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An optical lattice clock
Masao Takamoto1, Feng-Lei Hong3, Ryoichi Higashi1 & Hidetoshi Katori1,2

The precision measurement of time and frequency is a prerequi-
site not only for fundamental science but also for technologies that
support broadband communication networks and navigationwith
global positioning systems (GPS). The SI second is currently
realized by the microwave transition of Cs atoms with a fractional
uncertainty of 10215 (ref. 1). Thanks to the optical frequency comb
technique2,3, which established a coherent link between optical
and radio frequencies, optical clocks4 have attracted increasing
interest as regards future atomic clocks with superior precision.
To date, single trapped ions4–6 and ultracold neutral atoms in free
fall7,8 have shown record high performance that is approaching
that of the best Cs fountain clocks1. Here we report a different
approach, in which atoms trapped in an optical lattice serve as
quantum references. The ‘optical lattice clock’9,10 demonstrates a
linewidth one order of magnitude narrower than that observed for
neutral-atom optical clocks7,8,11, and its stability is better than that
of single-ion clocks4,5. The transition frequency for the Sr lattice
clock is 429,228,004,229,952(15)Hz, as determined by an optical
frequency comb referenced to the SI second.
Accurate atomic clocks rely on the observation of a narrow atomic

resonance Dn at a transition frequency n0 that is insensitive to
external perturbations to the highest possible degree. An indicator
of clock performance is the fractional instability, which is minimized
by repeatedly measuring the high-Q (Q ¼ n0/Dn) transition. The
fractional instability is given by the Allan deviation12
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where N is the total number of oscillators (atoms or ions) measured
in unit time and t is the total measurement time. To improve the
stability of the current Cs clock, the formula suggests the use of a
transition with a higher frequency n0 (that is, use of higher frequency
than that of microwaves), and this has led to active research towards
optical clocks4–8,11. The use of well-designed atom traps may further
increase the stability, since the extended coherent interaction time Dt
reduces the Fourier limit linewidth as Dn < 1/Dt, thus allowing a
higher effective Q-factor.
A single quantum absorber held in a space smaller than the

transition wavelength13 (that is, in the Lamb-Dicke regime) would
offer the ultimate system for ultra-precise spectroscopy, as such a trap
significantly decreases both atomic interactions and the Doppler
shifts that critically affect clock accuracy7,8. This system is actually
embodied by an ion in a Paul trap, where the ion is trapped at the zero
of a quadrupole electric field and is not perturbed by the trapping
field14, and this has provided the finest optical spectrum yet
obtained4. However, strong Coulomb interactions between ions
prevent the use of more than a single ion in a trap, which severely
limits clock stability because of small N in equation (1).
In this regard, neutral atoms with much weaker interactions7,8,11

are suitable in terms of increasing the number of particles, and
therefore the stability. A spatial interference pattern of lasers can
produce periodic trapping potentials for ultracold neutral atoms,
called an optical lattice15, as illustrated in Fig. 1a. This lattice potential

can confine atoms in a submicrometre region, and its periodicity
allows the production of billions of micro-traps in a volume of
1mm3. These features are indeed attractive for fine spectroscopy with
enhanced stability.
In general, such a lattice-trapping field significantly modifies the

internal states of atoms by so-called light shifts, and so the systemwas
not seriously considered for atomic clocks until the demonstration of
the light shift cancellation technique16,17. The transition frequency n
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Figure 1 | Optical lattice clock. a, The spatial interference pattern of lasers
creates a lattice potential that confines atoms in a region much smaller than
the optical wavelength, lL. b, Energy levels for Sr. The

1S0 and
3P0 states are

coupled to the upper respective spin states by an off-resonant laser to
produce an optical lattice with equal energy shifts in the clock transition at
l0 ¼ 698 nm. Atoms are excited on the 1S0

"" i^ nj i! 3P0

"" i^ nj i electronic–
vibrational transitions, where n denotes the vibrational states of atoms in the
lattice potential. The clock transition is then monitored on the 1S0 2

1P1
cyclic transition with nearly unit quantum efficiency.
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V|F=2,mF =2〉(x) = V+(x)

V|F=1,mF =1〉(x) = 3
4V+(x) + 1

4V−(x)

V|F=1,mF =−1〉(x) = 1
4V+(x) + 3

4V−(x)

