Pentaquarks in SU(3) quark model

Hungchong Kim Yonsei University

Collaborators: Yongseok Oh, Su Houng Lee

hep- ph/0310117 PRD(04) : Oh,Kim,Lee
hep- ph/0405010 (to appear in PRD): Oh,Kim
hep- ph/O402135: Lee,Kim,Oh

Exotic Θ^{+}observed in $K N$ channel with mass around 1540 MeV and the width less than 20 MeV .

LEPS(Spring- 8)

$$
\gamma n \rightarrow K^{+} K^{-} n
$$

$\mathrm{M}=1.54 \pm 0.01 \mathrm{MeV}$ $\Gamma<25 \mathrm{MeV}$
Gaussian significance 4.6σ

CLAS(Jlab)

$$
\gamma d \rightarrow K^{+} K^{-} p n
$$

SAPHIR(Bonn)
$\gamma p \rightarrow K^{+} K_{S}^{0} n$

Basic reaction	$M\left(\Theta^{+}\right)$in MeV	$\Gamma\left(\Theta^{+}\right)$in MeV	Collaboration/Reference
${ }^{7} \boldsymbol{m} \rightarrow K^{+} K^{-} n$	1540 ± 10	≤ 25	LEPS
$K^{+} \mathrm{Xe}_{\mathrm{e}} \rightarrow K^{\mathbf{0}}{ }_{p} \mathrm{Xe}^{\prime}$	1539 ± 2	≤ 9	DIANA
$\gamma d \rightarrow K^{+} K^{-} p m$	1542 ± 5	≤ 21	CLAS
$\sim_{p} \rightarrow K^{+} K_{S}^{0} n$	$1540 \pm 4 \pm 2$	≤ 25	SAPHIR.
$w \rightarrow \pi^{+} K^{-} K^{+}{ }_{n}$	1537 ± 10	≤ 31	CLAS
$\nu_{\mu}\left(\bar{\nu}_{\mu}\right)+A \rightarrow \mu^{-}\left(\mu^{+}\right) p K_{S}^{0} X$	1533 ± 5	≤ 20	BBCN
T $\rightarrow \pi^{+} K^{-} K^{+}{ }_{n}$	1555 ± 10	≤ 26	CLAS
$e d \rightarrow p K_{s}^{0} X$	$1528 \pm 2.6 \pm 2.1$	$13 \pm 9 \pm 3$	HERMES
$p p \rightarrow \Sigma^{+} K^{0}{ }_{p}$	1530 ± 5	≤ 18	COSY

TABLE I: Summary of the experimental data for the $\Theta^{+}(1540)$ baryon.

Beware that there are lots of other experiments reporting null results also!

Minimal quark content is $u d u d \bar{S}$ (5 quarks !) $\quad S=+1$

$$
\begin{aligned}
\Theta^{+} \rightarrow & K^{+}(u \bar{s}) n(u d d) \\
& K^{0}(d \bar{s}) p(u u d)
\end{aligned}
$$

Not a bound state of KN because $\quad m_{\Theta}(1540)>m_{N}(940)+m_{K}(495)$

Exotic $\Xi^{--}(1862)(d s d s \bar{u})$ observed in NA49 (CERN) in pp collisions.

- Anti- charmed analogue, $\Theta_{c}(3099)$ [udud \bar{c}] is reported at HERA in the $D^{*} N$ channel.

Evidences for the pentaquark are accumulating and we need systematic compilation of pentaquark properties.

SU(3) quark model is expected to be useful in classifying the possible pentaquark states and their properties. We present all the possible pentaquarks, selection rules for their decays, mass relations.

1. Pentaquark multiplets \rightarrow classify all the possible pentaquarks
2. Tensor notation and its assignment to the pentaquarks
3. $\operatorname{SU}(3)$ lagrangian and mass relations in tensor notation
4. Pentaquarks in J\&W model and their decays

Pentaquark multiplets

General classification

$q^{4} \bar{q} \quad 3 \otimes 3 \otimes 3 \otimes 3 \otimes \overline{3}=35 \oplus 27 \oplus \overline{10} \oplus 10 \oplus 8 \oplus 1$
Total 91 pentaquarks. The possible multiplets can be reduced under certain model.

