Topological aspects of dual superconductors

Soon-Tae Hong Ewha Womans University

October 27, 2004

2004 KIAS-Hanyang Joint Workshop

I. IntroductionII. Model for two-gap superconductorsIII. Meissner effectsIV. Flux quantizationV. Knotted string geometryVI. Conclusions

in collaboration with Prof. Antti J. Niemi (Uppsala University)

I. Introduction

• topological soliton and knot structure

- L.D. Faddeev and A.J. Niemi, *Knots and particles*, Nature **387**, 58 (1997)
- E. Babaev, L.D. Faddeev and A.J. Niemi, *Hidden symmetry and knot solitons in a charged two-condensate Bose system*, Phys. Rev. B65, 100512 (2002)
- E. Babaev, Dual neutral variables and knot solitons in triplet superconductors, Phys. Rev. Lett. **B88**, 177002 (2002)
- L. Freyhult and A.J. Niemi, *Chirality and fermion number in a knotted soliton background*, Phys. Lett. **B557**, 121 (2002)
- E. Babaev, Andreev-Bashkin effect and knot solitons in interacting mixture of a charged and a neutral superfluids with possible relevance for neutron stars, Phys. Rev. **D70**, 043001 (2004)

• Ginzburg-Landau theory and string knot structure

- V.L. Ginzburg and L.D. Landau, About the theory of superconductivity, Zh. Eksp. Teor. Fiz. 20, 1064 (1950)
- A.A. Abrikosov, On the magnetic properties of superconductors of the second group, Sov. Phys. JETP 5, 1174 (1957)
- E. Babaev, Characteristic length scales and formation of vortices in the Abelian Higgs model in the presence of a uniform background charge, Phys. Rev. B63, 172502 (2001)
- E. Babaev, Phase diagram of planar $U(1) \times U(1)$ superconductors: condensation of vortices with fractional flux and a superfluid state, Nucl. Phys. **B686**, 397 (2004)
- E. Babaev and H. Kleinert, Nonperturbative XY-model approach to strong coupling superconductivity in two and three dimensions, Phys. Rev. B59, 12083 (1999)

- E. Babaev, Thermodynamics of crossover from weak- to strong-coupling superconductivity, Phys. Rev. B63, 184514 (2001)
- J. Smiseth, E. Smorgrav, A. Sudbo, *Critical properties of the N-color London model*, Phys. Rev. Lett. **93** 077002 (2004)
- L. Faddeev and A.J. Niemi, Aspects of electric and magnetic variables in SU(2) Yang-Mills theory, Phys. Lett. **B525**, 195 (2002)
- A.J. Niemi, Phases of bosonic strings and two dimensional gauge theories, Phys. Rev. D67, 106004 (2003)
- E. Babaev, Vortices with fractional flux in two-gap superconductors and in extended Faddeev model, Phys. Rev. Lett. 89, 067001 (2002)
- E. Babaev, Phase diagram of planar U(1)×U(1) superconductors: condensation of vortices with fractional flux and a superfluid state, Nucl. Phys. B686, 397 (2004)
- A. Niemi, Dual Superconductors and SU(2) Yang-Mills, JHEP 0408, 035 (2004)
- *S.T. Hong and A.J. Niemi, *Topological aspects of dual superconductors*, to appear in Phys. Rev. B70 (2004)

• experiment on two-band superconductivity

- J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani and J. Akimitsu, Superconductivity at 39 K in magnesium diboride, Nature 410, 63 (2001)
- W.N. Kang, H.J. Kim, E.M. Choi, C.U. Jung and S.I. Lee, MgB_2 superconducting thin films with a transition temperature of 39 Kelvin, Science **292**, 1521 (2001)
- F. Bouquet, R.A. Fisher, N.E. Phillips, D.G. Hinks and J.D. Jorgensen, Specific heat of $Mg^{11}B_2$, Phys. Rev. Lett. 87, 047001 (2001)
- T. Yokoya, T. Kiss, A. Chainani, S. Shin, M. Nohara and H. Takagi, *Fermi surface sheet-dependent superconductivity in 2H-NbSe2*, Science 294, 2518 (2001)

