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RSA & Factoring in Software




In 1977 by

Ron Rivest, Adi Shamir & Leonard Adleman

developed the first public key cryptosystems, they called RSA



Common Applications of RSA

Secure WWW, SSL

—1

Browser WebServer

S/IMIME, PGP

Alice g ~ Bob




ACM A.M. Turing Award
2002

. haﬁ

“For Seminal Contributions
to the Theory and Practical Applications of
Public Key Cryptography”

R. Rivest
A. Shamir
L. Adleman




RSA
Major Public Key Cryptosystem

Public key {e, N} Private key {d, P,Q}
=) o
i
Alice | ’@ | " Bob
Encryption Decryption
{e,N} > . {d,P,Q}
N=P-Q P, Q - large prime factors

e-d =1 mod ((P-1)(Q-1))



RSA challenge published In

Scientific American 1977
Ciphertext:

9686 9613 7546 2206 1477 1409 2225 4355
8829 0575 9991 1245 7431 9874 6951 2093
0816 2982 2514 5708 3569 3147 6622 8839
8962 8013 3919 9055 1829 9451 5781 5145

Public key:

N =114381625757 88886766923577997614
661201021829672124236256256184293
570693524573389783059712356395870
5058989075147599290026879543541

_ 129 decimal digits
© = 9007 = 429 bits

Award $100



Rivest estimation - 1977

The best known algorithm for factoring a
129-digit number requires:

~ ™

40 000 trilion years
=40 - 101> years

- Y

assuming the use of a supercomputer
being able to perform

1 multiplication of 129 decimal digit numbers in 1 ns
Rivest’s assumption translates to the delay of a single logic gate ~ 10 ps

Estimated age of the universe: 100 bln years = 1011 years



Breaking RSA-129

When: August 1993 - 1 April 1994, 8 months

Who: D. Atkins, M. Graff, A. K. Lenstra, P. Leyland
+ 600 volunteers from the entire world

How: 1600 computers

from Cray C90, through 16 MHz PC,
to fax machines

Only 0.03% computational power of the Internet

Results of cryptanalysis:

[ “The magic words are squeamish ossifrage”}

An award of $100 donated to Free Software Foundation



Elements affecting the progress
In factoring large numbers

e computational power
1977-1993 1ncrease of about 1500 times

e computer networks

Internet

e better algorithms




Supercomputer Cray

—

Computer Museum, Mountain View, CA



How to factor for free?
A. Lenstra & M. Manasse, 1989

* Using the spare time of computers,
(otherwise unused)

* Program and results sent by e-mail
(later using WWW)



Best known general purpose
factoring algorithms

Multiple Polynomial
Quadratic Sieve

MPQS

General
Number Field Sieve
GNFS

L\ [1/2, 1] = exp((1 + o(1))-(In N)'2))-(In In N)1/2)
L\ [1/3, 1.92] = exp((1.92 + o(1))-(In N)'3))-(In In N)?/3)

MPQS more
efficient

100D
|

11

0D

12

GNFS more
efficient

0D 130D
|

size of the factored number
N in decimal digits (D)




Factoring 512-bit number

912 bits = 155 decimal digits
old standard for key sizes in RSA

17 March - 22 August 1999

Group of Herman te Riele
Centre for Mathematics and Computer Science
(CWI), Amsterdam

First stage Several hundreds of workstations

2 months

Second stage

Cray C916
~2 weeks



Recommendations of RSA Security Inc.
May 6, 2003

Minimal

Equivalent symmetric

Validity period | RSA key length key length
(bits) (bits)
2003-2010 1024 80
2010-2030 20438 112
2030- 3072 128




number

C116
RSA-120

RSA-129

RSA-130

RSA-140

RSA-155

C158
RSA-160

RSA-576

C176
RSA-200

decimal
digits

116
120
129
130
140
155
158
160

174

176
200

Factorization records

date

1990

VI. 1993
V. 1994
V. 1996
Il. 1999
VIII. 1999
|. 2002
[1l. 2003

XII. 2003

V. 2005
V. 2005

time (phase 1)