Hypercharge Y runs from-3 to 2

Pentaquark nomenclature based on Y and I

$$
Y=2, \quad \Theta
$$

$\mathrm{Y}=1, \quad \mathrm{~N}, \Delta$
$\mathrm{Y}=0, \quad \Sigma, \Lambda$
$Y=-1, \quad \Xi$
$Y=-2, \quad \Omega$
$Y=-3, \quad X \rightarrow$ unique

Notation for the resonance

Multiplet that the resonance sits in

To classify the states according to Y and I , let us draw the weight diagram

$$
\begin{array}{rll}
y & 1 & \\
1 & 1 / 2 & N_{8} \\
0 & 1,0 & \Sigma_{8}, \Lambda_{8} \\
-1 & 1 / 2 & \Xi_{8}
\end{array}
$$

$1 \quad \mathrm{Y}=0, \mathrm{l}=0 \quad \Lambda_{1}$

Tensor notation

:useful for constructing mass relations, SU(3) symmetric couplings \rightarrow selection rules

Represents a multiplet of (p, q)

$$
\begin{aligned}
\text { by } \underbrace{T_{l m n \ldots}^{i j k \ldots}}_{T_{p}}
\end{aligned} \quad(i j k \ldots=1,2,3)
$$

1: S

$$
\begin{array}{lll}
8: O_{i}^{j} \\
8=3 \times 3-1
\end{array} \quad 10: D_{i j k} \quad \overline{10}: D^{i j k}
$$

$$
\begin{array}{ll}
27: T_{i j}^{l m} & 35: T_{i j l m}^{k} \\
27=6 \times 6-9 & 35=15 \times 3-10
\end{array}
$$

Identifying pentaquarks with tensor notation is useful to construct SU(3) lagrangian and mass relations

How to assign each tensor to a state in a weight diagram?

Example: 35-plet case

$$
\begin{aligned}
& T_{111}^{1}, T_{1112}^{2} \text { and } T_{1113}^{3} \\
& \text { assign } T_{1113}^{3} \text { a pure } \mathrm{I}=3 / 2 \text { member } \\
& \text { and } T_{1111}^{1}, T_{1112}^{2} \text { are mixture of } \mathrm{I}=5 / 2, \mathrm{I}=3 / 2
\end{aligned}
$$

Identifying the tensors with pentaquarks

Octet

$$
\begin{aligned}
& P_{1}^{3}=N_{8}^{+}, \quad P_{2}^{3}=N_{8}^{0}, \quad P_{1}^{2}=\Sigma_{8}^{+}, \\
& P_{2}^{1}=\Sigma_{8}^{-}, \quad P_{1}^{1}=1 / \sqrt{2} \Sigma_{8}^{0}+1 / \sqrt{6} \Lambda_{8}^{0}, \quad P_{2}^{2}=-1 / \sqrt{2} \Sigma_{8}^{0}+1 / \sqrt{6} \Lambda_{8}^{0}, \\
& P_{3}^{3}=-\sqrt{2 / 3} \Lambda_{8}^{0}, \quad P_{3}^{2}=\Xi_{8}^{0}, \quad P_{3}^{1}=-\Xi_{8}^{-} .
\end{aligned}
$$

Decuplet

$$
\begin{array}{lcc}
D_{111}=\sqrt{6} \Delta_{10}^{++}, & D_{112}=\sqrt{2} \Delta_{10}^{+}, & D_{122}=\sqrt{2} \Delta_{10}^{0}, \\
D_{222}=\sqrt{6} \Delta_{10}^{-}, & D_{113}=\sqrt{2} \Sigma_{10}^{+}, & D_{123}=-\Sigma_{10}^{0} \\
D_{223}=-\sqrt{2} \Sigma_{10}^{-}, & D_{133}=\sqrt{2} \Xi_{10}^{0}, & D_{233}=\sqrt{2} \Xi_{10}^{-} \\
D_{333}=-\sqrt{6} \Omega_{10}^{-} . & &
\end{array}
$$