State-dependent lattice potential

Jaksch et al., Ann. Phys. 315, 52 (2005)

internal states of the atom [12–14]. We will illustrate this by an example that is par-
ticularly relevant in what follows. We consider an atom with the fine structure shown
in Fig. 3A, like, e.g., 23Na or 87Rb, interacting with two circularly polarized laser
beams. The right circularly polarized laser r+ couples the level S1/2 with ms = !1/
2 to two excited levels P1/2 and P3/2 with ms = 1/2 and detunings of opposite sign.
The respective optical potentials add up. The strength of the resulting AC-Stark shift
is shown in Fig. 3B as a function of the laser frequency x. For x = xL the two con-
tribution cancel. The same can be achieved for the r! laser acting on the S1/2 level
with ms = 1/2. Therefore at x = xL the AC-Stark shifts of the levels S1/2 with
ms = ± 1/2 are purely due to r± polarized light which we denote by V±(x). The cor-
responding level shifts of the hyperfine states in the S1/2 manifold (shown in Fig. 3A)
are related to V±(x) by the Clebsch–Gordan coefficients, e.g., V|F = 2,mF = 2æ
(x) = V+(x), V|F = 1,mF = 1æ(x) = 3V+(x)/4 + V! (x)/4, and V|F = 1,mF = !1æ!(x) =
V+(x)/4 + 3V! (x)/4.

2.2.5. State selectively moving the lattice
The two standing waves r± can be produced out of two running counter-propa-

gating waves with the same intensity as shown in Fig. 4. Moreover it is possible to
move nodes of the resulting standing waves by changing the angle of the polarization
between the two running waves [12]. Let {e1,e2,e3} be three unit vectors in space
pointing along the {x,y,z} direction, respectively. The position dependent part of
the electric field of the two running waves E1,2 is given by E1 ! eikx (cos(u)e3 +
sin(u)e2), E2 ! e!ikx(cos(u)e3! sin(u)e2). The sum of the two electric fields is thus
E1 + E2 ! cos(kx!u)r! ! cos(kx + u)r+, where r± = e2 ± ie3 and the resulting
optical potentials are given by

V "ðxÞ / cos2ðkx" uÞ: ð3Þ

By changing the angle u it is therefore possible to move the nodes of the two stand-
ing waves in opposite directions. Since these two standing waves act as internal state

Fig. 3. (A) Atomic fine and hyperfine structure of the most commonly used alkali atoms 23Na and 87Rb.
(B) Schematic AC-Stark shift of the atomic level S1/2 with ms = 1/2 (dashed curve) and with ms = !1/2
(solid curve) due to the laser beam r+ as a function of the laser frequency x. The AC-Stark shift of the
level S1/2 with ms = !1/2 can be made 0 by choosing the laser frequency x = xL.

D. Jaksch, P. Zoller / Annals of Physics 315 (2005) 52–79 57

S1/2

P1/2

P3/2
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FIG. 2: (a) Schematic experimental setup. A one dimensional optical standing wave laser field is formed by two counterprop-
agating laser beams with linear polarizations. The polarization angle of the returning laser beam can be adjusted through an
electro-optical modulator. The dashed lines indicate the principal axes of the wave plate and the EOM. (b) By increasing the
polarization angle θ, one can shift the two resulting σ+ (blue) and σ− (red) polarized standing waves relative to each other.

A quantum conveyer belt for neutral atoms

So far the optical potentials used for optical lattices with Bose-Einstein condensates have been mostly independent
of the internal ground state of the atom. However, it has been suggested that by using spin-dependent periodic
potentials one could bring atoms on different lattice sites into contact and thereby realize fundamental quantum gates
[3, 4, 5, 6], create large scale entanglement [7, 8], excite spin waves [9], study quantum random walks [10] or form a
universal quantum simulator to simulate fundamental complex condensed matter physics hamiltonians [11]. Here we
show how the wave packet of an atom that is initially localized to a single lattice site can be split and delocalized in
a controlled and coherent way over a defined number of lattice sites.

In order to realize a spin dependent transport for neutral atoms in optical lattices, a standing wave configuration
formed by two counterpropagating laser beams with linear polarization vectors enclosing an angle θ has been proposed
[3, 7]. Such a standing wave light field can be decomposed into a superposition of a σ+ and σ− polarized standing
wave laser field, giving rise to lattice potentials V+(x, θ) = V0 cos2(kx + θ/2) and V−(x, θ) = V0 cos2(kx − θ/2). By
changing the polarization angle θ, one can control the separation between the two potentials ∆x = θ/180◦ · λx/2 (see
Fig. 2b). When increasing θ, both potentials shift in opposite directions and overlap again when θ = n · 180◦, with n
being an integer. For a spin-dependent transfer, two internal spin states of the atom should be used, where one spin
state dominantly experiences the V+(x, θ) dipole potential and the other spin state mainly experiences the V−(x, θ)
potential. Such a situation can be realized in rubidium by tuning the wavelength of the optical lattice laser to a value
of λx = 785nm between the fine structure splitting of the rubidium D1 and D2 transition. If an atom is now first
placed in a coherent superposition of both internal states 1/

√
2(|0〉+ i|1〉) and the polarization angle θ is continuously

increased, the spatial wave packet of the atom is split with both components moving in opposite directions.
With such a quantum conveyer belt, atoms have been moved over a defined number of lattice sites. In the experiment

a coherent transport of the atoms over a distance of up to 7 lattice sites has been demostrated [12] (see Fig. 3).