275 MIPS years

830 MIPS years

5000 MIPS years

1000 MIPS years

2000 MIPS years

8000 MIPS years

3.4 Pentium 1GHz CPU years
2.7 Pentium 1GHz CPU years

13.2 Pentium 1GHz CPU years

48.6 Pentium 1GHz CPU years
121 Pentium 1GHz CPU years

algorithm

mpgs
mpgs
mpgs
gnfs
gnfs
gnfs
gnfs
gnfs

gnfs

gnfs
gnfs



Factorization records

700 -

600 -

500 4

400 -

300 1

Sep-90 Mar-92 Sep-93 Mar-95 Aug-96 Feb-98 Aug-99 Feb-01 Aug-02 Feb-04 Aug-05

He who has absolute confidence in linear regression will
expect a 1024-bit RSA number to be factored on
December 17, 2028



Factoring in Hardware




Machine a Congruences [E. O. Carissan, 1919]




Lehmer Sieve
Bicycle chain sieve [D. H. Lehmer, 1926, U.C. Berkeley]

Computer Museum, Mountain View, CA



Bernstein’s Machine

Fall 2001

Daniel Bernstein, professor of mathematics at
University of lllinois in Chicago
proposes hardware architecture capable of
performing factoring with better
asymptotic complexity
than any known software algorithm

D. Bernstein, Circuits for Integer Factorization: A Proposal

http://cr.yp.to/papers.html#nfscircuit



A

Bernstein’s Machine

RSA keylength that can be broken
using Bernstein’s machine

RSA key lengths that can be broken
using classical computers

?
2 7

?
"$1bin*1day $ 1000 bin*1 day infinity
| |

| | px =

Computational cost =time [days] * memory [$]



Workshop Series

SHARCS - Special-purpose Hardware
for Attacking Cryptographic Systems

1st edition: Paris, Feb. 24-25, 2005
2nd edition: Cologne, Apr. 3-4, 2006
3rd edition: Vienna, Sep. 9-10, 2007

See
http://www.ruhr-uni-bochum.de/itsc/tanja/SHARCS/




Two competing implementation

approaches
: ASIC RIS FPGA R
Application Specific Field Programmable
_ Integrated Circuit | Gate Array

* designed all the way

from behavioral description

to physical layout

 designs must be sent
for expensive and time
consuming fabrication
iIn semiconductor foundry

* no physical layout design;
design ends with
a bitstream used
to configure a device

* bought off the shelf
and reconfigured by
designers themselves



20|19 O/I

What is an FPGA Chip ?

| 1/0 Block

e Configurable

| — Logic

Blocks
(Programmable
Functional Units)

‘4

%2019 O/I

Programmable
Switch Matrices
(Programmable
Interconnects)

w2 e ==
T T 10
Pl lpsu—psmi—_lPstlfpsw[ s

I 1/0 Block

General structure of an FPGA

Source: [Brown99]



Families of FPGA Devices

Low-cost High-performance
Spartan 3 Virtex |l
(< $130%) (< $2,700%)
Spartan 3E Virtex 4
(< $35%) (< $3,000%)

« approximate cost of the largest device per unit for
a batch of 10,000 units



FPGASs vs. ASICs

ASICs

-

High performance

\ J

~ D
Low power

\ /

a N

Low cost (but only
In high volumes)

FPGAS

L Off-the-shelf }

[Low development costs}

Short time to the solution}

Reconfigurability

*



COPACOBANA

Ruhr University, Bochum, il
University of Kie/, Gel’many, 2006 ... Easy to remember: Copacabana...

Cost: € 8980

120 Spartan 3 FPGAs
Clock frequency 100 MHz



General-purpose
reconfigurable computers

Machine Released
gsg g:)rrzr;uters 2002
gg: RASC from 2005
SRC 7 from 2006

SRC Computers, Inc,




What is a
reconfigurable computer?