Anti- decuplet

$$
\begin{aligned}
& T^{111}=\sqrt{6} \Xi_{\overline{10}, 3 / 2}^{--}, \quad T^{112}=-\sqrt{2} \Xi_{\frac{-}{10}, 3 / 2}, \quad T^{122}=\sqrt{2} \Xi_{\overline{10}, 3 / 2}^{0}, \\
& T^{222}=-\sqrt{6} \Xi_{10}^{+}, 3 / 2, \quad T^{113}=\sqrt{2} \Sigma_{\overline{10}}^{-}, \quad T^{123}=-\Sigma_{\frac{0}{10}}^{0}, \\
& T^{223}=-\sqrt{2} \Sigma_{10}^{+}, \quad T^{133}=\sqrt{2} N_{10}^{0}, \quad T^{233}=-\sqrt{2} N_{10}^{+}, \\
& T^{333}=\sqrt{6} \Theta^{+} .
\end{aligned}
$$

27- plet $\bullet Y=2, I=1 \quad T_{11}^{33}=-2 \Theta_{1}^{++}, \quad T_{12}^{33}=\sqrt{2} \Theta_{1}^{+}, \quad T_{22}^{33}=2 \Theta_{1}^{0}$,

$$
\begin{aligned}
& \text { - } Y=1, I=3 / 2,1 / 2 \quad T_{11}^{23}=-\sqrt{2} \Delta_{27}^{++}, \quad T_{11}^{13}=\sqrt{\frac{2}{3}} \Delta_{27}^{+}+\sqrt{\frac{8}{15}} N_{27}^{+}, \quad T_{12}^{23}=-\sqrt{\frac{2}{3}} \Delta_{27}^{+}+\sqrt{\frac{2}{15}} N_{27}^{+}, \\
& T_{13}^{33}=-\sqrt{\frac{6}{5}} N_{27}^{+}, \quad T_{12}^{13}=\sqrt{\frac{2}{3}} \Delta_{27}^{0}+\sqrt{\frac{2}{15}} N_{27}^{0}, \quad T_{22}^{23}=-\sqrt{\frac{2}{3}} \Delta_{27}^{0}+\sqrt{\frac{8}{15}} N_{27}^{0}, \\
& T_{23}^{33}=-\sqrt{\frac{6}{5}} N_{27}^{0}, \quad T_{22}^{13}=\sqrt{2} \Delta_{27}^{-}, \\
& T_{11}^{23}=-\sqrt{2} \Delta_{27}^{++}, \quad T_{11}^{13}=\sqrt{\frac{2}{3}} \Delta_{27}^{+}+\sqrt{\frac{8}{15}} N_{27}^{+},
\end{aligned}
$$

For flavor w.f. and overall normalization, see hep- ph/0405010

- $Y=2, I=2$

35-plet

$$
\begin{aligned}
& T_{1111}^{3}=2 \sqrt{6} \Theta_{2}^{+++}, \quad T_{1112}^{3}=\sqrt{6} \Theta_{2}^{++}, \quad T_{1122}^{3}=2 \Theta_{2}^{+} \\
& T_{1222}^{3}=\sqrt{6} \Theta_{2}^{0}, \quad T_{2222}^{3}=2 \sqrt{6} \Theta_{2}^{-}
\end{aligned}
$$

