Teleportation capability, distillability, and nonlocality on three-qubit states

Soojoon Lee¹ Jaewoo Joo² Jaewan Kim³

¹Department of Mathematics, Kyung Hee University, Korea

²Blackett Laboratory, Imperial College London, United Kingdom

³School of Computational Sciences, Korea Institute for Advanced Study, Korea

25th June 2007 KIAS-KAIST 2007 Workshop on Quantum Information Science

Outline

- Introduction
- Teleportation capability over 3-qubit states
- Relations with distillability and nonlocality of 3-qubit states
 - Distillability over 3-qubit states
 - Nonlocality over 3-qubit states
- 4 Conclusions

Motivation

Teleportation, distillability & nonlocality

- Teleportation: a practical application of quantum entanglement.
- Distillability: an important method to classify quantum entanglement with respect to the usefulness for quantum communication.
- Nonlocality: a physical property to explain the quantum correlation.

Two relations in 2-qubit states [Horodecki et al. (1996)]

- If any 2-qubit state is useful for teleportation then it is distillable into a pure entanglement.
- If any 2-qubit state violates the Bell inequality then it is useful for teleportation.

Question & Our Works

Question

What relations among the three features exist for multiqubit states?

Our Works

- We present teleportation on 3-qubit states, which could be generalized into the multiqubit case.
- We properly define the quantities representing teleportation capability over 3-qubit states, and explicitly compute the quantities.
- We show that there are two relations among teleportation capability, distillability, and nonlocality, which are similar to the 2-qubit case.

A teleportation scheme over a three-qubit state

Our modified HBB protocol

- Original HBB protocol
 - M. Hillery, V. Bužek, & A. Berthiaume, PRA 59, 1829 (1999).
 - Splitting and reconstruction of quantum information.
- SL, J. Joo, J. Kim, PRA 72, 024302 (2005).

Teleportation scheme over a general 3-qubit state ρ_{123}

Observable for a one-qubit measurement of the system i

$$U_i^{\dagger} \sigma_3 U_i = U_i^{\dagger} |0\rangle \langle 0| U_i - U_i^{\dagger} |1\rangle \langle 1| U_i,$$

where $\sigma_3 = |0\rangle\langle 0| - |1\rangle\langle 1|$, and U_i is a 2 × 2 unitary matrix.

The resulting 2-gubit state of the compound system *jk*

$$\varrho_{jk}^{t} \equiv \frac{\operatorname{tr}_{i}\left(U_{i}^{\dagger}|t\rangle\langle t|U_{i}\otimes I_{jk}\rho_{123}U_{i}^{\dagger}|t\rangle\langle t|U_{i}\otimes I_{jk}\right)}{\langle t|U_{i}\rho_{i}U_{i}^{\dagger}|t\rangle} \\
= \frac{\operatorname{tr}_{i}\left(|t\rangle\langle t|U_{i}\otimes I_{jk}\rho_{123}U_{i}^{\dagger}|t\rangle\langle t|\otimes I_{jk}\right)}{\langle t|U_{i}\rho_{i}U_{i}^{\dagger}|t\rangle}$$

Teleportation capability for 2-gubit states

Teleportation fidelity

- Teleportation fidelity
 - $F(\Lambda_{\rho}) = \int d\xi \langle \xi | \Lambda_{\rho}(|\xi\rangle \langle \xi|) | \xi \rangle$, where Λ_{ρ} is a given teleportation protocol over a 2-qubit state ρ .
- Fully entangled fraction of ρ
 - $f(\rho) = \max \langle e | \rho | e \rangle$, where the maximum is over all maximally entangled states $|e\rangle$ of 2 qubits.
- Maximal fidelity achievable from a given bipartite state ρ

•
$$F(\Lambda_{\rho}) = \frac{2f(\rho)+1}{3}$$
.

Definition

 $F(\Lambda_{\rho}) > 2/3$ (or $f(\rho) > 1/2$) if and only if ρ is said to be useful for teleportation.