Reconfigurable system

FPGA

FPGA
memory

Microprocessor system
uP uP FPGA
uP uP FPGA
memory memory memory
/0 Interface <:> Interface

/0O




Comparison among technologies

Microprocessors FPGAS ASICs

SRC COPACOBANA



Number Field Sieve
In Hardware




Best Algorithm to Factor Large Numbers
NUMBER FIELD SIEVE

Complexity: Sub-exponential time and memory

N = Number to factor,
k = Number of bits of N

Execution
time Exponential function, e

Sub-exponential function,

e k1/3 (In k)2/3

Polynomial
/ function, a_km

k = Number of bits of N




Factoring 1024-bit RSA keys
using Number Field Sieve (NFS)

Polynomial Selection

l

Relation Collection

Sieving

200 bit & 350 bit |

smooth numbers

Minifactoring (Cofactoring,
Norm Factoring)

ECM, p-1 method, rho method

!

Linear Algebra

l

Square Root




B-smooth numbers

Integer N is B-smooth if and only if
N can be represented in the form

N:plel . p262 . p3e3 . ptet

where

IA
vy

\v4 P

i



Relation Collection Step (1)

Given

Fl(x1y)1 FZ(X1y) € L [X1y]1
two special homogeneous polynomials,

e.g. of degree5and 1

1. Find (a,b) € Zx N, gcd(a,b)=1
such that F,(a,b) and F,(a,b) are smooth.

2. Factor completely F,(a,b) and F,(a,b).



Relation Collection Step (2)
Sieving

Finding parameters a and b such that
Fi(a, b), Fa(a, b)
are likely to be B, and B, smooth respectively,
l.e., factor completely using primes smaller than B, and B,
respectively

Minifactoring (Norm factoring / Co-factoring)

Fully factoring numbers F,(a, b) and F,(a, b) found
by sieving



Theoretical Designs for Sieving (1)

1999-2000
TWINKLE ( Shamir, CHES 1999;
Shamir & Lenstra, Eurocrypt 2000)

- based on optoelectronic devices (fast LEDs)
- not even a small prototype built in practice
- not suitable for 1024 bit numbers

2003
TWIRL (Shamir & Tromer, Crypto 2003)
- semiconductor wafer design
- requires fast communication between chips located
on the same 30 cm diameter wafer
- difficult to realize using current fabrication technology



Theoretical Designs for Sieving (2)

2003-2004

Mesh Based Sieving / YASD
(Geiselmann & Steinwandt, PKC 2003
Geiselmann & Steinwandt, CT-RSA 2004)

- not suitable for 1024 bit numbers

2005
SHARK (Franke et al., SHARCS & CHES 2005)
- relies on an elaborate butterfly switch
connecting large number of chips
- difficult to realize using current technology



Theoretical Designs for Sieving (3)

2007

Non-Wafer-Scale Sieving Hardware
(Geiselmann & Steinwandt, Eurocrypt 2007)

- based on moderate size chips (2.2 x 2.2 cm)

- communication among chips seems to be realistic

- 2 to 3.5 times slower than TWIRL

- supports only linear sieving, and not more optimal
lattice sieving



Estimated recurring costs with
current technology (US$xyear)

by Eran Tromer, May 2005

768-bit 1024-bit
Traditional 1.3x107 1012
PC-based
TWINKLE 8x106
TWIRL 5x103 10x106
Mesh-based 3x104
SHARK 230x106

But: non-recurring costs, chip size, chip transport networks...



However...

None of the theoretical designs ever built.

Just analytical estimations, no real
Implementations, no concrete numbers



First Practical Implementation of
the Relation Collection Step in Hardware

2 O O 7 SEVER (the core sieving part)

PCI

AUS factor base  results

OOR DOR
CPU > | sppam [ | soram

Ether SEVER
HUB === | [l Froa

-

CHECKER (the relation chacking part)
RCI

BUS factor bage  relation

OCF oOR
CPU ™ | soram [ | soram

Ether CHECKER Cirect KD .| DAPONAZ
Inf. FPGA Wi ["|7| EBS

Japan Tetsuya lzu and Jun Kogure
and Takeshi Shimoyama (Fujitsu)

CHES 2007 — September 2007



First large number factored
using FPGA support

Factored number:

N = P : Q
423-bits 205 bits 218 bits

Time of computations:

One month of computations using a PC
supported by FPGA boards

Problems:

- Speed up vs. software not clearly determined
- Limited scalability



Factoring 1024-bit RSA keys
using Number Field Sieve (NFS)

Polynomial Selection

l

Relation Collection

Sieving

200 bit & 350 bit |

numbers

Minifactoring/Cofactoring
Norm Factoring

ECM, p-1 method, rho method

!

