Kris Gaj George Mason University

Factoring in Hardware

Factoring Team

Mathematicians/ Cryptographers

Software experiments

Soonhak Kwon Associate Professor Sungkyunkwan University, Suwon, Korea; Ph.D in Mathematics, Johns Hopkins University Maryland, U.S.A.; visiting professor at GMU, Aug. 2005-Sep. 2006 Patrick Baier D. Phil. in Mathematics, Oxford University Oxford, U.K Affiliated with George Washington University Paul Kohlbrenner Ph.D student, ECE Department George Mason University Virginia, U.S.A.

Factoring Team

Hardware design

Hoang Le

Ramakrishna Bachimanchi

Khaleeluddin Mohammed

MS in Computer Engineering students ECE Department George Mason University Virginia, U.S.A.

Outline

Motivation

- Factoring records
- Limitations of Factoring in Software

Factoring in Hardware

- Available Hardware Technologies and Platforms
- Previous Work on Hardware Architectures for Number Field Sieve (NFS)

Special Purpose Factoring Methods Required within NFS

- Pollard's "rho" Method
- Pollard's p-1 Method
- Elliptic Curve Method (ECM)

Our Hardware Architectures for "rho", p-1 and ECM

Optimal Choice of the Hardware Technology and Platform

Future Work, Conclusions and Open Problems

RSA & Factoring in Software

In 1977 by

Ron Rivest, Adi Shamir & Leonard Adleman

developed the first public key cryptosystems, they called RSA

Common Applications of RSA

Secure WWW, SSL

ACM A.M. Turing Award 2002

R. Rivest A. Shamir L. Adleman

"For Seminal Contributions to the Theory and Practical Applications of Public Key Cryptography"

RSA

Major Public Key Cryptosystem

RSA challenge published in Scientific American

Ciphertext:

9686 9613 7546 2206 1477 1409 2225 4355 8829 0575 9991 1245 7431 9874 6951 2093 0816 2982 2514 5708 3569 3147 6622 8839 8962 8013 3919 9055 1829 9451 5781 5145

Public key:

 $N = 114381625757\ 88886766923577997614$ 661201021829672124236256256184293 570693524573389783059712356395870 5058989075147599290026879543541

e = 9007

129 decimal digits = 429 bits

1977

Award \$100

Rivest estimation - 1977

The best known algorithm for factoring a 129-digit number requires:

40 000 trilion years = 40 • 10¹⁵ years

assuming the use of a supercomputer being able to perform

1 multiplication of 129 decimal digit numbers in 1 ns

Rivest's assumption translates to the delay of a single logic gate $\approx 10 \text{ ps}$

Estimated age of the universe: 100 bln years = 10^{11} years

Breaking RSA-129

- When: August 1993 1 April 1994, **8 months**
- Who: D. Atkins, M. Graff, A. K. Lenstra, P. Leyland + 600 volunteers from the entire world

How: 1600 computers from Cray C90, through 16 MHz PC, to fax machines

Only 0.03% computational power of the Internet

Results of cryptanalysis:

"The magic words are squeamish ossifrage"

An award of \$100 donated to Free Software Foundation

Elements affecting the progress in factoring large numbers

• computational power 1977-1993 increase of about 1500 times

• computer networks

Internet

• better algorithms

Supercomputer Cray

Computer Museum, Mountain View, CA

How to factor for free?

A. Lenstra & M. Manasse, 1989

 Using the spare time of computers, (otherwise unused)

 Program and results sent by e-mail (later using WWW)

Best known general purpose factoring algorithms

Multiple Polynomial Quadratic Sieve MPQS General Number Field Sieve GNFS

 $L_N[1/2, 1] = exp((1 + o(1)) \cdot (\ln N)^{1/2})) \cdot (\ln \ln N)^{1/2})$

 $L_N[1/3, 1.92] = exp((1.92 + o(1)) \cdot (\ln N)^{1/3})) \cdot (\ln \ln N)^{2/3})$

Factoring 512-bit number

512 bits = 155 decimal digits old standard for key sizes in RSA

17 March - 22 August 1999

Group of Herman te Riele Centre for Mathematics and Computer Science (CWI), Amsterdam

