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I. Introduction

• topological soliton and knot structure

L.D. Faddeev and A.J. Niemi, Knots and particles, Nature 387, 58
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E. Babaev, L.D. Faddeev and A.J. Niemi, Hidden symmetry and knot
solitons in a charged two-condensate Bose system, Phys. Rev. B65,
100512 (2002)

E. Babaev, Dual neutral variables and knot solitons in triplet
superconductors, Phys. Rev. Lett. B88, 177002 (2002)

L. Freyhult and A.J. Niemi, Chirality and fermion number in a knotted
soliton background, Phys. Lett. B557, 121 (2002)

E. Babaev, Andreev-Bashkin effect and knot solitons in interacting
mixture of a charged and a neutral superfluids with possible relevance
for neutron stars, Phys. Rev. D70, 043001 (2004)

• Ginzburg-Landau theory and string knot structure

V.L. Ginzburg and L.D. Landau, About the theory of superconductivity,
Zh. Eksp. Teor. Fiz. 20, 1064 (1950)

A.A. Abrikosov, On the magnetic properties of superconductors of the
second group, Sov. Phys. JETP 5, 1174 (1957)

E. Babaev, Characteristic length scales and formation of vortices in the
Abelian Higgs model in the presence of a uniform background charge,
Phys. Rev. B63, 172502 (2001)

E. Babaev, Phase diagram of planar U(1)×U(1) superconductors:
condensation of vortices with fractional flux and a superfluid state,
Nucl. Phys. B686, 397 (2004)

E. Babaev and H. Kleinert, Nonperturbative XY-model approach to strong
coupling superconductivity in two and three dimensions, Phys. Rev.
B59, 12083 (1999)
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E. Babaev, Thermodynamics of crossover from weak- to strong-coupling
superconductivity, Phys. Rev. B63, 184514 (2001)

J. Smiseth, E. Smorgrav, A. Sudbo, Critical properties of the N-color
London model, Phys. Rev. Lett. 93 077002 (2004)

L. Faddeev and A.J. Niemi, Aspects of electric and magnetic variables
in SU(2) Yang-Mills theory, Phys. Lett. B525, 195 (2002)

A.J. Niemi, Phases of bosonic strings and two dimensional gauge
theories, Phys. Rev. D67, 106004 (2003)

E. Babaev, Vortices with fractional flux in two-gap superconductors and
in extended Faddeev model, Phys. Rev. Lett. 89, 067001 (2002)

E. Babaev, Phase diagram of planar U(1)×U(1) superconductors:
condensation of vortices with fractional flux and a superfluid state,
Nucl. Phys. B686, 397 (2004)

A. Niemi, Dual Superconductors and SU(2) Yang-Mills, JHEP 0408,
035 (2004)

∗S.T. Hong and A.J. Niemi, Topological aspects of dual superconductors,
to appear in Phys. Rev. B70 (2004)

• experiment on two-band superconductivity

J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani and J. Akimitsu,
Superconductivity at 39 K in magnesium diboride, Nature 410,
63 (2001)

W.N. Kang, H.J. Kim, E.M. Choi, C.U. Jung and S.I. Lee, MgB2

superconducting thin films with a transition temperature of 39 Kelvin,
Science 292, 1521 (2001)

F. Bouquet, R.A. Fisher, N.E. Phillips, D.G. Hinks and J.D. Jorgensen,
Specific heat of Mg11B2, Phys. Rev. Lett. 87, 047001 (2001)

T. Yokoya, T. Kiss, A. Chainani, S. Shin, M. Nohara and H. Takagi,
Fermi surface sheet-dependent superconductivity in 2H-NbSe2, Science

294, 2518 (2001)

2



• liquid metallic hydrogen

N.W. Ashcroft, The hydrogen liquids, J. Phys.: Condens. Matter 12,
A129 (2000)

N.W. Ashcroft, Hydrogen Dominant Metallic Alloys: High Temperature
Superconductors?, Phys. Rev. Lett. 92, 187002 (2004)

S.A. Bonev, E. Schwegler, T. Ogitsu and G. Galli, A quantum fluid of
metallic hydrogen, (submitted to Nature)

K. Moulopoulos and N.W Ashcroft, Generalized Coulomb pairing in the
condensed state, Phys. Rev. Lett., 66, 2915 (1991)

E. Babaev, A. Sudbo and N.W. Ashcroft, A superconductor to superfluid
phase transition in liquid metallic hydrogen, Nature 431, 666 (2004)
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II. Model for two-gap superconductors

• free energy of two-flavor Ginzburg-Landau theory
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Ψα: order parameters for Cooper pairs of two different flavors (α = 1, 2)
V : potential of the form V (|Ψ1,2|2) = −bα|Ψα|2 + 1

2cα|Ψα|4
η: characteristic of interband Josephson coupling strength

η = 0 Josephson coupling describes liquid metallic hydrogen which
should allow coexistent superconductivity of protonic and electronic
Cooper pairs

interband Josephson coupling merely changes energy of knot associated
with two-band superconductors

two condensates are characterized by different effective masses mα, co-
herence lengths ξα = h̄/(2mαbα)1/2 and densities 〈|Ψα|2〉 = bα/cα