Linear Algebra

l

Square Root

Our focus




ECM In Hardware

Previous Proof-of-Concept Design

Pelzl, Simka, SHARCS Feb 2005
Kleinjung, Franke, FCCM Apr 2005
Priplata, Stahlke, IEE Proc. Oct 2005

Drutarovsky, Fischer,

Paar



Rho, P-1 & ECM




Special-purpose factoring algorithms

Trial Division

Pollard's rho Method
Pollard's p-1 Method
Elliptic Curve Method

e Exponential complexity

e Often superior to more advanced (sub-exponential)
methods for finding small factors

« Using more advanced methods to find small
divisors is not a good use of resources



Pollard’s Rho Method

Birthday paradox: If more than 23
“random” people are in a room (or even if
they aren't) there is a more than 50%
probability that the birthdays of two of them
fall on the same day of the year.




Pollard's rho method - Example

N =97.1889 =183 233
Xipq = X%+ 1modN
Xg=> X;—=> Xo> X3 > X, = Xg >  Xg > X5 > Xg > Xg ...
2 > 5 > 26> 677 —> 91864 — 15449 — 102236 —» 396/8 —» 5749 — 69062 ...
mod 97:

2 > 5 526> 95> 5 - 26 - 95 > 5 —> 26 » 95...

Xo= X=X = ...mod
2758 d X=X, mod q

q | (X3 =%4)

5 ql|N
2 95 q | ged(x; = X4, N)

q=gcd(-91 859, 183 233)
= 97



Pollard’s Rho Method

Xg4x = Xou, mod q



Rho Method - Floyd’s Version

XX, XX X X4 X;Xs X,Xg X4-X;
Xy X3  XpXy, X5~X5 X,Xg XyX7 Xp=X;
X3X;  X3Xs X3-Xg X3-X7 X3-Xg X3-X;
Xy Xs — XgXg XX X, ~Xg X Xg X4X;
XsXe  X57X7 X5Xg X57Xg X5 X10 X57Xi
XeX7  XgXg X6=Xg XeX10  Xe7X11 X6=X12 Xe=Xi
X7Xg X7Xg X77X10 X7X11 X77X12 X77X13 X77X14 X7=Xi
XgXg  XgXq0 XgX11 XgX12  XgXy3 XgX14  XgX15 XgXq6 Xg=Xi
X Xk+1 X Xk2 X Xk+3 X=X~ X=X




Pollard’s Rho Algorithm - Floyd'’s Version

f(x)=x2+a with a z{-2,0}

# iterations t <100 Nq__ (q, .. is the maximum factor we expect to find using rho

(1))

method)

We choose random x, in the range(0,N-1) and x.,=f(x,)

Xyiea=F(F(X39)) X =(x))

- d=d*(x;x,)

"""""""""""""

Can be eliminated

- d=d*(xX,)

d=d*(X,;,,X;,,) C. . :
d=d(x,x) Minimization for

area and/or memory
g=gcd(d,N)



Rho Method - Brent’s Version

X=X,  X;=Xg X X4 X;Xs X,Xg X4-X;
X;-X3  XyXy, X5~X5 X,Xg XyX7 Xp=X;
X3X;  X3Xs X35-Xg X3-X7 X35-Xg X3-X;

Xy X5 — XgXg XX, X,~Xg X Xg X4X;
XsXe  X57X7 X5Xg X57Xg X5X10 X57Xi
XeX7  X6Xg X6~X9 XeX10  Xe7X11 X6X12 Xe~Xi
X7Xg X7Xg X77X10 X7X11 X77X12 X77X13 X77X14 X7=Xi
XgXg  XgXq0 XgX11 XgX12  Xg=Xq3 Xg=X14  Xg=Xq5 Xg=Xq6 Xg=X
XX k+1 X Xy+2 XiXk+3 X, X5, g X5,