First stage	Several hundreds of workstations		
	2 months		
Second stage			
	Cray C916		
	~2 weeks		

Recommendations of RSA Security Inc. May 6, 2003

Validity period	Minimal RSA key length (bits)	Equivalent symmetric key length (bits)
2003-2010	1024	80
2010-2030	2048	112
2030-	3072	128

Factorization records

number	decimal digits	date	time (phase 1)	algorithm
C116	116	1990	275 MIPS years	mpqs
<u>RSA-120</u>	120	VI. 1993	830 MIPS years	mpqs
<u>RSA-129</u>	129	IV. 1994	5000 MIPS years	mpqs
<u>RSA-130</u>	130	IV. 1996	1000 MIPS years	gnfs
<u>RSA-140</u>	140	II. 1999	2000 MIPS years	gnfs
<u>RSA-155</u>	155	VIII. 1999	8000 MIPS years	gnfs
<u>C158</u>	158	I. 2002	3.4 Pentium 1GHz CPU years	gnfs
<u>RSA-160</u>	160	III. 2003	2.7 Pentium 1GHz CPU years	gnfs
<u>RSA-576</u>	174	XII. 2003	13.2 Pentium 1GHz CPU years	gnfs
<u>C176</u>	176	V. 2005	48.6 Pentium 1GHz CPU years	gnfs
<u>RSA-200</u>	200	V. 2005	121 Pentium 1GHz CPU years	gnfs

Factorization records

He who has absolute confidence in linear regression will expect a 1024-bit RSA number to be factored on December 17, 2028

Factoring in Hardware

Machine à Congruences [E. O. Carissan, 1919]

Lehmer Sieve

Bicycle chain sieve [D. H. Lehmer, 1926, U.C. Berkeley]

Computer Museum, Mountain View, CA

Bernstein's Machine

Fall 2001

Daniel Bernstein, professor of mathematics at University of Illinois in Chicago proposes hardware architecture capable of performing factoring with better asymptotic complexity than any known software algorithm

D. Bernstein, Circuits for Integer Factorization: A Proposal

http://cr.yp.to/papers.html#nfscircuit

Bernstein's Machine

Computational cost = time [days] * memory [\$]

Workshop Series

SHARCS - Special-purpose Hardware for Attacking Cryptographic Systems

 1st edition: Paris,
 Feb. 24-25, 2005

 2nd edition: Cologne,
 Apr. 3-4, 2006

 3rd edition: Vienna,
 Sep. 9-10, 2007

See

http://www.ruhr-uni-bochum.de/itsc/tanja/SHARCS/

Two competing implementation approaches

ASIC Application Specific Integrated Circuit

- designed all the way from behavioral description to physical layout
- designs must be sent for expensive and time consuming fabrication in semiconductor foundry

FPGA

Field Programmable Gate Array

- no physical layout design; design ends with a bitstream used to configure a device
- bought off the shelf and reconfigured by designers themselves

What is an FPGA Chip ?

Source: [Brown99]

Families of FPGA Devices

Low-cost	High-performance	
Spartan 3	Virtex II	
(< \$130*)	(< \$2,700*)	
Spartan 3E	Virtex 4	
(< \$35*)	(< \$3,000*)	

 approximate cost of the largest device per unit for a batch of 10,000 units

FPGAs vs. ASICs

COPACOBANA

Ruhr University, Bochum, University of Kiel, Germany, 2006

... Easy to remember: Copacabana...

Cost: € 8980

120 Spartan 3 FPGAs Clock frequency 100 MHz

General-purpose reconfigurable computers

Machine	Released	
SRC 6 from SRC Computers	2002	
Cray XD1 from from Cray	2005	
SGI RASC from SGI	2005	
SRC 7 from SRC Computers, Inc,	2006	

What is a reconfigurable computer?