- $Y=1, I=5 / 2,3 / 2$

$$
\begin{aligned}
& T_{1111}^{2}=-2 \sqrt{6} \Delta_{5 / 2}^{+++}, \quad T_{1111}^{1}=2 \sqrt{\frac{6}{5}} \Delta_{5 / 2}^{++}+\frac{4}{\sqrt{5}} \Delta_{35}^{++}, \\
& T_{1112}^{2}=-2 \sqrt{\frac{6}{5}} \Delta_{5 / 2}^{++}+\frac{1}{\sqrt{5}} \Delta_{35}^{++}, \quad T_{1113}^{3}=-\sqrt{5} \Delta_{35}^{++}, \\
& T_{1112}^{1}=2 \sqrt{\frac{3}{5}} \Delta_{5 / 2}^{+}+\sqrt{\frac{3}{5}} \Delta_{35}^{+}, \quad T_{1122}^{2}=-2 \sqrt{\frac{3}{5}} \Delta_{5 / 2}^{+}+\frac{2}{\sqrt{15}} \Delta_{35}^{+}, \\
& T_{1123}^{3}=-\sqrt{\frac{5}{3}} \Delta_{35}^{+}, \quad T_{1122}^{1}=2 \sqrt{\frac{3}{5}} \Delta_{5 / 2}^{0}+\frac{2}{\sqrt{15}} \Delta_{35}^{0}, \\
& T_{1222}^{2}=-2 \sqrt{\frac{3}{5}} \Delta_{5 / 2}^{0}+\sqrt{\frac{3}{5}} \Delta_{35}^{0}, \quad T_{1223}^{3}=-\sqrt{\frac{5}{3}} \Delta_{35}^{0}, \\
& T_{1222}^{1}=2 \sqrt{\frac{6}{5}} \Delta_{5 / 2}^{-}+\frac{1}{\sqrt{5}} \Delta_{35}^{-}, \quad T_{2222}^{2}=-2 \sqrt{\frac{6}{5}} \Delta_{5 / 2}^{-}+\frac{4}{\sqrt{5}} \Delta_{35}^{-}, \\
& T_{2223}^{3}=-\sqrt{5} \Delta_{35}^{-}, \quad T_{2222}^{1}=2 \sqrt{6} \Delta_{5 / 2}^{-}
\end{aligned}
$$

etc

- The phases are chosen to be consistent with de Swart convention.
J.J. de Swart, RMP 35, 916 (1963)

SU(3) Lagrangian in the tensor method

Under SU(3) transformation, quarks (and antiquarks) transform
$q_{i} \xrightarrow{S U(3)} U_{i}^{j} q_{j}, \quad \bar{q}^{i}=q_{i}^{*} \rightarrow U_{i}^{* j} q_{j}^{*}=U^{+i}{ }_{j} \bar{q}^{j} \quad \begin{aligned} & \text { Upper indices transform with } U^{+} \\ & \text {Lower indices transform with } U\end{aligned}$
Ex. $B_{j}^{i} \rightarrow U_{j}^{k} U_{l}^{+i} B_{k}^{l}, \quad \bar{B}_{i}^{j}=B_{j}^{* i} \rightarrow U_{j}^{* k} U_{l}^{\mathrm{T} i} B_{k}^{* l}=U_{k}^{+j} U_{i}^{l} \bar{B}_{l}^{k}$

SU(3) symmetric Lagrangian should be invariant under SU(3) transformation \rightarrow SU(3) singlet.

> The only way to form a SU(3) invariant is to have ""upper and lower indices fully contracted" !!
\rightarrow yields selection rules

Recipe: Write Lagrangian in terms of all possible tensors and multiply $\delta_{i}^{j}, \varepsilon_{i j k}$ in all possible ways to form fully contracted terms

$$
e x: 8_{5}-8_{3}-8_{3}:(d+f) \bar{P}_{i}^{l} B_{k}^{i} M_{l}^{k}+(d-f) \bar{P}_{i}^{l} B_{l}^{k} M_{k}^{i}+(\text { h.c. })
$$

Mass relations

\longrightarrow Need to include $\operatorname{SU}(3)$ breaking in $O\left(m_{q}\right)$

QCD mass terms
$M_{Q C D}=\bar{q}\left(\begin{array}{ccc}m_{u} & 0 & 0 \\ 0 & m_{d} & 0 \\ 0 & 0 & m_{s}\end{array}\right) q$
where $Y_{i}^{j}=\frac{1}{3}\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2\end{array}\right)$

Note, isospin is assumed to be a good symmetry, $\quad m_{u}=m_{d}$

Symmetry breaking hypothesis: The breaking in the leading order transforms like hypercharge Y. In practice it means that the mass terms are obtained by fully contracting indices including Y.
\longrightarrow It only counts the net hypercharge and leads to the usual GMO relation.