• modulus field and CP 1 complex fields

introduce fields ρ and zα defined as

Ψα = (2mα)1/2ρzα

ρ: modulus field given by condensate densities and masses
ρ2 = 1

2m1
|Ψ1|2 + 1

2m2
|Ψ2|2

zα: CP 1 complex fields chosen to satisfy geometrical constraint
z∗αzα = |z1|2 + |z2|2 = 1
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• gauge invariant supercurrent

~J = − e
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which can be rewritten in terms of fields ρ and zα

~J = −h̄eρ2
(

~C +
4e

h̄c
~A

)

where

~C = i(∇z†z − z†∇z) = i(z1∇z∗1 − z∗1∇z1 − z2∇z∗2 + z∗2∇z2)

with z = (z1, z
∗
2)

• dynamical physical fields

CP 1 model is equivalent to the O(3) NLSM at canonical level

introduce dynamical physical fields na (a = 1, 2, 3) which are mappings
from space-time manifold (or direct product of compact two-dimensional
Riemann surface M2 and time dimension R1) to two-sphere S2

na : M2 ⊗R1 → S2

dynamical physical fields of CP 1 model are zα (α = 1, 2) which map
spacetime manifold M2 ⊗R1 into S3

zα : M2 ⊗R1 → S3
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• Hopf bundle

S3 is homeomorphic to SU(2) group manifold and CP 1 model is invariant
under local U(1) gauge symmetry for arbitrary spacetime dependent ξ

z → eiξ/2z

physical configuration space of CP 1 model is that of gauge orbits which
form the coset S3/S1 = S2 = CP 1

in order to associate physical fields of CP 1 model with those of O(3)
NLSM, exploit projection from S3 to S2, namely Hopf bundle

na = z†σaz

with Pauli matrices σa and na fields satisfying constraint nana = 1

• free energy in terms of ρ and na

F = h̄2(∇ρ)2 +
1

4
h̄2ρ2(∇na)

2 +
1

4e2ρ2
~J2 +

1

8π
~B2 + V + Kρ2n1,

where K = 2η(m1m2)
1/2

introduce gauge invariant vector fields

~S =
1

h̄eρ2
~J

to yield

F = h̄2(∇ρ)2 +
1

4
h̄2ρ2

[
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2 + ~S2
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+
h̄2c2
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1

2
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)2
+ V + Kρ2n1
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III. Meissner effects

• magnetic field in terms of ρ, na and ~S

~B = ∇× ~A = −h̄c

4e

(
∇× ~S +

1

2
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)

∇× ~C =
1

2
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c
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2
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2
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∇× ~S = −4e
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~B − 1

2
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note topological contribution proportional to εabcna∇nb × ∇nc which
originates from interactions of Cooper pairs of two different flavors

• two-gap equations for ~J and ~B

∇× ~B =
4π

c
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16πe2
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2
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2
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2
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c
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note that spatial variation of modulus field ∇ρ couples ~J and ~B field
equations
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• two-gap Meissner effect at low temperature T < Tc

at low temperature T < Tc, modulus field ρ varies only very slightly over
superconductor to yield

∇× ~J = −4e2

c
ρ2 ~B − h̄e

2
ρ2εabcna∇nb ×∇nc

so that we can arrive at decoupled equations for ~J and ~B

∇2 ~J =
16πe2

c2 ρ2 ~J +
h̄e

2
ρ2∇× (εabcna∇nb ×∇nc),

∇2 ~B =
16πe2

c2 ρ2 ~B +
2πh̄e

c
ρ2εabcna∇nb ×∇nc

note that we have topological contribution with εabcna∇nb ×∇nc

• two-gap London penetration depth

in London limit when |Ψα| = constant and thus εabcna∇nb ×∇nc = 0

Λ =


 m1c

2

4πe2n1s




1/2 (
1 +

m1n2s

m2n1s

)−1/2

where superfluid densities nαs are given by nαs = 2|Ψα|2

note that two-gap surface supercurrents screen out applied field to yield
two-gap Meissner effect
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• in one-flavor limit with n2s = 0

∇× ~J = −e2n1s
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in more restricted low temperature limit T < Tc
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which yield single-gap London penetration depth

Λ =


 m1c

2

4πe2n1s




1/2

= 41.9

(
rs

a0

)3/2 (
ne

n1s

)1/2
A
o

where rs =
(

3
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)1/3
, a0 is Bohr radius and ne is total electron density

given by ne = n1n + n1s with normal (superfluid) electron density n1n

(n1s)
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• phenomenological two-gap London penetration depth

Λ = 41.9

(
rs

a0

)3/2 (
ne

n1s

)1/2 (
1 +

m1n2s

m2n1s

)−1/2
A
o

in two-gap London penetration depth, with respect to single-gap case
we have more degrees of freedom associated with physical parameters
m2 and n2s to adjust theoretical predictions to experimental data for
London penetration depth
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IV. Flux quantization