Controlled collisions

In order to realize a controlled interaction between the particles on different lattice sites in a 3D Mott insulating
quantum register, the above spin dependent transport sequence can be used. This leads to collisions between neigh-
bouring atoms and can be described through an ensemble of quantum gates acting in parallel [4, 7]. Alternatively,
these quantum gates can be described as a controllable quantum Ising interaction [8]:

Hint ∝ g(t)
∑

j

1 + σ(j)
z

2

1 − σ(j+1)
z

2
(1)

Here g(t) denotes the time dependent coupling constant and σ(j)
z is the Pauli spin operator acting on an atom at the

jth lattice site. For an interaction phase of ϕ = 2π ×
∫ thold

0 g(t) dt/h = (2n + 1)π one obtains a maximally entangled
cluster state, whereas for ϕ = 2nπ one obtains a disentangled state [8]. Here thold denotes the time for which the

State-dependent lattice potential

Mandel et al., Nature 425, 937 (2003)
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frequencies and the atomic temperature (T!52 !K for this
data set", we can estimate the actual size of the atomic mi-
croclouds when assuming kBT/2!2#2

m$ i
2% i

2 for atoms in a

harmonic potential. The calculated radial width %r

theo!5.2
!m of the atomic distribution is in reasonable agreement

with the measured value of %r!6.8(7) !m half-width at half
maximum, which was obtained assuming a Gaussian atomic

density distribution in the trap. The calculated axial width of

the microclouds is %z

theo!0.4 !m, which is far less than the
lattice spacing &5.3 !m" and would result in an expected
contrast of 100% for the lattice cross section. We attribute

the measured contrast to being mainly limited by the finite

resolution of our imaging system. We have modeled the im-

age by convoluting the expected picture with a Gaussian

broadening of variable width. From a fit of this simple model

to the cross section of Fig. 2&B", we derive an estimated
spatial resolution of 1.9 !m for our imaging system. The

measurements show that it is possible to distinguish atoms in

neighboring lattice sites and thus read out the information of

individual quantum bits stored in the antinodes of this 1D

optical lattice.

Figure 3&A" shows the image of the lattice illuminated by
the MOT beams, similar to that already described. The CO2
trapping laser was left on during the entire cycle. This al-

lowed illumination times as long as 100 !s. In the absence of
the trapping field, the contrast of the images vanishes within

30 !s, due to the thermal expansion of the cloud. The MOT
cooling beams were resonant with the 5S1/2 , F!3 to 5P3/2 ,
F!4 cycling transition at the bottom of the central potential
wells to account for the ac Stark shift. Figure 3&B" depicts an
image taken by illuminating a single trapping site for a pe-

riod of 100 !s with around 10 !W of light resonant with the

cycling transition at the bottom of the trap through the fiber

and by the MOT repumping beams. The exposure shows

atoms localized in one distinct potential, with the neighbor-

ing lattice sites suppressed by a factor of approximately 2.3.

Note that the rest of the lattice is still filled, but is not visible

here. This shows that, in principle, it is possible to address

single qubits in an optical lattice. In order to investigate

whether the neighboring wells were being perturbed by the

focused laser beam, the following procedure was used. After

loading the atoms into the trap, we applied a 10-!s-long
pulse of light through the fiber with the same frequency, but

with 20 times higher intensity. Again the MOT repumping

beams were used to provide the necessary repumping light.

Figure 3&C" depicts the image of the lattice after interaction
with such a pulse using the MOT beams for exposure of the

picture. The population of a single lattice site has been al-

most completely removed, while atoms in the neighboring

sites are affected much less by the optical pulse. By varying

the position of the optical fiber along the axial direction of

the lattice we could address different lattice sites within our

optical field of view, which comprises around 50 lattice sites.

While at present we used an imaging system optimized for

the visible spectral region, the optical resolution could be

further improved with a system optimized for the atomic

fluorescence wavelength of 780 nm for the rubidium D2

line. Alternatively, one could use shorter wavelength transi-

tions for the fluorescence imaging, e.g., the 5S-6P line of

the rubidium atom near 420 nm.

In the future, we wish to explore the possibility of per-

forming quantum logic operations with this far-detuned op-

FIG. 2. &Color" &A" Image of rubidium atoms trapped in a one-

dimensional optical lattice with a period of 5.3 !m. The axis of the
infrared CO2-laser beam is oriented horizontally. &B" Cross section
of this image obtained by integrating the measured atomic fluores-

cence perpendicular to the trapping beam axis.