We have constructed $\operatorname{SU}(3)$ interaction for the following three cases (see hep- ph/0405010 by Oh and Kim).

Set 1. Pentaquark - normal baryon octet - meson octet
Set 2. Pentaquark- normal baryon decuplet -meson octet
Set 3. Pentaquark - pentaquark - meson octet
provide selection rules for all the pentaquarks \rightarrow could be useful for reaction mechanisms.

Also the mass relations within a multiplet were obtained.

$$
\begin{aligned}
& M_{8}=a \bar{P}_{j}^{i} P_{i}^{j}+b \bar{P}_{j}^{i} Y_{i}^{m} P_{m}^{j}+c \bar{P}_{j}^{i} Y_{m}^{j} P_{i}^{m} \\
& M_{10}=a \bar{D}^{i j k} D_{i j k}+b \bar{D}^{i j k} Y_{k}^{m} D_{i j m} \\
& M_{\overline{10}}=a \bar{T}_{i j k} T^{i j k}+b \bar{T}_{i j k} Y_{m}^{k} T^{i j m} \\
& M_{27}=a \bar{T}_{k l}^{i j} T_{i j}^{k l}+b \bar{T}_{{ }_{k l} l_{m}^{l} T_{i j}^{k m}+c \bar{T}_{k l}^{i j} Y_{j}^{m} T_{i m}^{k l}}^{M_{35}=a \bar{T}_{i}^{j k l m} T_{j k l m}^{i}+b \bar{T}_{i}^{j k l m} Y_{j}^{n} T_{k l m n}^{i}+c \bar{T}_{i}^{j k l m} Y_{n}^{i} T_{j k l m}^{n}}
\end{aligned}
$$

Some of the results in hep-ph/0405010

1. If Θ is isotriplet, there should be the decay channels

$$
\Theta_{1}^{++} \rightarrow p K^{+}, \Theta_{1}^{0} \rightarrow n K^{0}
$$

2. If Θ is isotriplet or isotensor, there should be the channels if kinematically allowed

$$
\Theta_{1}, \Theta_{2} \rightarrow K \Delta
$$

3. The members in $35-$ plet can be measured in 10-8 decay. If X in $35-$ plet exists, it can be observed in a unique decay mode

$$
X^{-}\left(X^{--}\right) \rightarrow \bar{K}^{0} \Omega^{-}\left(K^{-} \Omega^{-}\right)
$$

4. 27-27-8, 35-35-8 have two types interactions

$$
\begin{aligned}
& 27_{5}-27_{5}-8_{3}:(d+f) \bar{T}_{i j}^{k l} T_{k m}^{i j} M_{l}^{m}+(d-f) \bar{T}_{i j}^{k l} T_{k l}^{i m} M_{m}^{j} \\
& 35_{5}-35_{5}-8_{3}:(d+f) \bar{T}_{a}^{i j k} T_{i j k m}^{a} M_{l}^{n}+(d-f) \bar{T}_{a}^{i j k l} T_{i j k l}^{m} M_{m}^{a}
\end{aligned}
$$

5. 10-10bar- $8,35-8-8,35-10$ bar- 8 are not allowed
6. In addition to GMO relation for octet and ESR for 10 and 10bar, we have

$$
\begin{array}{ll}
2\left(N_{27}+\Xi_{27}\right)=3 \Lambda_{27}+\Sigma_{27} \quad & \Omega_{27,1}-\Xi_{27,3 / 2}=\Xi_{27,3 / 2}-\Sigma_{27,2} \\
& \Sigma_{27,2}-\Delta_{27}=\Delta_{27}-\Theta_{1} \\
\Omega_{35}-\Xi_{35}=\Xi_{35}-\Sigma_{35}=\Sigma_{35}-\Delta_{35}=\Delta_{35}-\Theta_{2} \\
X-\Omega_{35,1}=\Omega_{35,1}-\Xi_{35,3 / 2}=\Xi_{35,3 / 2}-\Sigma_{35,2}-\Delta_{5 / 2}
\end{array}
$$

