Device and System Technologies for Quantum Information Processing

Jungsang Kim Changsoon Kim Felix Lu Bin Liu Caleb Knoernschild Kyle McKay Chris Gregory Jeff Hussman ECE Department Fitzpatrick Institute for Photonics Duke University

Collaborators on MEMS for QIS

Bell Labs

Richart Slusher (GTRI) Henry Everitt **Robert Jopson Inuk Kang** Mihaela Dinu **Stanley Pau Zhengxiang Ma Rae McLellan** John Gates Avi Kornblit

(Former) Duke Physics John Foreman **Hongying Peng**

NIST (Boulder) Roee Ozeri Dietrich Leibfried Dave Wineland Rest of Wineland Group

Atom Trap Discussion

Trey Porto (NIST Gaithersburg) Mark Saffman (U. Wisconsin) Wolfgang Haensel (Innsbruck) **David Weiss (Penn State University) Alex Kuzmich (Georgia Institute of Technology)**

Goals of Quantum Computer Engineering

Goal	Description	Resources qubits _I gates		Are we there yet? (0-10)
Experimentally useful QC*	Explore and test fundamental quantum mechanics.	2	1	
Physically useful QC	Explore and test multi-system quantum physics.	$\gtrsim 10$	$\gtrsim 20$	
Computationally useful QC	Improve on classical computers.	$\gtrsim 10^2$	$\gtrsim 10^6$	
Realistically scalable QC	No engineering obstacles to boundless QC.	any	any	
Theoretically scalable QC	any	any	:	

* Quantum Computing.

 $\leftarrow |\mathsf{Top}| \quad |\rightarrow| \twoheadrightarrow |\mathsf{TOC}|$

Slide from E. Knill, CLEO 2007 Invited Talk

The DiVincenzo Criteria (1995)

- Criteria required for scalable quantum computation
 - A scalable physical system with well-characterized qubits
 - Ability to initialize the state of the qubits to a simple fiducial state
 - Long decoherence times compared to gate operation time
 - Ability to perform universal set of quantum gates
 - Ability to perform qubit-specific measurement
- Is this enough?? Quantum-Classical Interface
 - Quantum Wires

NIVERSITY

- Quantum Communication
 - The ability to interconvert stationary and flying qubits
 - The ability to faithfully transmit flying qubits between specified locations
- Other architectural issues??

The Factoring Problem

- Best known classical algorithm: Number Field Sieve
- RSA-640 (193 digits) factored with 30 2.2GHz-Opteron CPU years (5 calendar months) http://www.rsa.com/rsalabs/node.asp?id=2093
- Implementation architecture makes a big difference!!

June 26th, 2007

UNIVERSITY

Physical Systems for Implementation

- Trapped Ions
- Atoms in Optical Lattices
- Josephson superconducting circuits
- Nuclear spins/SET in Silicon
- Electron spins in semiconductors
- Quantum dot optical levels
- Solid state NMR high field gradients
- Linear optics

The Atomic Qubit

- Qubit states are two internal states of the atom/ion
- Initialization can be performed by optical pumping
- Carefully chosen states have long coherence times (~15sec)
- Quantum Logic Gates by laser beam manipulation
- Quantum State Measurement by state-dependent scattering

Trapping Ions : Example

KIAS-KAIST Workshop on Quantum Information Science June 26th, 2007

UNIVERSITY

State-of-the-Art in Quantum Computation

- Using similar approaches, basic demonstrations
 - Long coherence times
 - C. Langer et al., Phys. Rev. Lett. 95, 060502 (2005)
 - State Initialization
 - B. E. King et al., Phys. Rev. Lett 81, 1525 (1998)
 - Robust two-qubit logic gates
 - F. Schmidt-Kaler et al., Nature 422, 408 (2003)
 - D. Leibfried et al., Nature 422, 412 (2003)
 - P. Haljan et al., Phys. Rev. Lett. 94, 153602 (2005)
 - State-dependent measurement
 - W. Nagourney et al., Phys. Rev. Lett. 56, 2797 (1986)
- Advanced Experiments
 - Quantum teleportation
 - M. Reibe et al., Nature 429, 734 (2004)
 - M. Barrett et al., Nature 429, 737 (2004)
 - Quantum error correction
 - J. Chiaverini et al., Nature 432, 602 (2004)
 - Simple quantum algorithm
 - S. Gulde et al., Nature 421, 48 (2003)

Limited to 3-8 ions!!!

to additional accumulators or storage registers

D. J. W. *et al.*, J. Res. Nat. Inst. Stand. Technol. **103**, 259 (1998).
D. Kielpinski, C. Monroe, and D. J. Wineland, Nature **417**, 709 (2002).
<u>Other proposals</u>: DeVoe, Phys. Rev. A **58**, 910 (1998); Cirac & Zoller, Nature **404**, 579 (2000);
L.-M. Duan, B. Blinov, D. Moehring, C. Monroe, Quant. Inf. Comp. **4**, 165 (2004).

"Transistor to Processor"

Quantum Abyss (Dave Wineland, NIST)

UNIVERSITY

KIAS-KAIST Workshop on Quantum Information Science June 26th, 2007

CF

SCHOOL OF

ENGINEERING

Classical Analog: Microprocessors

- Integrated Circuits Technology (Kilby & Noyce, 1958)
 - Scalable technology platform for creating functional circuits
 - Reduced the cost and increased the functionality of

electronic functions by a factor of a million in last 30 years

The First Transistor AT&T Bell Lavs (http://www.britannica.com)

Intel® Microprocessor

Technology to integrate ALL components needed for computation Ability to control each and every transistor in the processor at will!!