Comparison among technologies

Number Field Sieve In Hardware

Best Algorithm to Factor Large Numbers NUMBER FIELD SIEVE

Complexity: Sub-exponential time and memory

Factoring 1024-bit RSA keys using Number Field Sieve (NFS)

B-smooth numbers

Integer N is B-smooth if and only if N can be represented in the form

$$\begin{split} N &= p_1{}^{e1} \cdot p_2{}^{e2} \cdot p_3{}^{e3} \cdot \ldots \cdot p_t{}^{et} \,, \\ \end{split}$$
 where
$$& \bigvee_i \quad p_i \, \leq \, B \\ & i \end{split}$$

Relation Collection Step (1)

Given

$F_1(x,y), F_2(x,y) \in Z \ [x,y],$ two special homogeneous polynomials, e.g. of degree 5 and 1

- 1. Find (a,b) \in Z x N, gcd(a,b) = 1 such that F₁(a,b) and F₂(a,b) are smooth.
- 2. Factor completely $F_1(a,b)$ and $F_2(a,b)$.

Relation Collection Step (2)

Sieving

Finding parameters a and b such that

F₁(a, b), F₂(a, b)

are likely to be B_1 and B_2 smooth respectively,

i.e., factor completely using primes smaller than ${\rm B_1}$ and ${\rm B_2}$ respectively

Minifactoring (Norm factoring / Co-factoring)

Fully factoring numbers $F_1(a, b)$ and $F_2(a, b)$ found by sieving

Theoretical Designs for Sieving (1)

1999-2000

TWINKLE (Shamir, CHES 1999;

Shamir & Lenstra, Eurocrypt 2000)

- based on optoelectronic devices (fast LEDs)
- not even a small prototype built in practice
- not suitable for 1024 bit numbers

<u>2003</u>

TWIRL (Shamir & Tromer, Crypto 2003)

- semiconductor wafer design
- requires fast communication between chips located on the same 30 cm diameter wafer
- difficult to realize using current fabrication technology

Theoretical Designs for Sieving (2)

2003-2004

Mesh Based Sieving / YASD

(Geiselmann & Steinwandt, PKC 2003 Geiselmann & Steinwandt, CT-RSA 2004)

- not suitable for 1024 bit numbers

2005

SHARK (Franke et al., SHARCS & CHES 2005)

- relies on an elaborate butterfly switch connecting large number of chips
- difficult to realize using current technology

Theoretical Designs for Sieving (3)

<u>2007</u>

Non-Wafer-Scale Sieving Hardware (Geiselmann & Steinwandt, Eurocrypt 2007)

- based on moderate size chips (2.2 x 2.2 cm)
- communication among chips seems to be realistic
- 2 to 3.5 times slower than TWIRL
- supports only linear sieving, and not more optimal lattice sieving

Estimated recurring costs with current technology (US\$×year)

by Eran Tromer, May 2005

	768-bit	1024-bit
Traditional PC-based	1.3×10 ⁷	10 ¹²
TWINKLE	8×10 ⁶	
TWIRL	5×10 ³	10×10 ⁶
Mesh-based	3×10 ⁴	
SHARK		230×10 ⁶

But: non-recurring costs, chip size, chip transport networks...

However...

None of the theoretical designs ever built.

Just analytical estimations, no real implementations, no concrete numbers

First Practical Implementation of the Relation Collection Step in Hardware

Japan Tetsuya Izu and Jun Kogure and Takeshi Shimoyama (Fujitsu)

CHES 2007 – September 2007

First large number factored using FPGA support

Factored number:

Ν	=	Р	•	Q	
423-bits		205 bits		218 bits	

Time of computations:

One month of computations using a PC supported by FPGA boards

Problems:

- Speed up vs. software not clearly determined
- Limited scalability

Factoring 1024-bit RSA keys using Number Field Sieve (NFS)

ECM in Hardware

Previous Proof-of-Concept Design

Pelzl, Šimka,	SHARCS	Feb 2005
Kleinjung, Franke,	FCCM	Apr 2005
Priplata, Stahlke,	IEE Proc.	Oct 2005
Drutarovský, Fischer,		

Paar

Special-purpose factoring algorithms

Trial Division Pollard's rho Method Pollard's p-1 Method Elliptic Curve Method

- Exponential complexity
- Often superior to more advanced (sub-exponential) methods for finding small factors
- Using more advanced methods to find small divisors is not a good use of resources

Pollard's Rho Method

<u>Birthday paradox:</u> If more than 23 "random" people are in a room (or even if they aren't) there is a more than 50% probability that the birthdays of two of them fall on the same day of the year.