• liquid metallic hydrogen

- N.W. Ashcroft, *The hydrogen liquids*, J. Phys.: Condens. Matter **12**, A129 (2000)
- N.W. Ashcroft, Hydrogen Dominant Metallic Alloys: High Temperature Superconductors?, Phys. Rev. Lett. **92**, 187002 (2004)
- S.A. Bonev, E. Schwegler, T. Ogitsu and G. Galli, A quantum fluid of metallic hydrogen, (submitted to Nature)
- K. Moulopoulos and N.W Ashcroft, Generalized Coulomb pairing in the condensed state, Phys. Rev. Lett., 66, 2915 (1991)
- E. Babaev, A. Sudbo and N.W. Ashcroft, A superconductor to superfluid phase transition in liquid metallic hydrogen, Nature **431**, 666 (2004)

II. Model for two-gap superconductors

• free energy of two-flavor Ginzburg-Landau theory

$$F = \frac{1}{2m_1} \left| \left(\frac{\hbar}{i} \nabla + \frac{2e}{c} \vec{A} \right) \Psi_1 \right|^2 + \frac{1}{2m_2} \left| \left(\frac{\hbar}{i} \nabla - \frac{2e}{c} \vec{A} \right) \Psi_2 \right|^2 + \frac{1}{8\pi} \vec{B}^2 + V + \eta (\Psi_1^* \Psi_2 + \Psi_2^* \Psi_1)$$

 Ψ_{α} : order parameters for Cooper pairs of two different flavors ($\alpha = 1, 2$) V: potential of the form $V(|\Psi_{1,2}|^2) = -b_{\alpha}|\Psi_{\alpha}|^2 + \frac{1}{2}c_{\alpha}|\Psi_{\alpha}|^4$ η : characteristic of interband Josephson coupling strength

 $\eta = 0$ Josephson coupling describes liquid metallic hydrogen which should allow coexistent superconductivity of protonic and electronic Cooper pairs

interband Josephson coupling merely changes energy of knot associated with two-band superconductors

two condensates are characterized by different effective masses m_{α} , coherence lengths $\xi_{\alpha} = \hbar/(2m_{\alpha}b_{\alpha})^{1/2}$ and densities $\langle |\Psi_{\alpha}|^2 \rangle = b_{\alpha}/c_{\alpha}$

• modulus field and CP^1 complex fields

introduce fields ρ and z_{α} defined as

$$\Psi_{\alpha} = (2m_{\alpha})^{1/2} \rho z_{\alpha}$$

 ρ : modulus field given by condensate densities and masses $\rho^2 = \frac{1}{2m_1} |\Psi_1|^2 + \frac{1}{2m_2} |\Psi_2|^2$ z_{α} : CP^1 complex fields chosen to satisfy geometrical constraint $z_{\alpha}^* z_{\alpha} = |z_1|^2 + |z_2|^2 = 1$

• gauge invariant supercurrent

$$\vec{J} = -\frac{e}{2m_1} \left[\Psi_1^* \left(\frac{\hbar}{i} \nabla + \frac{2e}{c} \vec{A} \right) \Psi_1 - \Psi_1 \left(\frac{\hbar}{i} \nabla - \frac{2e}{c} \vec{A} \right) \Psi_1^* \right] \\ + \frac{e}{2m_2} \left[\Psi_2^* \left(\frac{\hbar}{i} \nabla - \frac{2e}{c} \vec{A} \right) \Psi_2 - \Psi_2 \left(\frac{\hbar}{i} \nabla + \frac{2e}{c} \vec{A} \right) \Psi_2^* \right]$$

which can be rewritten in terms of fields ρ and z_{α}

$$\vec{J} = -\hbar e \rho^2 \left(\vec{C} + \frac{4e}{\hbar c} \vec{A} \right)$$

where

$$\vec{C} = i(\nabla z^{\dagger} z - z^{\dagger} \nabla z) = i(z_1 \nabla z_1^* - z_1^* \nabla z_1 - z_2 \nabla z_2^* + z_2^* \nabla z_2)$$