Quantum Version of "IC" Technology

- Physical system dependent
- Capability to integrate ALL ELEMENTS required
- Quantum-classical boundary between the qubits and controller Matching the temperature, size, speed, etc. is critical!!!

S-KAIST Workshop on Quantum Information Science, June 26th, 2007

SCHOOL OF

ENGINEERING

Technology for Scaling Ion Traps

Elements of Ion Trap Quantum Computer

Scalable Ion Trap Chip

• Design and Fabrication of Scalable Surface Ion Trap Chips

Design: Kim et al., Quant. Inf. Comp. 5, 515 (2005)

Fabrication: R. Slusher et al., Bell Labs (2006)

KIAS-KAIST Workshop on Quantum Information Science June 26th, 2007

UNIVERSITY

Integration Requirements for Optics

	Function	Polarization	Target Ion	Raman Detuning	Momentum Difference	Intensit	v Location
	RSRC Re-pumping Single qubit Two qubit Measurement Doppler Depopulation Doppler	$\pi, \sigma^{+} \text{ or } \sigma^{-}$ $\sigma^{+} \text{ or } \sigma^{-}$ $\pi, \sigma^{+} \text{ or } \sigma^{-}$ $\sigma^{+} + \sigma^{-}, \sigma^{+} - \sigma^{-}$ σ^{-} σ^{-} σ^{-} Any	²⁴ Mg ⁺ ²⁴ Mg ⁺ ⁹ Be ⁺ ⁹ Be ⁺ ⁹ Be ⁺ ⁹ Be ⁺ ²⁴ Mg ⁺	$\omega'_0 - \omega_z^a$ ω_0 $\sqrt{3}\omega_z + \delta$ - - - -	Large Δk Small Δk Large Δk - - -	Modest Mild Modest Extrem Modest Mild Mild Mild	All Gate Regions All Gate Regions Single Qubit Gate Regions Two Qubit Gate Regions Measurement Regions ⁹ Be ⁺ Loading Zone, Measurement Regions ⁹ Be ⁺ Loading Zone, Measurement Regions ²⁴ Mg ⁺ Loading Zone
(a)	$^{a}\omega_{0}^{\prime}$ is hyperfine Single Qubit Gate	e ground state splitt	\vec{B}	^{g+.} Trap	v (b) v Dopple Re-pur	er nping	Single Qubit Gate \vec{B} \vec{y} \vec{z} Trap
Do Re- Me	ppler -pumping casurement		RSRCPhase	C Gate	Measu	rement	Axis Axis Phase Gate RSRC

J. Kim and C. Kim, work in progress

KIAS-KAIST Workshop on Quantum Information Science June 26th, 2007

CUNIVERSITY

Requirements for Flexible Optics

- Tailored photons are scarce resource (2-qubit gates)!!
 - Frequency, polarization and intensity stability
 - Two stage, diffraction limited free-space optics

MEMS Technology Adaptation for QIP

MEMS-based integrated optics in quantum computation Ion and Atom based QIPs require delivery of laser beams for state preparation, manipulation and detection

Quant-ph/0412165

NIVERSITY

Neutral Atoms trapped In Optical Lattice Individual qubit addressing (NIST, Wisconsin, etc.) Linear ion traps Simultaneous addressing Of two arbitrary ions (Innsbruck Group)

MEMS-based Beam Steering System

EDMUND T. PRATT, JR. SCHOOL OF ENGINEERING

2D Tilt with MEMS Micromirrors

KIAS-KAIST Workshop on Quantum Information Science June 26th, 2007

UNIVERSITY

SCHOOL OF

ENGINEERING

Speed, Controllability & Scalability

- <5 μs demonstrated
- Push down to 1 2 μ s

NIVERSITY

• Scaling to multiple simultaneous spots

Time (us)

Technology for Scaling Ion Traps

Elements of Ion Trap Quantum Computer

Scalable Photon Collection

• Low F/# for efficient collection

NIVERSITY

- Large field-of-view for multiple detection zones
- Use of micro-optical element: magnify locally!

Bit-Error-Rate of State Detection

• Assumptions

UNIVERSITY

- Photons collected at the detector is about 10⁶/sec
- Various detectors considered:
 - -QE, gain, multiplication noise & dark count

- High quantum efficiency with (noise-free) internal gain

- Fast "frame rate" and low latency

"Ideal" Detector: Modified VLPCs

- Visible Light Photon Counters (VLPCs)
 - High QE single photon detection (88% @visible)
 - Noise-free Multiplication (Gain ~30,000, ENF ~ 1.025)
 - Large portcount (71,680) demonstrated in FermiLab
 - Low QE in the UV, device modification is needed

New Architectural Elements?

Remote Entanglement Generation

- Entanglement of internal atomic state and photon (color)
- From a pair of such systems, interfere the photons
- Based upon measurement, remote entanglement is probabilistically generated between ions
- Use the entanglement for logic operation

Scalable Quantum Computation

• Based on remote entanglement generation

- Once entanglement is generated, it can be used for gates
- Optical switching network can be used to create entanglement network
- Using photonic degree of freedom, the entanglement operation becomes scale-free w.r.t. qubit separation

Conclusions

• Are Quantum Computers Feasible??

- Integration technologies are needed to take us to next step
 - Can quantum tolerance be implemented?
 - Controlling large quantum entanglement?
- Architecture optimization
 - Interplay between task and hardware