Pollard's rho method - Example

N = 97 · 1889 = 183 233

 $x_{i+1} = x_i^2 + 1 \mod N$

 $\mathbf{2} \rightarrow \mathbf{5} \rightarrow \mathbf{26} \rightarrow \mathbf{95} \rightarrow \mathbf{5} \rightarrow \mathbf{26} \rightarrow \mathbf{95} \rightarrow \mathbf{5} \rightarrow \mathbf{26} \rightarrow \mathbf{95} \dots$

Pollard's Rho Method

Rho Method - Floyd's Version

X ₁ -X ₂	x ₁ -x ₃	<i>x</i> ₁ - <i>x</i> ₄	X ₁ - X ₅	x ₁ -x ₆	X ₁	X _i
<i>x</i> ₂ - <i>x</i> ₃	x ₂ - x ₄	<i>x</i> ₂ - <i>x</i> ₅	<i>x</i> ₂ - <i>x</i> ₆	<i>x</i> ₂ - <i>x</i> ₇	X ₂	X _i
x ₃ -x ₄	x ₃ -x ₅	X ₃ -X ₆	x ₃ -x ₇	x ₃ -x ₈	X ₃	X _i
<i>x</i> ₄ - <i>x</i> ₅	<i>x</i> ₄ - <i>x</i> ₆	<i>X</i> ₄ - <i>X</i> ₇	X ₄ -X ₈	<i>x</i> ₄ - <i>x</i> ₉	X ₄	X _i
x ₅ -x ₆	x ₅ - x ₇	x ₅ -x ₈	x ₅ -x ₉	X 5 -X 10	x ₅ -	-X _i
<i>x</i> ₆ - <i>x</i> ₇	x ₆ -x ₈	<i>x</i> ₆ - <i>x</i> ₉	<i>x₆-x₁₀</i>	x ₆ -x ₁₁	$x_6 - x_{12}$ $x_6 - x_6 - $	X _i
x ₇ -x ₈	x ₇ -x ₉	<i>x</i> ₇ - <i>x</i> ₁₀	X ₇ -X ₁₁	x ₇ - x ₁₂	$X_7 - X_{13}$ $X_7 - X_{14}$ $X_7 - X_7 $	X _i
x ₈ -x ₉	x ₈ -x ₁₀	X ₈ -X ₁₁	x ₈ -x ₁₂	x ₈ -x ₁₃	X ₈ -X ₁₄ X ₈ -X ₁₅ X ₈ -X ₁₆ X ₈ -	X _i

 $x_k - x_{k+1}$ $x_k - x_{k+2}$ $x_k - x_{k+3}$ ------ $x_k - x_i$

Pollard's Rho Algorithm - Floyd's Version

 $f(x)=x^2+a \text{ with } a \not\in \{-2,0\}$

iterations t <100 $\sqrt{q_{max}}$ (q_{max} *is the maximum factor we expect to find using rho method*)

