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The DiVincenzo Criteria (1995)
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• Criteria required for scalable quantum computation
– A scalable physical system with well-characterized qubits
– Ability to initialize the state of the qubits to a simple fiducial

state
– Long decoherence times compared to gate operation time
– Ability to perform universal set of quantum gates
– Ability to perform qubit-specific measurement

• Is this enough?? – Quantum-Classical Interface
– Quantum Wires
– Quantum Communication

• The ability to interconvert stationary and flying qubits
• The ability to faithfully transmit flying qubits between specified 

locations
– Other architectural issues??



The Factoring Problem
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R. Van Meter et al.,
quant-ph/0507023
(2005)

• Best known classical algorithm: Number Field Sieve
• RSA-640 (193 digits) factored with 30 2.2GHz-Opteron CPU 

years (5 calendar months) http://www.rsa.com/rsalabs/node.asp?id=2093
• Implementation architecture makes a big difference!!



Physical Systems for Implementation
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• Trapped Ions
• Atoms in Optical Lattices
• Josephson superconducting circuits
• Nuclear spins/SET in Silicon
• Electron spins in semiconductors
• Quantum dot optical levels
• Solid state NMR – high field gradients
• Linear optics



The Atomic Qubit
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• Qubit states are two internal states of the atom/ion
• Initialization can be performed by optical pumping
• Carefully chosen states have long coherence times (~15sec)
• Quantum Logic Gates by laser beam manipulation
• Quantum State Measurement by state-dependent scattering

D. J. Wineland et al., Fortschr. Phys. 46, p 363 (1998)

Two-qubit gates performed by
- Coulomb interaction in ions
- Dipole-dipole interaction in

neutral atoms



Trapping Ions : Example
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Trapping Ions

David Wineland, NIST Boulder (2006)



State-of-the-Art in Quantum Computation
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• Using similar approaches, basic demonstrations
– Long coherence times

• C. Langer et al., Phys. Rev. Lett. 95, 060502 (2005)
– State Initialization

• B. E. King et al., Phys. Rev. Lett 81, 1525 (1998)
– Robust two-qubit logic gates

• F. Schmidt-Kaler et al., Nature 422, 408 (2003)
• D. Leibfried et al., Nature 422, 412 (2003)
• P. Haljan et al., Phys. Rev. Lett. 94, 153602 (2005)

– State-dependent measurement
• W. Nagourney et al., Phys. Rev. Lett. 56, 2797 (1986)

• Advanced Experiments
– Quantum teleportation

• M. Reibe et al., Nature 429, 734 (2004)
• M. Barrett et al., Nature 429, 737 (2004)

– Quantum error correction
• J. Chiaverini et al., Nature 432, 602 (2004)

– Simple quantum algorithm
• S. Gulde et al., Nature 421, 48 (2003)

Limited to 3-8 ions!!!
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“Transistor to Processor”
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•• Quantum Abyss (Dave Quantum Abyss (Dave WinelandWineland, NIST), NIST)
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Classical Analog: Microprocessors
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•• Integrated Circuits Technology (Integrated Circuits Technology (KilbyKilby & & NoyceNoyce, 1958), 1958)
- Scalable technology platformScalable technology platform for creating functional circuits
- Reduced the cost and increased the functionality of

electronic functions by a factor of a million in last 30 years

The First Transistor
AT&T Bell Lavs (http://www.britannica.com)

Intel® Microprocessor
http://education.discovery.com/

Technology to integrate ALL components needed for computation
Ability to control each and every transistor in the processor at will!!



Quantum Version of “IC” Technology
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• Physical system dependent
• Capability to integrate ALL ELEMENTS required
• Quantum-classical boundary between the qubits and controller

Matching the temperature, size, speed, etc. is critical!!!

??