Rho Method - Brent’'s Version
Sequence of Operations

d=d*(x,x;) = X,

- d*(xgxy) - Xg
d*(x5-Xg)
Z*(XM'Xs) Minimization for
(X15Xg) execution time
d*(X,5Xg) X16

24%



p-1 algorithm

Inputs :
N  — number to be factored
a — arbitrary integer such that gcd(a,
N)="1
B, — smoothness bound for Phase1
B, — smoothness bound for Phase2
Outputs:
q - factorofN, 1 < g =< N

or FAIL



p-1 algorithm — Phase 1

precomputations

l: K« H . p." such that p, - consecutive primes < B,

e - largest exponent such that p." < B,

postcomputations

3

4

5: returnq  (factor of N)
6: else

7:  go to Phase 2

8: endif



p-1 algorithm — Phase 2

09: d«1

10: for each prime p =B, to B, do

11: d<«d-(q,”=1) (modN) main computations
______ 12 endfOr

13: g« gcd(d, N)

14: 1 g>1 then postcomputations

15: return Q

16: else

17:  return FAIL

18: end if



p-1 Phase 1 — Numerical example

N=1740 719 =1279-1361

a=2

B, =20

k=24325-7-11-13-17-19 = 232 792 560
q,=a* mod N = 2232792560 mod 1 740 719 = 1 003 058
qg=gcd (1003058 -1;1740719)= 1361

Why did the method work?
g-1=1360 = 2-5:17 | k
akmod g =al@Ym™ mod q =1
q | a1



What 1Is ECM?

Elliptic Curve Method of Factoring

Lenstra 1985 Phase 1
Brent, Montgomery 1986-87 Phase 2

N

q

< 50 bits

Factoring time depends mainly on the size of factor g



Y 25 -

20 A

15 4

10 4

Elliptic Curve
Y?=X’+X+1 mod p

Points fullfiling the equation of the curve

P=(3,13)

'P=(6.19)

.Addition

A

Q=(7,12)"

AN

D

Doubling

— 2P:P+P:(7,11)\

(p=23)

R=P+Q=(13,7)

15

20
X

+ special point 4

(point at infinity)
such that:
P+9=9+P=P

.,NP=8,(n+1)P =P,2P

all points of the curve



Projective vs. Affine coordinates

» affine coordinates P.=(Xp, Yp)
 addition and doubling require inversion

» projective coordinates P,=(Xp, Yp, Zp)

 addition and doubling can be done without inversion

 projective coordinates for Montgomery

form of the curve

 addition and doubling do not require y coordinate

(y coordinate can be recovered from x and z at the end of a long
chain of computations)

PpMZ (Xp: 1 2Zp)

F=(0::0)



Scalar Multiplication

point number
(scalar)




ECM Algorithm

Inputs :
N — number to be factored
E — elliptic curve
P, — point of the curve E : initial point

B, —smoothness bound for Phase1
B, —smoothness bound for Phase?2

Outputs:
q - factorof N, 1 <qg = N
or FAIL



ECM algorithm — Phase 1

precomputations

1: K« H ; p." such that p, - consecutive primes < B,

e - largest exponent such that p." < B,

3 postcomputations
4. 1fg>1

5: returnq  (factor of N)

6: else

7:  go to Phase 2

8: endif



ECM algorithm — Phase 2

09: d<«1
10: for each prime p =B, to B, do
I (g, Yoq, Zpo,) € PQy

12:  d<«d-z,, (modN)
13: end for main computations

14: g <« gecd(d, N)
15: 1fg>1then
16:  return Q

17: else

18:  return FAIL
19: endif

postcomputations



ECM Phase 1 — Numerical example

N=1740 719 =1279-1361
E

y?=x3+30x+1 (mod 1740 719)
P,=@4::1)

B, =20

k=243257-11-13:17-19 = 232 792 560

kP, = (256 230 : : 1242 593)
gced (1242 593; 1740 719) = 1361

Why does the method work?
#E = 1326 = 2:3-13-17 | k (over GF(1361))
kP,=m-#E P,= 0 =(0:1:0) (over GF(1361))
Zqo = 0 mod 1361