FIG. 3. &Color" Images of the lattice after the following manipu-
lations: &A" no manipulation of the atoms in the microtraps; &B"
only atoms from a single lattice site illuminated during the exposure

with a focused laser beam; &C" after removing atoms in one lattice
site before the exposure.
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with a focal length of 625 !m and a lens diameter and
separation of 125 !m (Fig. 2). The microlens array is
made of fused silica and contains 50! 50 diffractive lens-
lets. The trapping light is derived from a 500 mW amplified
diode laser system and is sent through a rubidium gas cell
heated to a temperature of 110 "C serving as a narrow band
absorption filter. This reduces the strong background of
amplified spontaneous emission by at least 2 orders of
magnitude, otherwise preventing the operation of a dipole
trap due to scattering of resonant photons. The light is then
sent through an acousto-optical switching device and
through a polarizer, which ensures a high degree of linear
polarization. The remaining light [typical power P #
100–200 mW, typical detuning !" # 0:2 to 2 nm below
the 5S1=2$F # 3% ! 5P3=2$F0 # 4% transition at 780 nm
(’’red detuning’’)] is focused by the microlens array. In
order to have full optical access for atom preparation and
detection, we image the focal plane of the microlens array
onto a magneto-optical trap (MOT) with the help of two
achromats (magnification # 1 and no significant reduction
of numerical aperture). Thus, we obtain an array of foci
with a separation of 125 !m and a spot size of $7& 2%!m
(1=e2 radius of intensity). For a red-detuned laser beam,
this results in an array of dipole traps, each analogous to a
trap obtained by a single focused laser beam [20,21] (see
also [22]). The optical transfer of the trapping light has the
additional advantage that we can place the micro-optical
system outside the vacuum chamber and thus can switch
between a variety of micro-optical elements easily. On the
other hand, trapping of atoms directly in the first focal
plane close to the surface is possible as well.

We load the array of dipole traps and detect the trapped
atoms similar to [23]: We start with a MOT of 107 to 108
85Rb atoms which we overlap for several hundreds of ms
with the dipole trap array and optimize the loading process
for the highest atom number. The MOT is then switched
off, and the atoms are held in the dipole traps for a variable
storage time (typically 25 to 60 ms). This time is long
enough for untrapped atoms to leave the detection region.
The primary MOT light and the repumper are switched on

again for a period of approximately 1 ms to detect the
trapped atoms via spatially resolved detection of fluores-
cence with a spatial resolution of 17 !m (rms spread of the
smallest observed structures).

We obtain a two-dimensional array of approximately 80
well separated dipole traps with a potential depth of about
1 mK containing up to 103 atoms [Fig. 1(a)]. The number
of filled traps is limited by the size of the laser beam
illuminating the microlens array and by the initial MOT
size. The apparent larger extent of the individual traps in
the horizontal direction in all images presented in this
paper is caused by the detection optics being horizontally
tilted relative to the beam axis of the trap light, necessary to
avoid trapping light entering the camera aperture. The
detection efficiency of our setup is already high enough
to be able to detect atom samples of fewer than 100 atoms
per trap. We are currently optimizing the detection effi-
ciency to allow the observation of single atoms as well
[21,24,25].

Illumination of only one row of the microlens array
leads to a one-dimensional array of dipole traps
[Fig. 1(b)]. For the traps of this array (power per trap P #
3 mW, !" # 0:4 nm) the calculated potential depth is
U0=kB # 2:5 mK, which agrees within a factor of 2 with
the one inferred from the measured radial oscillation fre-
quency of 7.5 kHz [26]. The discrepancy can be fully
explained by the known uncertainties in determining the
laser power per trap, the focal waist, and the oscillation
frequencies. The lifetime of the atoms in the traps is 35 ms,
which is most probably limited by heating due to scattering
of residual near-resonant light not completely absorbed
from the trapping beam. Using a time-of-flight technique,
we determined the atom temperature to be below 20 !K,
which suggests the presence of an additional cooling
mechanism during the loading phase as is also observed
in [27].

In addition to its scalability, our approach is especially
suited to fulfill another requirement for the physical im-
plementation of quantum information processing, namely,
the ability to selectively address, initialize, and read out
individual qubits: The large lateral separation between the
dipole traps enables us to selectively address the individual
traps in a straightforward fashion. We demonstrate this by
focusing a near-resonant laser beam onto one of the dipole
traps for a few ms after the loading process is completed
[28]. This heats the atoms out of the addressed dipole trap.
As can be seen in Fig. 3, no atoms are left at the site of the
addressed dipole trap, while the atoms at the adjacent sites
remain unaffected. By two-dimensional scanning of the
addressing beam or by illuminating each lenslet individu-
ally with spatially modulated addressing light, every site
can be addressed individually. This opens the possibility to
selectively prepare and manipulate the qubits in the indi-
vidual traps.

As a next step, we demonstrated the site specific and
state selective initialization and readout of atomic quantum
states (Fig. 4). Here we illuminate a one-dimensional atom

FIG. 2 (color online). A two-dimensional array of laser foci is
created by focusing a single laser beam with an array of micro-
lenses. Inset: Phase contrast image and typical cross section of a
small part of a diffractive microlens array.
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We have developed a technique to control the placement of atoms in an optical lattice by using a superlattice

comprising two separately manipulated, periodic optical potentials with commensurate periods. We demon-

strate selective loading of Bose-condensed 87Rb atoms into every third site of a one-dimensional optical lattice.

