KIAS-KAIST 2007 Workshop on QIS

What can we do with entangled photons?

Sang-Kyung Choi

Korea Research Institute of Standards & Science

- qubits, photons, entanglement
- how to entangle photons
- quantum computer
- quantum standards
- outlook

qubits, photons, entanglement

entangled state superposition; cannot be decomposed into a direct tensor product

(e.g.)
$$\frac{2\text{-photon}}{\text{entangled state}} |\psi\rangle = \frac{|H_1H_2\rangle + |V_1V_2\rangle}{\sqrt{2}} = \frac{|H\rangle_1 \otimes |H\rangle_2 + |V\rangle_1 \otimes |V\rangle_2}{\sqrt{2}} \neq |1\text{st photon}\rangle \otimes |2\text{nd photon}\rangle$$

how to entangle (concept)

superpose two kinds of 2-photon states (photon pairs)

how to entangle (in practice)

(HS Park et al., OSK 2007)

multi-photon entanglement

light path interferometer

quantum state tomography

(HS Park et al., OSK 2007)

quantum computer

measurement result \rightarrow measurement basis

cluster state

quantum circuit

quantum standards

 $\omega_3 = \omega_1 + \omega_2$

absolute radiance

absolute quantum efficiency

quantum ellipsometry

KRISS 한국표준과학연구원

(Sergienko, CXLVI Int'l School of Physics "Enrico Fermi")

calibration of absolute quantum effiency

quantity	type	standard uncertainty	uncertainty contribution
total single count rate	А	16.2	-2.2x10-4
background single count rate	A	1.9	2.6x10-5
total coincidence count rate	А	8.9	4.1x10-4
accidental coincidence count rate	А	1.7	-7.6x10-5
TAC dead time	В	2.9x10-9	6.7x10-5
collection efficiency			4.8x10-4

collection efficiency @ OD 0: (31.0 ± 0.1) (%) collection efficiency @ other OD: (31.1 ± 0.1) (%)

(MS Kang et al., to be submitted to Metrologia)

outlook

what to do next

- increase # of photons in entanglement
- improve quality of entanglement
- measure uncertainties affecting quantum standards

future challenges

- demonstration of quantum computation
- realization of quantum standards