Possible use of three special purpose
factoring methods in NFS

200

AN

40 160
/hc\ /h \
20 20 20 140
/ECM\
70 70



Choice of parameters

Blf Bzf’ Probability ofsuccessf
ECM method Execution time f
Optimized analytically Probability of success
for the maximum ratio Execution time
v
B1 =960 B2=57000
pP-1 method
The same as in ECM
rho method t = 8192 Approximately the same execution

time as a single run of ECM.
Likely to find factors up to 226



Rho, P-1 & ECM
INn Hardware




FPGA IMPLEMENTATION



Our architecture : Top-level view

FPGA
Instruction
memory
Control
Unit Host
Phaset & | /© 1J:l,>‘3°m'°“ter
Phase2
Host computer
Global pre-computes
memory [* inputs
and
- RAM
ECM/p-1/rho Units post-computes

final gcds



Basic Building Block — Montgomery Multiplier

256
Z

— B M A
7.
" 2s6 QIS”” Es lSZin Es 32% Eb 32% Eb 32% loadA
g < < < <
S1 reg_rst S2 reg_rst B reset M reset A (Shift_Reg) | reset
? S1out ? S2out zeros out  zeros out éA(O)
read read 25 256 256 256 Al
I
Ai q
BB mm
A256 4256 X256 X256
V V l %
AT A2 B C
CSR42
SUM CARRY
LAe | Common for all three
S1in y .
factoring methods
>>1 k——

S2in




Resources utilization in time
ECM Phase 1

Area  + 1009

ADD/SUB —
(6%)

MUL 1 (43%)

MUL 2 (43%)

Control
Unit :
(8%) Time




Optimum Execution Unit

rho p-1

MUL ADD/SUB MUL ADD/SUB

ECM

MUL1
ADD/SUB

MUL?2




Parameters used In
performance testing

N: 198 — bit number
B, = 960

B, = 57,000



Maximum Number of Execution Units
per FPGA Device
SPARTAN 3 S5000 i VIRTEX 2 V6000

24 24
22 22

ECM

rho p-1 ECM rho



Maximum Clock Frequency (MHz) =©ne Unit

B Max. Units
SPARTAN 3 S5000 VIRTEX 2 V6000
125 125 125 193
E 102 102
94 94 100 |
81
rho ECM rho ECM




Software Implementation
GMP-ECM running on Intel Xeon 2.8GHz

Phase 1 Phase 2

Elliptic Curve Montgomery form: Weierstrass form:

by2z = x3+ax2z+xz2 Y2 = X3+AX+B
Coordinate Projective Affine
Optimization Lucas chain (PRAC algorithm) | Fast polynomial
Techniques multiplication
(Reducing Time) Montgomery’s D,D, method
Optimization Brent-Suyama extension
Techniques
(Incresing
Probability)
Porting Possible with pre-computations | Inverter required.
Optimizations in software Large amounts of memory
To Hardware required




FPGASs vs. Microprocessor
ECM Execution Time

Xeon 2.8 GHz

A

Phase 1
B Phase 2

18.7
ms 13.6
ms 11
ms
Spartan 3 Virtex I Test program GMP-ECM: GMP-ECM
(No Phase1 All optimizations

XC3S5000-5 XC2V6000-6 optimizations)  Optimizations off on



FPGAs vs Microprocessors

# Phase 1 & Phase 2

ECM computations per second

435

315

10.8 x
7.8 x

Virtex |l Spartan 3
XC2V6000-6 XC3S5000-5

Xeon 2.8 GHz

B

—

26

36

Test
program
(No
optimizations)

—

40

=

GMP-ECM:
Phase1
optimizations
off

GMP-ECM
All optimizations
on



7.9X
637

Factoring Runs per Second

10.8x
869

rho

80

8.4x
635

11.3x
857

76

0 Spartan3s5000

B Virtex2v6000
B Xeon 2.8GHz

7.8X
315

10.8x
435

ECM

40



Comparison with the Proof-of-Concept
Design by Pelzl and Simka

Time X Area Product

Assuming the same memory management

(I.e., Improved memory management in
Pelzl/Simka):