with $z = (z_1, z_2^*)$

• dynamical physical fields

 CP^1 model is equivalent to the O(3) NLSM at canonical level

introduce dynamical physical fields n_a (a = 1, 2, 3) which are mappings from space-time manifold (or direct product of compact two-dimensional Riemann surface M^2 and time dimension R^1) to two-sphere S^2

$$n_a: \mathsf{M}^2 \otimes R^1 \to S^2$$

dynamical physical fields of CP^1 model are z_{α} ($\alpha = 1, 2$) which map spacetime manifold $M^2 \otimes R^1$ into S^3

$$z_{\alpha}: \mathsf{M}^2 \otimes R^1 \to S^3$$

• Hopf bundle

 S^3 is homeomorphic to SU(2) group manifold and CP^1 model is invariant under local U(1) gauge symmetry for arbitrary spacetime dependent ξ

$$z \to e^{i\xi/2} z$$

physical configuration space of CP^1 model is that of gauge orbits which form the coset $S^3/S^1 = S^2 = CP^1$

in order to associate physical fields of CP^1 model with those of O(3) NLSM, exploit projection from S^3 to S^2 , namely Hopf bundle

$$n_a = z^{\dagger} \sigma_a z$$

with Pauli matrices σ_a and n_a fields satisfying constraint $n_a n_a = 1$

• free energy in terms of ρ and n_a

$$F = \hbar^2 (\nabla \rho)^2 + \frac{1}{4} \hbar^2 \rho^2 (\nabla n_a)^2 + \frac{1}{4e^2 \rho^2} \vec{J}^2 + \frac{1}{8\pi} \vec{B}^2 + V + K \rho^2 n_1,$$

where $K = 2\eta (m_1 m_2)^{1/2}$

introduce gauge invariant vector fields

$$\vec{S} = \frac{1}{\hbar e \rho^2} \vec{J}$$

to yield

$$F = \hbar^2 (\nabla \rho)^2 + \frac{1}{4} \hbar^2 \rho^2 \left[(\nabla n_a)^2 + \vec{S}^2 \right]$$

+
$$\frac{\hbar^2 c^2}{128\pi e^2} \left(\nabla \times \vec{S} + \frac{1}{2} \epsilon_{abc} n_a \nabla n_b \times \nabla n_c \right)^2 + V + K \rho^2 n_1$$

III. Meissner effects

• magnetic field in terms of ρ , n_a and \vec{S}

$$\vec{B} = \nabla \times \vec{A} = -\frac{\hbar c}{4e} \left(\nabla \times \vec{S} + \frac{1}{2} \epsilon_{abc} n_a \nabla n_b \times \nabla n_c \right)$$
$$\nabla \times \vec{C} = \frac{1}{2} \epsilon_{abc} n_a \nabla n_b \times \nabla n_c$$
$$\nabla \times \vec{J} = -\frac{4e^2}{c} \rho^2 \vec{B} + \frac{2}{\rho} \nabla \rho \times \vec{J} - \frac{\hbar e}{2} \rho^2 \epsilon_{abc} n_a \nabla n_b \times \nabla n_c$$
$$\nabla \times \vec{S} = -\frac{4e}{\hbar c} \vec{B} - \frac{1}{2} \epsilon_{abc} n_a \nabla n_b \times \nabla n_c$$

note topological contribution proportional to $\epsilon_{abc}n_a\nabla n_b \times \nabla n_c$ which originates from interactions of Cooper pairs of two different flavors