Teleportation capability for 3-qubit states

Maximal teleportation fidelity for 3-qubit states

Let F_i be the maximal teleportation fidelity on the resulting 2-qubit state in the compound system jk after the measurement of the system i

•
$$f_i = \max_{U_i} \left[\langle 0 | U_i \rho_i U_i^{\dagger} | 0 \rangle f(\varrho_{jk}^0) + \langle 1 | U_i \rho_i U_i^{\dagger} | 1 \rangle f(\varrho_{jk}^1) \right].$$

•
$$F_i = \frac{2f_i + 1}{3}$$
.

Definition

A given 3-qubit state ρ_{123} is said to be useful for 3-qubit teleportation if and only if $F_i > 2/3$ (or $f_i > 1/2$) for every $i \in \{1, 2, 3\}$.

General 3-qubit states

• A three-qubit state ρ_{123} can be described as

$$\begin{split} &\frac{1}{8}I \otimes I \otimes I \\ &+ \frac{1}{8}\left(\vec{s}_{1} \cdot \vec{\sigma} \otimes I \otimes I + I \otimes \vec{s}_{2} \cdot \vec{\sigma} \otimes I + I \otimes I \otimes \vec{s}_{3} \cdot \vec{\sigma}\right) \\ &+ \frac{1}{8}\sum_{k,l=1}^{3}\left(b_{1}^{kl}I \otimes \sigma_{k} \otimes \sigma_{l} + b_{2}^{kl}\sigma_{k} \otimes I \otimes \sigma_{l} + b_{3}^{kl}\sigma_{k} \otimes \sigma_{l} \otimes I\right) \\ &+ \frac{1}{8}\sum_{j,k,l=1}^{3}t^{jkl}\sigma_{j} \otimes \sigma_{k} \otimes \sigma_{l}. \end{split}$$

For each i = 1, 2, 3, let \mathbf{b}_i be a 3×3 real matrix with (k, l)-entry b_i^{kl} . Let \mathbf{T}_1^j , \mathbf{T}_2^k , and \mathbf{T}_3^l be 3×3 real matrices with (k, l)-entry t^{jkl} , (j, l)-entry t^{jkl} , and (j, k)-entry t^{jkl} , respectively.

Teleportation capability for general 3-qubit states

- $F_i = \frac{2f_i + 1}{3}$.
- $f_i = \frac{1}{4} + \frac{1}{8} \max \left[\|\mathbf{b}_i + \sum_{l=1}^3 x_l \mathbf{T}_i^l\| + \|\mathbf{b}_i \sum_{l=1}^3 x_l \mathbf{T}_i^l\| \right]$, where $\|\cdot\| = \operatorname{tr}|\cdot|$, and the maximum is taken over real numbers x_l satisfying $x_1^2 + x_2^2 + x_3^2 = 1$.
- $f_i = \frac{1}{4} + \frac{1}{8} \left[\|\mathbf{b}_i + \sum_{l=1}^3 y_l \mathbf{T}_i^l\| + \|\mathbf{b}_i \sum_{l=1}^3 y_l \mathbf{T}_i^l\| \right]$, where $y_l = \|\mathbf{T}_i^l\| / \sqrt{\sum_t \|\mathbf{T}_i^t\|^2}$.

Example: 3-qubit states with 4-parameters

[Dür et al., PRL 83, 3562 (1999)]

The class of 3-qubit states with 4-parameters

$$\rho_{\text{GHZ}} = \lambda_0^+ \left| \Psi_0^+ \right\rangle \left\langle \Psi_0^+ \right| + \lambda_0^- \left| \Psi_0^- \right\rangle \left\langle \Psi_0^- \right| + \sum_{j=1}^3 \lambda_j (\left| \Psi_j^+ \right\rangle \left\langle \Psi_j^+ \right| + \left| \Psi_j^- \right\rangle \left\langle \Psi_j^- \right|),$$

where $\lambda_0^+ + \lambda_0^- + 2\sum_j \lambda_j = 1$, and $\left|\Psi_j^\pm\right> = \left(\left|j\right> \pm \left|7-j\right>\right)/\sqrt{2}$ are the GHZ-basis states.