We choose random x_0 in the range(0,N-1) and $x_1 = f(x_0)$

Rho Method - Brent's Version

X ₁ - X ₂	<i>x</i> ₁ - <i>x</i> ₃	<i>x</i> ₁ - <i>x</i> ₄	<i>x</i> ₁ - <i>x</i> ₅	<i>x</i> ₁ - <i>x</i> ₆				 X ₁ -X _i
<i>x</i> ₂ - <i>x</i> ₃	x ₂ - x ₄	<i>x</i> ₂ - <i>x</i> ₅	<i>x</i> ₂ - <i>x</i> ₆	x ₂ -x ₇				 x ₂ -x _i
x ₃ -x ₄	x ₃ -x ₅	x ₃ -x ₆	x ₃ -x ₇	x ₃ -x ₈				 x ₃ -x _i
<i>x</i> ₄ - <i>x</i> ₅	<i>x</i> ₄ - <i>x</i> ₆	X ₄ - X ₇	X 4 -X 8	<i>x</i> ₄ - <i>x</i> ₉				 x ₄ -x _i
x ₅ -x ₆	x ₅ -x ₇	x ₅ -x ₈	x ₅ -x ₉	x ₅ -x ₁₀				 x ₅ -x _i
x ₆ -x ₇	x ₆ -x ₈	<i>x</i> ₆ - <i>x</i> ₉	x ₆ -x ₁₀	x ₆ -x ₁₁	<i>x</i> ₆ - <i>x</i> ₁₂			 x ₆ -x _i
x ₇ -x ₈	<i>x</i> ₇ - <i>x</i> ₉	x ₇ -x ₁₀	x ₇ -x ₁₁	X ₇ -X ₁₂	x ₇ -x ₁₃	x ₇ -x ₁₄		 X ₇ -X _i
x ₈ -x ₉	x ₈ -x ₁₀	x ₈ -x ₁₁	x ₈ -x ₁₂	X₈-X₁₃	X₈-X₁₄	X₈-X 15	X₈-X₁₆	 x ₈ -x

 $X_k - X_{k+1} = X_k - X_{k+2} = X_k - X_{k+3} - \dots - X_2^k - X_2^k - X_2^k - X_2^{k-1} - \dots - X_2^{k-1} - X_2^{k-1$

Rho Method - Brent's Version Sequence of Operations

p-1 algorithm

Inputs :

- N number to be factored
- *a* arbitrary integer such that gcd(a, N)=1
 - B_1 smoothness bound for Phase1
 - B_2 smoothness bound for Phase2

Outputs:

$$q - factor of N, \quad 1 < q \le N$$

or FAIL

p-1 algorithm – Phase 1

precomputations

1: $k \leftarrow \prod_{p_i} p_i^{e_i}$ such that p_i - consecutive primes $\leq B_1$ e_i - largest exponent such that $p_i^{e_i} \leq B_1$ main computations 2: $q_0 \leftarrow a^k \mod N$ 3: $q \leftarrow \gcd(q_0 - 1, N)$ postcomputations 4: if q > 1return q (factor of N) 5: 6: else 7: go to Phase 2 8: end if

p-1 algorithm – Phase 2

09: $d \leftarrow 1$ 10: for each prime $p = B_1$ to B_2 do 11: $d \leftarrow d \cdot (q_0^p - 1) \pmod{N}$ main computations 12: end for 13: $q \leftarrow \gcd(d, N)$ 14: if q > 1 then postcomputations 15: return q16: else 17: return FAIL 18: end if

p-1 Phase 1 – Numerical example

N = 1 740 719 = 1279·1361

 $q_0 = a^k \mod N = 2^{232} \, ^{792} \, ^{560} \mod 1 \, 740 \, 719 = 1 \, 003 \, 058$ $q = \gcd (1 \, 003 \, 058 - 1; 1 \, 740 \, 719) = 1361$

Why did the method work?

$$q-1 = 1360 = 2 \cdot 5 \cdot 17 | k$$

 $a^{k} \mod q = a^{(q-1) \cdot m} \mod q = 1$
 $q | a^{k}-1$

What is ECM?

Elliptic Curve Method of Factoring

Factoring time depends mainly on the size of factor q

Elliptic Curve

 $Y^2 = X^3 + X + 1 \mod p$ (p = 23)

+ special point *9*(point at infinity)such that:

 $P + \mathcal{G} = \mathcal{G} + P = P$

Projective vs. Affine coordinates

• affine coordinates

$$P_a = (X_P, Y_P)$$

- addition and doubling require inversion
- projective coordinates

$$P_p=(x_P, y_P, z_P)$$

- addition and doubling can be done without inversion
- projective coordinates for Montgomery form of the curve
 - addition and doubling do not require y coordinate