Our technique provides atoms with wide separation yet tight confinement, useful properties for neutral-atom

implementations of quantum computing. Interference of atoms released from the optical lattice and optical

Bragg reflection from the atoms reveal the tight confinement and wide separation provided by the patterned

filling.
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Neutral atoms confined in an array of magnetic or optical

traps offer a scalable system for quantum information pro-

cessing. Several proposals #1–3$ for providing the required
coherent control of the states of individual atoms and their

interactions involve optical lattices, periodic light-shift po-

tentials produced by optical standing waves. Ideally, the lat-

tice should be able to separate the atoms !qubits" by more
than an optical wavelength !to allow individual optical ad-

dressing" while confining each atom to a region much

smaller than an optical wavelength. Tight confinement is im-

portant in most of these proposals both to increase the inter-

action strength between atoms in a site #1,2$ and to decrease
the oscillation period, which sets the time scale for moving

atoms.

Here we experimentally demonstrate a technique to selec-

tively load atoms into the motional ground state of every

third site of a one-dimensional !1D" optical lattice. This tech-
nique involves the sequential application of two independent

lattices whose spatial periods differ by a factor of 3. We use

the resulting ‘‘superlattice’’ to transfer atoms in a Bose-

Einstein condensate !BEC" from the long-period lattice sites

to the coinciding sites of the short-period lattice. The final

state provides the tight confinement of the short-period lat-

tice with a separation three times larger than the lattice pe-

riod. Large separation between sites can also be achieved by

using CO2 lasers #4$ or arrays of optical dipole traps #5$, but
these techniques require much more laser power to provide
similar confinement. Patterned loading adds versatility to the
atom-lattice architecture, and empty sites between atoms are
in fact necessary for quantum computing proposals such as
Ref. #1$. While the present experiment involves many atoms
in every third plane of a single 1D lattice site, the technique
can be extended to other fractional fillings and to 3D lattices,
which could have single atoms in individual sites.
We create each of the lattices by intersecting two laser

beams at an angle % i !see Fig. 1". The lattice period di
"&/#2 sin(%i/2)$ , where &"2'/k is the laser wavelength. In
this experiment, the % i are chosen such that the periods differ
by a factor of 3, resulting in parallel lattices with periods of
dl"1.5 (m !long lattice" and ds"0.5 (m !short lattice".
The light-shift potential is given by

U!z ""#
Ul

2
cos!2'z/dl"#

Us

2
cos!2'z/ds!)". !1"

We express U in units of the atomic recoil ER

"*2k2/(2M ), where M is the atomic mass. Given the peri-
odic nature of U(z), the eigenstates of this system are Bloch
states. It is important that the two lattices be sufficiently
commensurate that the local relative phase between the two
lattices does not change significantly along the BEC. We
achieve this with a ratio dl /ds of 2.99!1" #6$, as determined
by measuring the Talbot time #7$ for each lattice, T

"*/+Ri, where +Ri"(*
2k2/2M )(&/di)

2 is the lattice recoil

energy. !Following diffraction from a brief application of lat-
tice light, the evolution of the wave function is periodic with
period T."
The source of our lattice light is a Ti:sapphire laser de-

tuned below the D2 line of Rb !780 nm" by ,100 GHz.
Each beam has up to 3 mW in a waist (1/e2 radius) of

FIG. 1. !a" Superlattice arrangement. Two pairs of laser beams
form two independent 1D lattices, with period ratio 3:1. A beam

incident at the Bragg condition for the long-lattice period probes the

atomic density distribution. The plane containing the long-lattice

beams !intersecting at 30.2°) is at 75° to the !horizontal" plane of
the short-lattice beams. !b" Example of time sequences for loading
every third site of the short lattice. The lattices can be loaded se-

quentially or the long lattice can be removed while the short lattice

is applied. !c" Schematic of atom localization for sequential load-

ing: in the long lattice !at 2 ms", superlattice !4 ms", and finally the
desired state in the short lattice !6 ms".
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Individual-atom addressing?

frequencies and the atomic temperature (T!52 !K for this
data set", we can estimate the actual size of the atomic mi-
croclouds when assuming kBT/2!2#2

m$ i
2% i

2 for atoms in a

harmonic potential. The calculated radial width %r

theo!5.2
!m of the atomic distribution is in reasonable agreement

with the measured value of %r!6.8(7) !m half-width at half
maximum, which was obtained assuming a Gaussian atomic

density distribution in the trap. The calculated axial width of

the microclouds is %z

theo!0.4 !m, which is far less than the
lattice spacing &5.3 !m" and would result in an expected
contrast of 100% for the lattice cross section. We attribute

the measured contrast to being mainly limited by the finite

resolution of our imaging system. We have modeled the im-

age by convoluting the expected picture with a Gaussian

broadening of variable width. From a fit of this simple model

to the cross section of Fig. 2&B", we derive an estimated
spatial resolution of 1.9 !m for our imaging system. The

measurements show that it is possible to distinguish atoms in

neighboring lattice sites and thus read out the information of

individual quantum bits stored in the antinodes of this 1D

optical lattice.