 \bullet two-gap equations for \vec{J} and \vec{B}

$$\nabla \times \vec{B} = \frac{4\pi}{c}\vec{J}$$

$$\begin{split} \nabla^2 \vec{J} &= \left(\frac{16\pi e^2}{c^2} \rho^2 + \frac{2}{\rho} \nabla^2 \rho - \frac{2}{\rho^2} (\nabla \rho)^2 \right) \vec{J} + \frac{8e^2}{c} \rho \nabla \rho \times \vec{B} \\ &+ \frac{2}{\rho^2} (\nabla \rho \cdot \vec{J}) \nabla \rho + \frac{2}{\rho} \left((\nabla \rho \cdot \nabla) \vec{J} - (\vec{J} \cdot \nabla) \nabla \rho \right) \\ &+ \frac{\hbar e}{2} \rho^2 \nabla \times (\epsilon_{abc} n_a \nabla n_b \times \nabla n_c) + \hbar e \rho \nabla \rho \times (\epsilon_{abc} n_a \nabla n_b \times \nabla n_c) \\ \nabla^2 \vec{B} &= \frac{16\pi e^2}{c^2} \rho^2 \vec{B} - \frac{8\pi}{c\rho} \nabla \rho \times \vec{J} + \frac{2\pi \hbar e}{c} \rho^2 \epsilon_{abc} n_a \nabla n_b \times \nabla n_c \end{split}$$

note that spatial variation of modulus field $\nabla \rho$ couples \vec{J} and \vec{B} field equations

• two-gap Meissner effect at low temperature $T < T_c$

at low temperature $T < T_c$, modulus field ρ varies only very slightly over superconductor to yield

$$abla imes \vec{J} = -\frac{4e^2}{c}
ho^2 \vec{B} - \frac{\hbar e}{2}
ho^2 \epsilon_{abc} n_a \nabla n_b imes \nabla n_c$$

so that we can arrive at decoupled equations for \vec{J} and \vec{B}

$$\nabla^2 \vec{J} = \frac{16\pi e^2}{c^2} \rho^2 \vec{J} + \frac{\hbar e}{2} \rho^2 \nabla \times (\epsilon_{abc} n_a \nabla n_b \times \nabla n_c),$$

$$\nabla^2 \vec{B} = \frac{16\pi e^2}{c^2} \rho^2 \vec{B} + \frac{2\pi \hbar e}{c} \rho^2 \epsilon_{abc} n_a \nabla n_b \times \nabla n_c$$

note that we have topological contribution with $\epsilon_{abc}n_a\nabla n_b\times \nabla n_c$

• two-gap London penetration depth

in London limit when $|\Psi_{\alpha}| = \text{constant}$ and thus $\epsilon_{abc} n_a \nabla n_b \times \nabla n_c = 0$

$$\Lambda = \left(\frac{m_1 c^2}{4\pi e^2 n_{1s}}\right)^{1/2} \left(1 + \frac{m_1 n_{2s}}{m_2 n_{1s}}\right)^{-1/2}$$

where superfluid densities $n_{\alpha s}$ are given by $n_{\alpha s} = 2|\Psi_{\alpha}|^2$

note that two-gap surface supercurrents screen out applied field to yield two-gap Meissner effect

• in one-flavor limit with $n_{2s} = 0$

$$\begin{aligned} \nabla \times \vec{J} &= -\frac{e^2 n_{1s}}{m_1 c} \vec{B} + \frac{1}{n_{1s}} \nabla n_{1s} \times \vec{J}, \\ \nabla^2 \vec{J} &= \left(\frac{4\pi e^2}{m_1 c^2} n_{1s} + \frac{1}{n_{1s}} \nabla^2 n_{1s} - \frac{1}{n_{1s}^2} (\nabla n_{1s})^2 \right) \vec{J} + \frac{e^2}{m_1 c} \nabla n_{1s} \times \vec{B} \\ &+ \frac{1}{2n_{1s}^2} \left((\nabla n_{1s} \cdot \vec{J}) \nabla n_{1s} + \nabla n_{1s} (\vec{J} \cdot \nabla) n_{1s} \right) \\ &+ \frac{1}{n_{1s}} \left((\nabla n_{1s} \cdot \nabla) \vec{J} - (\vec{J} \cdot \nabla) \nabla n_{1s} \right) \\ \nabla^2 \vec{B} &= \frac{4\pi e^2}{m_1 c^2} n_{1s} \vec{B} - \frac{4\pi}{cn_{1s}} \nabla n_{1s} \times \vec{J} \end{aligned}$$

in more restricted low temperature limit $T < T_c$

$$\nabla \times \vec{J} = -\frac{e^2 n_{1s}}{m_1 c} \vec{B}$$
$$\nabla^2 \vec{J} = \frac{4\pi e^2}{m_1 c^2} n_{1s} \vec{J}$$
$$\nabla^2 \vec{B} = \frac{4\pi e^2}{m_1 c^2} n_{1s} \vec{B}$$

