198-bit prime p.

y2 = x3 + 14 over Fp has point of order r , embedding
degree 8, and ρ ≈ 5/4
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Complete Families of Curves

Sporadic Families

Idea of Barreto-Naehrig: Fix k , D, choose r(x) so that
K = Q[x ]/(r(x)) is an extension of a cyclotomic field
containing ζk ,

√
−D.

How? Choose u(x) so that Φk (u(x)) = r(x)r ′(x), set
K = Q(x)/(r(x)).
Construct t(x), y(x), p(x) as with cyclotomic families.
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Construction Methods

Curves with Arbitrary Embedding Degree
Sparse Families of Pairing-Friendly Curves
Complete Families of Curves

Example: Barreto-Naehrig Curves

Set k = 12, D = 3. Look for u(x) such that Φ12(u(x))
factors.
Galbraith-McKee-Valença: only 2 such quadratic u(x).
u(x) = 6x2 gives r(x) = 36x4 + 36x3 + 18x2 + 6x + 1.
Compute t(x) = 6x2 + 1,
p(x) = 36x4 + 36x3 + 24x2 + 6x + 1.
Since p(x) + 1− t(x) = r(x) (not just divisible by r(x)),
r(x) is the size of the full group of points.

When p(x0), r(x0) are both prime for some x0, E is a curve
of prime order and k = 12.

BN family is only family of prime-order curves that is not
sparse – easy to specify the bit sizes of p, r .
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Construction Methods
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Scott-Barreto Families

Scott-Barreto idea: Fix k , choose r(x) so that
K = Q(x)/(r(x)) is an extension of a cyclotomic field
containing ζk and not containing

√
−D for small D.

Compute t(x), search (via computer) for h(x) that makes
right side of CM equation

Dy2 = 4h(x)r(x)− (t(x)− 2)2

a linear factor times a perfect square.
Compute D and y(x) such that CM equation is satisfied for
any x .
Method gives families with 1 < ρ < 2.

Known examples have k ≤ 6.
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Construction Methods

Curves with Arbitrary Embedding Degree
Sparse Families of Pairing-Friendly Curves
Complete Families of Curves

Summary: Pairing-Friendly Elliptic Curves

1 Curves not in families (Cocks-Pinch,
Dupont-Enge-Morain):

Good for constructing curves with arbitrary k .
Can’t construct curves of prime order (ρ ≈ 2).
Many curves possible, easy to specify bit sizes.

2 Sparse families (Miyaji-Nakabayashi-Takano, F.):
Good for constructing curves of prime order.
Only 4 possible embedding degrees (k = 3, 4, 6, 10).
Curves are rare.

3 Complete families (Barreto-Lynn-Scott, Brezing-Weng,
Scott-Barreto, others):

Good for constructing curves with arbitrary k .
Usually can’t construct curves of prime order (1 < ρ < 2).

Exception: Barreto-Naehrig curves with k = 12.
Many curves possible, easy to specify bit sizes.
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Only 4 possible embedding degrees (k = 3, 4, 6, 10).
Curves are rare.

3 Complete families (Barreto-Lynn-Scott, Brezing-Weng,
Scott-Barreto, others):

Good for constructing curves with arbitrary k .
Usually can’t construct curves of prime order (1 < ρ < 2).

Exception: Barreto-Naehrig curves with k = 12.
Many curves possible, easy to specify bit sizes.
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The State of the Art

Smallest known ρ-values for families with even embedding
degrees k .

k ρ Type k ρ Type
4 1 Sparse 22 13/10 Cyclotomic
6 1 Sparse 24 5/4 Cyclotomic
8 5/4 Cyclotomic 26 7/6 Cyclotomic
10 1 Sparse 28 4/3 Cyclotomic
12 1 Sporadic 30 3/2 Cyclotomic
14 4/3 Cyclotomic 32 17/16 Cyclotomic
16 5/4 Cyclotomic 34 9/8 Cyclotomic
18 4/3 Cyclotomic 36 17/12 Cyclotomic
20 11/8 Cyclotomic 38 7/6 Cyclotomic
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