Figure 3&A" shows the image of the lattice illuminated by
the MOT beams, similar to that already described. The CO2
trapping laser was left on during the entire cycle. This al-

lowed illumination times as long as 100 !s. In the absence of
the trapping field, the contrast of the images vanishes within

30 !s, due to the thermal expansion of the cloud. The MOT
cooling beams were resonant with the 5S1/2 , F!3 to 5P3/2 ,
F!4 cycling transition at the bottom of the central potential
wells to account for the ac Stark shift. Figure 3&B" depicts an
image taken by illuminating a single trapping site for a pe-

riod of 100 !s with around 10 !W of light resonant with the

cycling transition at the bottom of the trap through the fiber

and by the MOT repumping beams. The exposure shows

atoms localized in one distinct potential, with the neighbor-

ing lattice sites suppressed by a factor of approximately 2.3.

Note that the rest of the lattice is still filled, but is not visible

here. This shows that, in principle, it is possible to address

single qubits in an optical lattice. In order to investigate

whether the neighboring wells were being perturbed by the

focused laser beam, the following procedure was used. After

loading the atoms into the trap, we applied a 10-!s-long
pulse of light through the fiber with the same frequency, but

with 20 times higher intensity. Again the MOT repumping

beams were used to provide the necessary repumping light.

Figure 3&C" depicts the image of the lattice after interaction
with such a pulse using the MOT beams for exposure of the

picture. The population of a single lattice site has been al-

most completely removed, while atoms in the neighboring

sites are affected much less by the optical pulse. By varying

the position of the optical fiber along the axial direction of

the lattice we could address different lattice sites within our

optical field of view, which comprises around 50 lattice sites.

While at present we used an imaging system optimized for

the visible spectral region, the optical resolution could be

further improved with a system optimized for the atomic

fluorescence wavelength of 780 nm for the rubidium D2

line. Alternatively, one could use shorter wavelength transi-

tions for the fluorescence imaging, e.g., the 5S-6P line of

the rubidium atom near 420 nm.

In the future, we wish to explore the possibility of per-

forming quantum logic operations with this far-detuned op-

FIG. 2. &Color" &A" Image of rubidium atoms trapped in a one-

dimensional optical lattice with a period of 5.3 !m. The axis of the
infrared CO2-laser beam is oriented horizontally. &B" Cross section
of this image obtained by integrating the measured atomic fluores-

cence perpendicular to the trapping beam axis.

FIG. 3. &Color" Images of the lattice after the following manipu-
lations: &A" no manipulation of the atoms in the microtraps; &B"
only atoms from a single lattice site illuminated during the exposure

with a focused laser beam; &C" after removing atoms in one lattice
site before the exposure.
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with a focal length of 625 !m and a lens diameter and
separation of 125 !m (Fig. 2). The microlens array is
made of fused silica and contains 50! 50 diffractive lens-
lets. The trapping light is derived from a 500 mW amplified
diode laser system and is sent through a rubidium gas cell
heated to a temperature of 110 "C serving as a narrow band
absorption filter. This reduces the strong background of
amplified spontaneous emission by at least 2 orders of
magnitude, otherwise preventing the operation of a dipole
trap due to scattering of resonant photons. The light is then
sent through an acousto-optical switching device and
through a polarizer, which ensures a high degree of linear
polarization. The remaining light [typical power P #
100–200 mW, typical detuning !" # 0:2 to 2 nm below
the 5S1=2$F # 3% ! 5P3=2$F0 # 4% transition at 780 nm
(’’red detuning’’)] is focused by the microlens array. In
order to have full optical access for atom preparation and
detection, we image the focal plane of the microlens array
onto a magneto-optical trap (MOT) with the help of two
achromats (magnification # 1 and no significant reduction
of numerical aperture). Thus, we obtain an array of foci
with a separation of 125 !m and a spot size of $7& 2%!m
(1=e2 radius of intensity). For a red-detuned laser beam,
this results in an array of dipole traps, each analogous to a
trap obtained by a single focused laser beam [20,21] (see
also [22]). The optical transfer of the trapping light has the
additional advantage that we can place the micro-optical
system outside the vacuum chamber and thus can switch
between a variety of micro-optical elements easily. On the
other hand, trapping of atoms directly in the first focal
plane close to the surface is possible as well.