which yield single-gap London penetration depth

$$\Lambda = \left(\frac{m_1 c^2}{4\pi e^2 n_{1s}}\right)^{1/2} = 41.9 \left(\frac{r_s}{a_0}\right)^{3/2} \left(\frac{n_e}{n_{1s}}\right)^{1/2} \mathring{A}$$

where $r_s = \left(\frac{3}{4\pi n_e}\right)^{1/3}$, a_0 is Bohr radius and n_e is total electron density given by $n_e = n_{1n} + n_{1s}$ with normal (superfluid) electron density n_{1n} (n_{1s})

• phenomenological two-gap London penetration depth

$$\Lambda = 41.9 \left(\frac{r_s}{a_0}\right)^{3/2} \left(\frac{n_e}{n_{1s}}\right)^{1/2} \left(1 + \frac{m_1 n_{2s}}{m_2 n_{1s}}\right)^{-1/2} \mathring{A}$$

in two-gap London penetration depth, with respect to single-gap case we have more degrees of freedom associated with physical parameters m_2 and n_{2s} to adjust theoretical predictions to experimental data for London penetration depth

IV. Flux quantization

• magnetic flux carried by vortex of superconductor

consider two-gap superconductor in shape of cylinder-like ring where there exists cavity inside inner radius

in order to evaluate magnetic flux inside two-gap superconductor, we embed within interior of superconducting material contour encircling cavity

at low temperature $T < T_c$, appreciable supercurrents can flow only near surface of superconductor, and modulus field ρ varies only very slightly over two-gap superconductor

$$0 = \oint J = \oint A + \frac{\hbar c}{4e} \oint C = \Phi + \frac{\hbar c}{4e} \oint C$$

 Φ : magnetic flux carried by vortex of superconductor

to explicitly evaluate phase effects of two-gap superconductor, we parameterize z_α fields:

$$z_1 = |z_1|e^{i\phi_1} = e^{i\phi_1}\cos\frac{\theta}{2}, \quad z_2 = |z_2|e^{i\phi_2} = e^{i\phi_2}\sin\frac{\theta}{2}$$

to satisfy constraint $z_{\alpha}^* z_{\alpha} = |z_1|^2 + |z_2|^2 = 1$

$$\vec{C} = 2(|z_1|^2 \nabla \phi_1 - |z_2|^2 \nabla \phi_2)$$

• fractional magnetic flux quantization

order parameters Ψ_{α} are single-valued in each flavor channels so that their corresponding phases should vary 2π times integers p_{α} when ring is encircled

$$\oint \nabla \phi_{\alpha} \cdot d\vec{l} = 2\pi p_{\alpha}$$

$$\oint C = 4\pi (|z_1|^2 p_1 - |z_2|^2 p_2)$$

$$|\Phi| = \frac{\hbar c}{4e} \oint C = (|z_1|^2 p_1 - |z_2|^2 p_2) \Phi_0$$

$$= \frac{1}{2} (p_1 - p_2 + (p_1 + p_2) n_3) \Phi_0$$

$$\Phi_0 = \frac{\hbar c}{2e} = 2.0679 \times 10^{-7} \text{ gauss-cm}^2: \text{ fluxoid}$$

• two cases of magnetic flux quantization

in case of $p_1 = p_2 = 1$

$$|\Phi| = n_3 \Phi_0 = \Phi_0 \cos \theta$$

such a vortex can possess arbitrary fraction of magnetic flux quantum since $|\Phi|$ depends on parameter $\cos \theta$ measuring relative densities of two condensates in superconductor

in case of $p_1 = -p_2$, magnetic flux is reduced to single-gap magnetic flux quantization

$$|\Phi| = p_1 \Phi_0$$

V. Knotted string geometry

• bundle of two strings

in Hopf bundle $n_a = z^{\dagger} \sigma_a z$, n_a remains invariant under U(1) gauge transformation $z \to e^{i\xi/2}z$