Improvement

Phase 1 X 3.7
Phase 2 X 6.4



Effect of using more aggressive
parameters of ECM

Our ECM parameters Parameters according to
Rainer Steinwandt et al.
B1 =960 B1 =402
B2 = 57000 B2 = 9680
D =23.57=210 D =2.325=90

Execution time of Phase 1 & Phase 2 in hardware

36.6 ms 3.5X 10.4 ms

Execution time of Phase 1 & Phase 2 in software (GMP-ECM)

24 .8 ms 2.8 X > 8.8 ms




Performance to cost ratio
Number of Phase 1 & Phase 2 ECM operations
per second per $100

380
212
X 14
X 16
22
13
Spartan 3 Virtex I Spartan 3E Virtex 4
XC3S5000-5 XC2V6000-6 . XC3S1600-5 XCAVLX200-11

Low-cost High-performance Low-cost High-performance



ASIC IMPLEMENTATION



ASIC Technology

Process:
0.13 um

Libraries:
cb13fs120 tsmc_max

Memory Library:
raml1l6x128 max, ram32x64 _max,
ram32x32_max

Tools:
Synopsys Design Analyzer, Astro, Primetime



Rho in an ASIC 130 nm

Global Memory

Local
Memory




ASIC 130 nm vs. Virtex Il 6000 —rho (24 units)

19.68 mm

19.80 mm

Area of Virtex Il 6000

(estimation by R.J. Lim Fong,
51x MS Thesis, VPI, 2004)

2.7 mm
L E—

}2.82 mm

EE L

\ Area of an ASIC with equivalent functionality



ECMiIn an ASIC 130 nm

Global
Memory

Local —>

Memory




ASIC 130 nm vs. Virtex Il 6000 — ECM (13 units)

19.68 mm

A

19.80 mm

v

23.4x

4.16 mm

Area of Virtex Il 6000
(estimation by R.J. Lim Fong,
MS Thesis, VPI, 2004)

Area of an ASIC with equivalent functionality



Clock Frequency in MHz

200

102

200

102

rho

L FPGA

B ASIC
250

123

ECM



Number of rho & ECM computations
per second using the same chip area

101x
88,405

869

rho

0 130 nm ASIC library
B Virtex2v6000

50x
21,739

435

ECM



SRC IMPLEMENTATION



SRC 6

reconfigurable computer

SRC 6 from
SRC Computers

Basic unit:
2 X Pentium Xeon, 3 GHz

2 x Xilinx Virtex Il FPGA
XC2V6000 running at 100 MHz

24 MB of the FPGA-board RAM

Fast communication interface
between the microprocessor board
and the FPGA board, 1600 MB/s

Multiple basic units can be connected
using Hi-Bar Switch and
Global Common Memory



SRC Programming Model

Microprocessor

main.c

function_1

function_1() -

function_2()

/ macro_1(a, b, ¢/ *

macro_2(b, d)
macro_2(c, e)

\function_Z

ANSI C

macro_3(s, t)

macro_1(n, b)
macro_4(t, k)

MAP C
' (subset of ANSI C

\

FPGA

Libraries of macros

macro_1
macro_3

macro_2
macro_4

Macro 1

>,

C
A

Macro 2

Macro 2

X \
\ \
N
B
\"
AN}
\

d

A 4




SRC Programming Environment

+ very easy to learn and use

+ standard ANSI C

+ hides implementation details

+ very well integrated environment

+ mature - in production use for over 5 years with constant
Improvements

- Subset of C
- legacy C code requires rewriting
- C limitations in describing HW (paralellism, data types)
- closed environment, limited portability of code to
HW platforms other than SRC



SRC Program Partitioning

, |
5 | Cfunction
uP system for uP
R T T PP --- HLL ---
[ C function (High Level
for MAP Language)
FPGA system _{ - _________ AR
VHDL
macro  HDL
\ | (Hardware
Description
_anguage)




Hierarchy of Elliptic Curve Operations

Host computer

ECM |
Top level v Scalar multiplication 1
k-P
---------------------------------------- Elliptic curve
Medium level point operations
. " | | Control
Point addition| P+Q 2P | Point doubling unit