- Any of 3-qubit states can be transformed into a state $\rho_{\rm GHZ}$ in the class by LOCC (the so-called depolarizing process).
- If $\lambda_i + \lambda_j \le 1/4$ for $i, j \in \{1, 2, 3\}$ then
 - $f_1 = \lambda_0^+ + \lambda_3 = 1/2 + (\lambda_0^+ \lambda_0^-)/2 \lambda_1 \lambda_2$
 - $f_2 = \lambda_0^+ + \lambda_2 = 1/2 + (\lambda_0^+ \lambda_0^-)/2 \lambda_1 \lambda_3$
 - $f_3 = \lambda_0^+ + \lambda_1 = 1/2 + (\lambda_0^+ \lambda_0^-)/2 \lambda_2 \lambda_3$

GHZ-distillable 3-qubit states

Proposition (Dür et al., PRL 83, 3562 (1999))

If a 3-qubit state ρ_{123} has $\rho_{123}^{T_j} < 0$ for all j = 1, 2, 3, where T_i represents the partial transposition for the system j, then one can distill a GHZ state from many copies of ρ_{123} by LOCC.

Definition

- If one can distill a GHZ state from many copies of ρ_{123} by LOCC then ρ_{123} is said to be GHZ-distillable.
- $N_j(\rho_{123}) = (\|\rho_{123}^{T_j}\| 1)/2.$

Corollary

A given 3-qubit state ρ_{123} is GHZ-distillable if $N_i(\rho_{123}) > 0$ for all i = 1, 2, 3.

Relation between teleportation capability and distillability on 3-qubit states

Theorem (1)

If a 3-qubit state ρ_{123} is useful for 3-qubit teleportation then it is GHZ-distillable.

Proof.

We recall that for any 2-qubit state ρ , $f(\rho) \le 1/2 + N(\rho)$, where N is the negativity. Then since N is an entanglement monotone,

$$f_{i} = \max_{U_{i}} \sum_{t=0}^{1} \langle t | U_{i} \rho_{i} U_{i}^{\dagger} | t \rangle f\left(\varrho_{jk}^{t}\right) \leq \max_{U_{i}} \sum_{t=0}^{1} \langle t | U_{i} \rho_{i} U_{i}^{\dagger} | t \rangle \left(1/2 + N(\varrho_{jk}^{t})\right)$$

$$\leq 1/2 + N_{j}(\rho_{123}), \quad 1/2 + N_{k}(\rho_{123}),$$

where i, j and k are distinct in $\{1, 2, 3\}$.

Example: Converse of Theorem (1) is not true.

Example

There exists a 3-qubit state which is GHZ-distillable but is not useful for 3-qubit teleportation.

- ρ_{GHZ} with $\lambda_0^+ = 0.4$, $\lambda_0^- = 0$, and $\lambda_1 = \lambda_2 = \lambda_3 = 0.1$.
- $N_j(\rho_{\text{GHZ}}) = \max\{0, (\lambda_0^+ \lambda_0^-)/2 \lambda_{4-j}\}.$
- $N_1(\rho_{\text{GHZ}}) = N_2(\rho_{\text{GHZ}}) = N_3(\rho_{\text{GHZ}}) = 0.1 > 0$, that is, it is GHZ-distillable.
- Since $f_1 = f_2 = f_3 = 0.5$, it is not useful for 3-qubit teleportation.

Mermin inequality

Mermin inequality on 3-qubit states

Let \mathcal{B}_M be the Mermin operator associated with the Mermin inequality.