We load the array of dipole traps and detect the trapped
atoms similar to [23]: We start with a MOT of 107 to 108
85Rb atoms which we overlap for several hundreds of ms
with the dipole trap array and optimize the loading process
for the highest atom number. The MOT is then switched
off, and the atoms are held in the dipole traps for a variable
storage time (typically 25 to 60 ms). This time is long
enough for untrapped atoms to leave the detection region.
The primary MOT light and the repumper are switched on

again for a period of approximately 1 ms to detect the
trapped atoms via spatially resolved detection of fluores-
cence with a spatial resolution of 17 !m (rms spread of the
smallest observed structures).

We obtain a two-dimensional array of approximately 80
well separated dipole traps with a potential depth of about
1 mK containing up to 103 atoms [Fig. 1(a)]. The number
of filled traps is limited by the size of the laser beam
illuminating the microlens array and by the initial MOT
size. The apparent larger extent of the individual traps in
the horizontal direction in all images presented in this
paper is caused by the detection optics being horizontally
tilted relative to the beam axis of the trap light, necessary to
avoid trapping light entering the camera aperture. The
detection efficiency of our setup is already high enough
to be able to detect atom samples of fewer than 100 atoms
per trap. We are currently optimizing the detection effi-
ciency to allow the observation of single atoms as well
[21,24,25].

Illumination of only one row of the microlens array
leads to a one-dimensional array of dipole traps
[Fig. 1(b)]. For the traps of this array (power per trap P #
3 mW, !" # 0:4 nm) the calculated potential depth is
U0=kB # 2:5 mK, which agrees within a factor of 2 with
the one inferred from the measured radial oscillation fre-
quency of 7.5 kHz [26]. The discrepancy can be fully
explained by the known uncertainties in determining the
laser power per trap, the focal waist, and the oscillation
frequencies. The lifetime of the atoms in the traps is 35 ms,
which is most probably limited by heating due to scattering
of residual near-resonant light not completely absorbed
from the trapping beam. Using a time-of-flight technique,
we determined the atom temperature to be below 20 !K,
which suggests the presence of an additional cooling
mechanism during the loading phase as is also observed
in [27].

In addition to its scalability, our approach is especially
suited to fulfill another requirement for the physical im-
plementation of quantum information processing, namely,
the ability to selectively address, initialize, and read out
individual qubits: The large lateral separation between the
dipole traps enables us to selectively address the individual
traps in a straightforward fashion. We demonstrate this by
focusing a near-resonant laser beam onto one of the dipole
traps for a few ms after the loading process is completed
[28]. This heats the atoms out of the addressed dipole trap.
As can be seen in Fig. 3, no atoms are left at the site of the
addressed dipole trap, while the atoms at the adjacent sites
remain unaffected. By two-dimensional scanning of the
addressing beam or by illuminating each lenslet individu-
ally with spatially modulated addressing light, every site
can be addressed individually. This opens the possibility to
selectively prepare and manipulate the qubits in the indi-
vidual traps.

As a next step, we demonstrated the site specific and
state selective initialization and readout of atomic quantum
states (Fig. 4). Here we illuminate a one-dimensional atom

FIG. 2 (color online). A two-dimensional array of laser foci is
created by focusing a single laser beam with an array of micro-
lenses. Inset: Phase contrast image and typical cross section of a
small part of a diffractive microlens array.
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comprising two separately manipulated, periodic optical potentials with commensurate periods. We demon-

strate selective loading of Bose-condensed 87Rb atoms into every third site of a one-dimensional optical lattice.

Our technique provides atoms with wide separation yet tight confinement, useful properties for neutral-atom

implementations of quantum computing. Interference of atoms released from the optical lattice and optical

Bragg reflection from the atoms reveal the tight confinement and wide separation provided by the patterned

filling.
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Neutral atoms confined in an array of magnetic or optical

traps offer a scalable system for quantum information pro-

cessing. Several proposals #1–3$ for providing the required
coherent control of the states of individual atoms and their

interactions involve optical lattices, periodic light-shift po-

tentials produced by optical standing waves. Ideally, the lat-

tice should be able to separate the atoms !qubits" by more
than an optical wavelength !to allow individual optical ad-

dressing" while confining each atom to a region much

smaller than an optical wavelength. Tight confinement is im-

portant in most of these proposals both to increase the inter-

action strength between atoms in a site #1,2$ and to decrease
the oscillation period, which sets the time scale for moving

atoms.

Here we experimentally demonstrate a technique to selec-

tively load atoms into the motional ground state of every

third site of a one-dimensional !1D" optical lattice. This tech-
nique involves the sequential application of two independent

lattices whose spatial periods differ by a factor of 3. We use

the resulting ‘‘superlattice’’ to transfer atoms in a Bose-

Einstein condensate !BEC" from the long-period lattice sites

to the coinciding sites of the short-period lattice. The final

state provides the tight confinement of the short-period lat-

tice with a separation three times larger than the lattice pe-

riod. Large separation between sites can also be achieved by

using CO2 lasers #4$ or arrays of optical dipole traps #5$, but
these techniques require much more laser power to provide
similar confinement. Patterned loading adds versatility to the
atom-lattice architecture, and empty sites between atoms are
in fact necessary for quantum computing proposals such as
Ref. #1$. While the present experiment involves many atoms
in every third plane of a single 1D lattice site, the technique
can be extended to other fractional fillings and to 3D lattices,
which could have single atoms in individual sites.
We create each of the lattices by intersecting two laser

beams at an angle % i !see Fig. 1". The lattice period di
"&/#2 sin(%i/2)$ , where &"2'/k is the laser wavelength. In
this experiment, the % i are chosen such that the periods differ
by a factor of 3, resulting in parallel lattices with periods of
dl"1.5 (m !long lattice" and ds"0.5 (m !short lattice".
The light-shift potential is given by