 (y coordinate can be recovered from x and z at the end of a long chain of computations)

$$P_{pM} = (x_{P}: :z_{P})$$
$$\mathcal{G} = (0: :0)$$

Scalar Multiplication

ECM Algorithm

Inputs :

- N number to be factored
- *E* elliptic curve
- P_0 point of the curve *E* : initial point
- B_1 smoothness bound for Phase1
- B_2 smoothness bound for Phase2

Outputs:

 $q - factor of N, \quad 1 < q \le N$ or FAIL

ECM algorithm – Phase 1

precomputations

1: $k \leftarrow \prod_{p_i} p_i^{e_i}$ such that p_i - consecutive primes $\leq B_1$ e_i - largest exponent such that $p_i^{e_i} \leq B_1$ 2: $Q_0 \leftarrow kP_0 = (x_{Q_0}: :z_{Q_0})$ main computations 3: $q \leftarrow \gcd(z_{O_0}, N)$ postcomputations 4: if q > 15: return q (factor of N) 6: else 7: go to Phase 2 8: end if

ECM algorithm – Phase 2

$$09: \quad d \leftarrow 1$$

10: for each prime
$$p = B_1$$
 to B_2 do

11:
$$(x_{pQ_0}, y_{pQ_0}, z_{pQ_0}) \leftarrow pQ_0$$

12:
$$d \leftarrow d \cdot z_{pQ_0} \pmod{N}$$

14:
$$q \leftarrow \gcd(d, N)$$

15: if
$$q > 1$$
 then

16: return
$$q$$

17: else

18: return FAIL

19: end if

main computations

postcomputations

ECM Phase 1 – Numerical example

$$N = 1 \ 740 \ 719 = 1279 \cdot 1361$$

$$E : y^2 = x^3 + 30x + 1 \pmod{1740719}$$

$$P_0 = (4 :: 1)$$

$$B_1 = 20$$

$$k = 2^4 \cdot 3^2 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 = 232 \ 792 \ 560$$

$$kP_0 = (256 \ 230 : : 1 \ 242 \ 593)$$

$$gcd \ (1 \ 242 \ 593; 1 \ 740 \ 719) = 1361$$

Why does the method work?

 $#E = 1326 = 2 \cdot 3 \cdot 13 \cdot 17 | k \text{ (over GF(1361))}$ $kP_0 = m \cdot #E \cdot P_0 = 0 = (0:1:0) \text{ (over GF(1361))}$ $z_{Q0} = 0 \mod 1361$

Possible use of three special purpose factoring methods in NFS

Choice of parameters

Rho, P-1 & ECM in Hardware

FPGA IMPLEMENTATION

Our architecture : Top-level view

Basic Building Block – Montgomery Multiplier

Resources utilization in time ECM Phase 1

Optimum Execution Unit

ECM

Parameters used in performance testing

- N: 198 bit number
- $B_1 = 960$
- $B_2 = 57,000$

Maximum Number of Execution Units per FPGA Device

Maximum Clock Frequency (MHz) One Unit

Software Implementation GMP-ECM running on Intel Xeon 2.8GHz

	Phase 1	Phase 2
Elliptic Curve	Montgomery form: by ² z = x ³ +ax ² z+xz ²	Weierstrass form: Y ² = X ³ +AX+B
Coordinate	Projective	Affine
Optimization Techniques (Reducing Time)	Lucas chain (PRAC algorithm)	Fast polynomial multiplication Montgomery's D ₁ D ₂ method
Optimization Techniques (Incresing Probability)		Brent-Suyama extension
Porting Optimizations To Hardware	Possible with pre-computations in software	Inverter required. Large amounts of memory required

FPGAs vs. Microprocessor ECM Execution Time

Xeon 2.8 GHz

FPGAs vs Microprocessors # Phase 1 & Phase 2 ECM computations per second

Factoring Runs per Second

Comparison with the Proof-of-Concept Design by Pelzl and Šimka

Time x Area Product

Assuming the same memory management (i.e., improved memory management in Pelzl/Šimka):

	Improvement
Phase 1	x 3.7
Phase 2	x 6.4

Effect of using more aggressive parameters of ECM

Our ECM parameters

Parameters according to Rainer Steinwandt et al.