- $\mathcal{B}_{M} = \vec{a}_{1} \cdot \vec{\sigma} \otimes \vec{a}_{2} \cdot \vec{\sigma} \otimes \vec{a}_{3} \cdot \vec{\sigma} \vec{a}_{1} \cdot \vec{\sigma} \otimes \vec{b}_{2} \cdot \vec{\sigma} \otimes \vec{b}_{3} \cdot \vec{\sigma} \vec{b}_{1} \cdot \vec{\sigma} \otimes \vec{b}_{2} \cdot \vec{\sigma} \otimes \vec{a}_{3} \cdot \vec{\sigma},$ • $\vec{b}_{1} \cdot \vec{\sigma} \otimes \vec{a}_{2} \cdot \vec{\sigma} \otimes \vec{b}_{3} \cdot \vec{\sigma} - \vec{b}_{1} \cdot \vec{\sigma} \otimes \vec{b}_{2} \cdot \vec{\sigma} \otimes \vec{a}_{3} \cdot \vec{\sigma},$ where \vec{a}_{i} and \vec{b}_{i} are unit vectors in \mathbb{R}^{3} .
- For a given 3-qubit state ρ , the Mermin inequality is $\operatorname{tr}(\rho \mathcal{B}_M) \leq 2$.

A specific form of Mermin inequality

- Take $\vec{a} = \vec{a}_1 = \vec{a}_2 = \vec{a}_3$ and $\vec{b} = \vec{b}_1 = \vec{b}_2 = \vec{b}_3$.
- Consider the quantity $\max_{\vec{a},\vec{b}} \operatorname{tr}(\rho_{123}\mathcal{B}_M)$.

Relation between teleportation capability and nonlocality on 3-qubit states

A specific form of Mermin inequality

- Take $\vec{a} = \vec{a}_1 = \vec{a}_2 = \vec{a}_3$ and $\vec{b} = \vec{b}_1 = \vec{b}_2 = \vec{b}_3$.
- Consider the quantity $\max_{\vec{a},\vec{b}} \operatorname{tr}(\rho_{123}\mathcal{B}_M)$.

Theorem (2)

If a 3-qubit state ρ_{123} violates the Mermin inequality with respect to the quantity $\max_{\vec{a},\vec{b}} \operatorname{tr}(\rho_{123}\mathcal{B}_M)$, that is, if $\max_{\vec{a},\vec{b}} \operatorname{tr}(\rho_{123}\mathcal{B}_M) > 2$, then $f_i > 1/2$ for all i = 1, 2, 3, and hence it is useful for 3-qubit teleportation.

Relations among teleportation capability, distillability & nonlocality for 3-qubit states

Example: Theorem (2) does not hold in general.

Example

If we consider the Mermin inequality with respect to the quantity $\max_{\vec{a}_i, \vec{b}_k} \operatorname{tr}(\rho_{123} \mathcal{B}_M)$, then Theorem (2) does not hold in general.

- $|0\rangle(|00\rangle+|11\rangle)/\sqrt{2}$ violates the Mermin inequality with respect to $\max_{\vec{a}_j,\vec{b}_k} \operatorname{tr}\left(\rho_{123}\mathcal{B}_M\right)$.
- It is clear that the state is not useful for 3-qubit teleportation since $f_1 = 1$ and $f_2 = 1/2 = f_3$.

Summary

Summary

We have shown that if any 3-qubit state is useful for 3-qubit teleportation then the 3-qubit state is GHZ-distillable, and that if any 3-qubit state violates a specific Mermin inequality then the 3-qubit state is useful for 3-qubit teleportation.

Future Study

- For n ≥ 4, there exist n-qubit bound entangled states which violate the Mermin inequality [Dür, PRL 87, 230402 (2001)].
- There exists at least one splitting of the n qubits into two groups such that pure-state entanglement can be distilled [Acín, PRL 88, 027901 (2002)].
- If we would consider quantum communications between 2 or 3 groups then our results could be generalized into multiqubit cases.