Low level
Modular arithmetic
x'y mod N x+y mod N x-y mod N (fing operations)
Moduar Modular Modular ]
multiplication addition subtraction Functional

................................................................................................... Y units



VHDL-only implementation

Host computer
=15 1 e p ________
Top level v Scalar muItipIicatio_r;“mn
k-P
---------------------------------------- Elliptic curve
Medium level point operations
Control
Point addition| P+Q 2P | Point doubling unit

Low level

Modular arithmetic

x'y mod N x+y mod N X-y mod N (ing operations)
Moduar Modular Modular :
multiplication addition subtraction Functional

................................................................................................... Y units




MAP C implementation

Host computer
Eecm | p ________
Top level v Scalar multlpllcat|onA
k-P
---------------------------------------- Elliptic curve
Medium level point operations
Control
Point addition| P+Q 2P | Point doubling unit

Low level

Modular arithmetic

x'y mod N x+y mod N X-y mod N (ing operations)
Moduar Modular Modular :
multiplication addition subtraction Functional

................................................................................................... Y units




MAP C Compiler Performance Penalty

VHDL-only MAP-C
Implementation Implementation

36.6 ms
B 2.1ms

34.5ms

B Control Logic

Execution Logic




MAP C Compiler Area Penalty

MAP-C

CU1

U1

U2

U3

U4

Ubd

VHDL
CU1 CuU2 Cu3
U1 U4 U7
u2 U5 us
U3 U6 U9
O Units

5 Units




Conversion of MAP C to Hardware (1)




ECM Operations / sec

VHDL macro MAP-C Software
246

72 40

3.42x > 1 8 >

Lines of code

VHDL macro
3975 MAP-C
1812
1127
106
—

VHDL MAP-C VHDL  MAP-C



Experimental testing of ECM VHDL-only
Implementation using SRC 6

Legend:

Time 1,368 81
(us) 2,249 177 36,289 145

P

1 — General pre-computations independent of N

2 — Pre-computations (uP)

3 — Transfer in

(UP>FPGA)

4 — Main computations (Phase 1 & 2) (FPGA)

5 — Transfer out

(FPGA—> pP)

6 — Post-computations (uUP)

& 1 2 |3 4 516 2
FPGA

Percentage 3.6% 0.5% 95.3% 0.4% 0.2%

100%= 38,060 us

Before optimization

100%= 36,611 ps

A

A4

After optimization

o 1 (|22 6 2
FPGA 3 4 5(3 4 S| -
Percentage

0.5% 99.1% 0.4%




Future Work,
Conclusions
& Open Problems




Near term future work

Porting our implementations of
*rho

120 Spartan 3 FPGAs
Clock frequency 100 MHz



Future work

Integration of a selected software implementation
of NFS with our hardware accelerators.

Actual factoring of medium size numbers
using integrated software/hardware
Implementation of NFS.

Prototype hardware implementations of
Sieving and Linear Algebra step.



Conclusions

Hardware implementations of ECM, rho and p-1 methods
provide a substantial improvement
VS. optimized software implementations
In terms of the performance to cost ratio

* low-cost FPGAS vs. microprocessors X 8-10
* ASICs vs. low-cost FPGAS X 50-100

Best environment for prototyping
of hardware implementations of codebreaking machines
e general-purpose reconfigurable computers (e.g., SRC)

Best environment for the final design
of the cost-optimized cipher breaker
e special-purpose machines based on
* low-cost FPGAs (or ASICs for very high volumes)



Still unsolved mathematical problems...

Optimal choice of parameters for NFS that
minimizes total execution time of NFS

by assuring the best possible balance among
* Rho, p-1, and ECM methods within minifactoring

» Sieving and minifactoring within relation
collection step

= Relation collection step and linear algebra steps
within NFS




Still unsolved mathematical problems...

New factoring algorithms specifically
targeting hardware

In particular, new factoring algorithms with
complexity better than
General Number Field Sieve



Need for greater synergy

Mathematicians

Breaking RSA-1024
New factorization algorithms
New factorization records

Computer
Engineers

Computer
Scientists



Thank you!
%E@F“ 5o

Questions???