$$z_1 = |z_1|e^{i\phi_1} = e^{i\phi_1}\cos\frac{\theta}{2}, \quad z_2 = |z_2|e^{i\phi_2} = e^{i\phi_2}\sin\frac{\theta}{2}$$

 n_a can be rewritten in terms of angles θ and $\beta = \phi_1 + \phi_2$

$$\vec{n} = (\cos\beta\sin\theta, -\sin\beta\sin\theta, \cos\theta)$$

 n_a is independent of angle $\alpha = \phi_1 - \phi_2$ so that α can be considered as coordinate generalization of parameter s of string coordinates $\vec{x}(s) \in R^3$, which describe knot structure involved in two-gap superconductor

knot theory in the two-gap superconductor can be constructed in terms of bundle of two strings

U(1) gauge transformation $z \to e^{i\xi/2}z$ is related with angle α in such a way that

$$\alpha \to \alpha + \xi$$

to yield reparameterization invariance $s \to \tilde{s}(s)$

• Hopf invariant associated with knot structure

evaluate Hopf invariant associated with knot structure of two-gap superconductor

$$C = \cos\theta \mathrm{d}\beta + \mathrm{d}\alpha$$

under U(1) gauge transformation $z \to e^{i\xi/2}z$

$$C \to \cos\theta d\beta + d(\alpha + \xi)$$

so that C can be identified as U(1) gauge field

exterior derivative of C produces pull-back of area two-form H and dual one-form $G_i = \frac{1}{2} \epsilon_{ijk} H_{jk}$ on two-sphere S^2

$$H = dC = \frac{1}{2}\vec{n} \cdot d\vec{n} \wedge d\vec{n} = \sin\theta d\beta \wedge d\theta$$
$$G = \frac{1}{2}\sin\theta d\beta \wedge d\theta$$

Hopf invariant Q_H is given by

$$Q_H = \frac{1}{8\pi^2} \int H \wedge C = \frac{1}{8\pi^2} \int \sin\theta d\alpha \wedge d\beta \wedge d\theta$$

if there exists nonvanishing Hopf invariant, bundle of two strings forms a knot

• curvature and torsion

to figure out knot structure geometrically, emloy right-handed orthonormal basis defined by $(\vec{n}, \vec{e_1}, \vec{e_2})$:

$$\vec{n} = (\cos\beta\sin\theta, -\sin\beta\sin\theta, \cos\theta)$$

$$\vec{e}_1 = (\cos\beta\cos\theta, -\sin\beta\cos\theta, -\sin\theta)$$

$$\vec{e}_2 = (\sin\beta, \cos\beta, 0)$$

define with $\vec{e}_{\pm} = \vec{e}_2 \pm i\vec{e}_1$ curvature and torsion:

$$\kappa_i^{\pm} = \frac{1}{2} e^{\pm \alpha} \vec{e}_{\pm} \cdot \partial_i \vec{n} = \frac{1}{2} e^{\pm \alpha} (-\sin \theta \partial_i \beta \pm i \partial_i \theta),$$

$$\tau_i = \frac{i}{2} \vec{e}_{-} \cdot (\partial_i + i \partial_i \alpha) \vec{e}_{+} = \cos \theta \partial_i \beta - \partial_i \alpha$$

curvature κ_i^{\pm} and torsion τ_i are invariant under U(1)×U(1) gauge transformations: $z \to e^{i\xi/2}z$ and $\alpha \to \alpha + \xi$

curvature κ_i^\pm and torsion τ_i are not independent to yield flatness relations between them

$$\mathrm{d}\tau + 2i\kappa^+ \wedge \kappa^- = 0, \quad \mathrm{d}\kappa^\pm \pm i\tau \wedge \kappa^\pm = 0$$

knotted stringy structures of two-gap superconductors are constructed only in terms of CP^1 complex fields z_{α} in order parameters Ψ_{α} , since modulus field ρ associated with condensate densities does not play a central role in geometrical arguments involved in topological knots of the system

VI. Conclusions

- Ginzburg-Landau theory for two-gap superconductors
- Meissner effects
- two-gap London penetration depth
- fractional flux quantization
- knotted string geometry