J. Jost & D. Wineland
NIST, Boulder

Ion Trap



Technology for Scaling Ion Traps
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Elements of Ion Trap Quantum Computer
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Kim et al., Quant. Inf. Comp. 5, 515 (2005)



Scalable Ion Trap Chip
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• Design and Fabrication of Scalable Surface Ion Trap Chips

Design: Kim et al., Quant. Inf. Comp. 5, 515 (2005)

Fabrication: R. Slusher et al., Bell Labs (2006)



Integration Requirements for Optics
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Requirements for Flexible Optics
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•• Tailored photons are scarce resource (2Tailored photons are scarce resource (2--qubit gates)!!qubit gates)!!
- Frequency, polarization and intensity stability
- Two stage, diffraction limited freeTwo stage, diffraction limited free--space opticsspace optics
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(AO/EO)

(MEMS)

…

Beam Reuse
(Micro-Optics)

Beam
Dump

Ion locations

MEMS
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Single Instruction on Multiple Data (SIMD)
Reduces total laser power requirement



MEMS Technology Adaptation for QIP
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•• MEMSMEMS--based integrated optics in quantum computationbased integrated optics in quantum computation
- Ion and Atom based QIPs require delivery of laser beams

for state preparation, manipulation and detection

A. Steane Scheme
Quant-ph/0412165

Neutral Atoms trapped
In Optical Lattice
Individual qubit addressing
(NIST, Wisconsin, etc.)

Linear ion traps
Simultaneous addressing
Of two arbitrary ions
(Innsbruck Group)



MEMS-based Beam Steering System
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2D Tilt with MEMS Micromirrors
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Speed, Controllability & Scalability
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Technology for Scaling Ion Traps

KIAS-KAIST Workshop on Quantum Information Science
June 26th, 2007

Elements of Ion Trap Quantum Computer
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Scalable Photon Collection
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•• Low F/# for efficient collectionLow F/# for efficient collection
•• Large fieldLarge field--ofof--view for multiple detection zonesview for multiple detection zones
•• Use of microUse of micro--optical element: magnify locally!optical element: magnify locally!
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Bit-Error-Rate of State Detection
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•• AssumptionsAssumptions
- Photons collected at the detector is about 106/sec
- Various detectors considered:

-QE, gain, multiplication noise & dark count

- High quantum efficiency with (noise-free) internal gain
- Fast “frame rate” and low latency



“Ideal” Detector: Modified VLPCs
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694 nm

•• Visible Light Photon Counters (Visible Light Photon Counters (VLPCsVLPCs))
• High QE single photon detection (88% @visible )
• Noise-free Multiplication (Gain ~30,000, ENF ~ 1.025)
• Large portcount (71,680) demonstrated in FermiLab
• Low QE in the UV, device modification is needed

J. Kim et. al., APL 70, 2852 (1997)
J. Kim et. al., APL 74, 902 & 1063 (1999)



New Architectural Elements?
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•• Remote Entanglement GenerationRemote Entanglement Generation
- Entanglement of internal atomic state and photon (color)
- From a pair of such systems, interfere the photons
- Based upon measurement, remote entanglement is 

probabilistically generated between ions
- Use the entanglement for logic operation

Duan et al., Phys. Rev. A 73, 062324 (2006)



Scalable Quantum Computation
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•• Based on remote entanglement generationBased on remote entanglement generation
- Once entanglement is generated, it can be used for gates
- Optical switching network can be used to create

entanglement network
- Using photonic degree of freedom, the entanglement

operation becomes scale-free w.r.t. qubit separation

Moehring et al., JOSA B 24, 300 (2007)



Conclusions
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•• Are Quantum Computers Feasible??Are Quantum Computers Feasible??
- Integration technologies are needed to take us to next step

- Can quantum tolerance be implemented?
- Controlling large quantum entanglement?

- Architecture optimization
- Interplay between task and hardware

MEMS mirrors Microlens Optical Fiber

…
…

…

N x N
Optical

Crossconnect
Switch (OXC)

Bell DetectorELU

ELU consists of a few logical qubits and quantum teleport
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