B1 = 960B1 = 402B2 = 57000B2 = 9680D = $2 \cdot 3 \cdot 5 \cdot 7 = 210$ D = $2 \cdot 3^2 \cdot 5 = 90$

Execution time of Phase 1 & Phase 2 in hardware

36.6 ms 3.5 x 10.4 ms

Execution time of Phase 1 & Phase 2 in software (GMP-ECM)

Performance to cost ratio Number of Phase 1 & Phase 2 ECM operations per second per \$100

ASIC IMPLEMENTATION

ASIC Technology

<u>Process:</u> 0.13 μm

<u>Libraries</u>: cb13fs120_tsmc_max

<u>Memory Library:</u> ram16x128_max, ram32x64_max, ram32x32_max

<u>Tools:</u> Synopsys Design Analyzer, Astro, Primetime

Rho in an ASIC 130 nm

ASIC 130 nm vs. Virtex II 6000 - rho (24 units)

ECM in an ASIC 130 nm

ASIC 130 nm vs. Virtex II 6000 - ECM (13 units)

Area of an ASIC with equivalent functionality

Number of rho & ECM computations per second using the same chip area

SRC IMPLEMENTATION

SRC 6 reconfigurable computer

SRC 6 from SRC Computers

Basic unit:

2 x Pentium Xeon, 3 GHz

2 x Xilinx Virtex II FPGA XC2V6000 running at 100 MHz

24 MB of the FPGA-board RAM

Fast communication interface between the microprocessor board and the FPGA board, 1600 MB/s

Multiple basic units can be connected using Hi-Bar Switch and Global Common Memory

SRC Programming Model

SRC Programming Environment

- + very easy to learn and use
- + standard ANSI C
- + hides implementation details
- + very well integrated environment
- + mature in production use for over 5 years with constant improvements
- subset of C
- legacy C code requires rewriting
- C limitations in describing HW (paralellism, data types)
- closed environment, limited portability of code to HW platforms other than SRC

SRC Program Partitioning

Hierarchy of Elliptic Curve Operations

VHDL-only implementation

MAP C implementation

MAP C Compiler Performance Penalty

VHDL-only implementation

MAP-C implementation

MAP C Compiler Area Penalty

VHDL

MAP-C

9 Units

5 Units

Conversion of MAP C to Hardware (1)

ECM Operations / sec

Lines of code

Experimental testing of ECM VHDL-only implementation using SRC 6

Future Work, Conclusions & Open Problems

Near term future work

Porting our implementations of

- rho
- p-1
- ECM
- to COPACOBANA

120 Spartan 3 FPGAs Clock frequency 100 MHz

Future work

Integration of a selected software implementation of NFS with our hardware accelerators.

Actual factoring of medium size numbers using integrated software/hardware implementation of NFS.

Prototype hardware implementations of Sieving and Linear Algebra step.

Conclusions

Hardware implementations of ECM, rho and p-1 methods provide a substantial improvement vs. optimized software implementations in terms of the performance to cost ratio

- Iow-cost FPGAs vs. microprocessors
- ASICs vs. low-cost FPGAs

x 8-10 x 50-100

Best environment for prototyping

of hardware implementations of codebreaking machines

general-purpose reconfigurable computers (e.g., SRC)

Best environment for the final design

of the cost-optimized cipher breaker

- special-purpose machines based on
 - Iow-cost FPGAs (or ASICs for very high volumes)

Still unsolved mathematical problems...

Optimal choice of parameters for NFS that minimizes total execution time of NFS by assuring the best possible balance among

- Rho, p-1, and ECM methods within minifactoring
- Sieving and minifactoring within relation collection step
- Relation collection step and linear algebra steps within NFS

Still unsolved mathematical problems...

New factoring algorithms specifically targeting hardware

In particular, new factoring algorithms with complexity better than General Number Field Sieve

Need for greater synergy

Mathematicians

Breaking RSA-1024 New factorization algorithms New factorization records

Computer Engineers Computer Scientists

Thank you!

Questions???