U!z ""#
Ul

2
cos!2'z/dl"#

Us

2
cos!2'z/ds!)". !1"

We express U in units of the atomic recoil ER

"*2k2/(2M ), where M is the atomic mass. Given the peri-
odic nature of U(z), the eigenstates of this system are Bloch
states. It is important that the two lattices be sufficiently
commensurate that the local relative phase between the two
lattices does not change significantly along the BEC. We
achieve this with a ratio dl /ds of 2.99!1" #6$, as determined
by measuring the Talbot time #7$ for each lattice, T

"*/+Ri, where +Ri"(*
2k2/2M )(&/di)

2 is the lattice recoil

energy. !Following diffraction from a brief application of lat-
tice light, the evolution of the wave function is periodic with
period T."
The source of our lattice light is a Ti:sapphire laser de-

tuned below the D2 line of Rb !780 nm" by ,100 GHz.
Each beam has up to 3 mW in a waist (1/e2 radius) of

FIG. 1. !a" Superlattice arrangement. Two pairs of laser beams
form two independent 1D lattices, with period ratio 3:1. A beam

incident at the Bragg condition for the long-lattice period probes the

atomic density distribution. The plane containing the long-lattice

beams !intersecting at 30.2°) is at 75° to the !horizontal" plane of
the short-lattice beams. !b" Example of time sequences for loading
every third site of the short lattice. The lattices can be loaded se-

quentially or the long lattice can be removed while the short lattice

is applied. !c" Schematic of atom localization for sequential load-

ing: in the long lattice !at 2 ms", superlattice !4 ms", and finally the
desired state in the short lattice !6 ms".
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✏ One atom per site? Two-qubit operation?

✏ Other methods: external field, pointer atom, ...

→ Complexity? Precision?



Scheme



Assumption

k k+(L+1)k-(L+1)

L=3



|a〉 |b〉
|q〉

|em〉
|eq〉

∆m

∆q

Ωm1 Ωm2 Ωq1 Ωq2

γm

γq

Atomic levels and transitions

qubit



Position-dependent atomic population transfer

“quenching operation”.

k k+(L+1)k-(L+1) k+2(L+1)
“superlattice”

|a〉 |b〉
|q〉

|em〉
|eq〉

∆m

∆q

Ωm1 Ωm2 Ωq1 Ωq2

γm

γq



Single-atom addressing

L=3



Collective two-qubit operation



Selective two-qubit operation



Patterned loading



Quenching operation?

|a〉 |b〉
|q〉

|em〉
|eq〉

∆m

∆q

Ωm1 Ωm2 Ωq1 Ωq2

γm

γq



Arbitrary standing-wave field



Arbitrary standing-wave field



Arbitrary standing-wave field



k
k + (L + 1)

k + 2(L + 1)k − 2(L + 1)
k − (L + 1)

θi1 θi2

Ω(s)
qi (t) = e−η2/2Ω0 sin

(
π

s− k

L + 1

)
Ωi(t)

Standing-wave driving field

|a〉 |b〉
|q〉

|em〉
|eq〉

∆m

∆q

Ωm1 Ωm2 Ωq1 Ωq2

γm

γq



✏ Raman transition (                )

Ω(s) =
Ω(s)

q1 Ω(s)
q2

∆q

∆q !
∣∣∣Ω(s)

qi

∣∣∣

Standing-wave driving field

|a〉 |b〉
|q〉

|em〉
|eq〉

∆m

∆q

Ωm1 Ωm2 Ωq1 Ωq2

γm

γqL=1

L=2

✏ When L=3,4,5,...?



γqt

∆q = 100γq

Stimulated Raman Adiabatic Passage (STIRAP)
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|Ψ〉s = 1√
2
(|a〉s + |b〉s) → |Ψ′〉s = 1√
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Stimulated Raman Adiabatic Passage (STIRAP)
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Quenching operation for an arbitrary L
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q >We take             (threshold).

k k+1



Required precision

k
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k − (L + 1)

θi1 θi2
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Conclusion

• Simple scheme for addressing individual atoms in one- or two-dimensional 
optical lattices.

• It allows single-atom operations, two-atom operations, patterned loading, and 
so on.

• It is robust against considerable imperfections and actually within current 
technology.