• magnetic flux carried by vortex of superconductor

consider two-gap superconductor in shape of cylinder-like ring where
there exists cavity inside inner radius

in order to evaluate magnetic flux inside two-gap superconductor, we em-
bed within interior of superconducting material contour encircling cavity

at low temperature T < Tc, appreciable supercurrents can flow only near
surface of superconductor, and modulus field ρ varies only very slightly
over two-gap superconductor

0 =
∮

J =
∮

A +
h̄c

4e

∮
C = Φ +

h̄c

4e

∮
C

Φ: magnetic flux carried by vortex of superconductor

to explicitly evaluate phase effects of two-gap superconductor, we pa-
rameterize zα fields:

z1 = |z1|eiφ1 = eiφ1 cos
θ

2
, z2 = |z2|eiφ2 = eiφ2 sin

θ

2

to satisfy constraint z∗αzα = |z1|2 + |z2|2 = 1

~C = 2(|z1|2∇φ1 − |z2|2∇φ2)
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• fractional magnetic flux quantization

order parameters Ψα are single-valued in each flavor channels so that
their corresponding phases should vary 2π times integers pα when ring
is encircled ∮

∇φα · d~l = 2πpα

∮
C = 4π(|z1|2p1 − |z2|2p2)

|Φ| = h̄c

4e

∮
C = (|z1|2p1 − |z2|2p2)Φ0

=
1

2
(p1 − p2 + (p1 + p2)n3) Φ0

Φ0 = hc
2e = 2.0679× 10−7 gauss-cm2: fluxoid

• two cases of magnetic flux quantization

in case of p1 = p2 = 1

|Φ| = n3Φ0 = Φ0 cos θ

such a vortex can possess arbitrary fraction of magnetic flux quantum
since |Φ| depends on parameter cos θ measuring relative densities of two
condensates in superconductor

in case of p1 = −p2, magnetic flux is reduced to single-gap magnetic flux
quantization

|Φ| = p1Φ0
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V. Knotted string geometry

• bundle of two strings

in Hopf bundle na = z†σaz, na remains invariant under U(1) gauge trans-
formation z → eiξ/2z

z1 = |z1|eiφ1 = eiφ1 cos
θ

2
, z2 = |z2|eiφ2 = eiφ2 sin

θ

2

na can be rewritten in terms of angles θ and β = φ1 + φ2

~n = (cos β sin θ,− sin β sin θ, cos θ)

na is independent of angle α = φ1 − φ2 so that α can be considered as
coordinate generalization of parameter s of string coordinates ~x(s) ∈ R3,
which describe knot structure involved in two-gap superconductor

knot theory in the two-gap superconductor can be constructed in terms
of bundle of two strings

U(1) gauge transformation z → eiξ/2z is related with angle α in such a
way that

α → α + ξ

to yield reparameterization invariance s → s̃(s)
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• Hopf invariant associated with knot structure

evaluate Hopf invariant associated with knot structure of two-gap super-
conductor

C = cos θdβ + dα

under U(1) gauge transformation z → eiξ/2z

C → cos θdβ + d(α + ξ)

so that C can be identified as U(1) gauge field

exterior derivative of C produces pull-back of area two-form H and dual
one-form Gi = 1

2εijkHjk on two-sphere S2

H = dC =
1

2
~n · d~n ∧ d~n = sin θdβ ∧ dθ

G =
1

2
sin θdβ ∧ dθ

Hopf invariant QH is given by

QH =
1

8π2

∫
H ∧ C =

1

8π2

∫
sin θdα ∧ dβ ∧ dθ

if there exists nonvanishing Hopf invariant, bundle of two strings forms
a knot
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• curvature and torsion

to figure out knot structure geometrically, emloy right-handed orthonor-
mal basis defined by (~n,~e1, ~e2):

~n = (cos β sin θ,− sin β sin θ, cos θ)

~e1 = (cos β cos θ,− sin β cos θ,− sin θ)

~e2 = (sin β, cos β, 0)

define with ~e± = ~e2 ± i~e1 curvature and torsion:

κ±i =
1

2
e±α~e± · ∂i~n =

1

2
e±α(− sin θ∂iβ ± i∂iθ),

τi =
i

2
~e− · (∂i + i∂iα)~e+ = cos θ∂iβ − ∂iα

curvature κ±i and torsion τi are invariant under U(1)×U(1) gauge trans-
formations: z → eiξ/2z and α → α + ξ

curvature κ±i and torsion τi are not independent to yield flatness relations
between them

dτ + 2iκ+ ∧ κ− = 0, dκ± ± iτ ∧ κ± = 0

knotted stringy structures of two-gap superconductors are constructed
only in terms of CP 1 complex fields zα in order parameters Ψα, since
modulus field ρ associated with condensate densities does not play a
central role in geometrical arguments involved in topological knots of
the system
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VI. Conclusions

• Ginzburg-Landau theory for two-gap superconduc-
tors

• Meissner effects

• two-gap London penetration depth

• fractional flux quantization

• knotted string geometry
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