Pentaquarks in Jaffe and Wilczek model

Jaffe and Wilczek $\operatorname{PRL}(2003)$ view the pentaquarks as diquark- diquarkantiquark $q^{2} q^{2} \bar{q}$ where $q^{2}($ boson $)$ is assumed be $\overline{3}_{\mathrm{c}}, \overline{3}_{\mathrm{f}}\left(\because q^{2} \simeq \bar{q}\right)$

Pentaquarks belonging to antidecuplet and octet in this picture!!

Ideal mixing

Note $\quad N_{1+}^{+}=\frac{1}{\sqrt{3}}([u d][u d] \bar{d}+\sqrt{2}[u d][u s] \bar{s})$

$$
N_{8}^{+}=\frac{1}{\sqrt{3}}(-\sqrt{2}[u d][u d] \bar{d}+[u d][u s] \bar{s})
$$

Symmetry breaking hypothesis for the mass splitting counts only the net hypercharge. More realistic ally one needs to count the $\overline{S S}$ number in the mass splitting \rightarrow separate $S S$ component
8_{f} and 10_{f} mixing is necessary in order to arrange the states according to $\quad \delta M=\gamma\left(n_{s}+n_{\bar{s}}\right) \rightarrow$ Ideal mixing

$$
\begin{aligned}
& N_{\overline{10}}=\sqrt{\frac{1}{3}} N_{q}+\sqrt{\frac{2}{3}} N_{s}, \quad N_{8}=\sqrt{\frac{2}{3}} N_{q}-\sqrt{\frac{1}{3}} N_{s}, \\
& \Sigma_{\overline{10}}=\sqrt{\frac{2}{3}} \Sigma_{q}+\sqrt{\frac{1}{3}} \Sigma_{s}, \quad \Sigma_{8}=\sqrt{\frac{1}{3}} \Sigma_{q}-\sqrt{\frac{2}{3}} \Sigma_{s},
\end{aligned}
$$

diagonalizing the Hamiltonian in the basis $N_{q}, N_{s}\left(\Sigma_{q}, \Sigma_{s}\right)$

Mass relations in J\&W model

8 masses and 5 parameters
(2 in antidecuplet and 3 in octet)

$$
\begin{aligned}
& M_{N_{q}}+2 M_{N_{s}}=2 M_{\Theta}+M_{\Xi_{10}} \\
& 2 M_{\Sigma_{q}}+M_{\Sigma_{\Omega}}=M_{\Theta}+2 M_{\Xi_{10}} \\
& 3 M_{\Lambda_{8}}=M_{\Sigma_{q}}+M_{N_{q}}+2 M_{\Xi_{8}}-M_{\Xi_{10}}
\end{aligned}
$$

Inputs: $M_{\Theta}=1540 \mathrm{MeV} M_{\Xi_{3 / 2}}=1862 \mathrm{MeV}$

- $M\left(\Xi_{8}\right)=M\left(\Xi_{10}\right)$ and $N_{q}=N(1440)$ Roper resonance: this gives $M\left(N_{s}\right)=1751$,
- $M\left(\Lambda_{8}\right)=M\left(\Sigma_{q}\right)$: this gives $M\left(\Lambda_{8}\right)=M\left(\Sigma_{q}\right)=1651$ and $M\left(\Sigma_{s}\right)=1962 \mathrm{MeV}$

Selection rules for the antidecuplet pentaquark

decay modes that can be used to identify pentaquarks
belonging to $\overline{10}$

θ^{+}		$N_{\text {IJ }}^{+}$		$N 0$		Σ_{10}^{+}	
$\begin{gathered} K^{+} n \\ K_{p}^{0} p \end{gathered}$	$\sqrt{6}$	$\pi^{+} n$	$-\sqrt{2}$	$\pi^{0} n$	1	π^{+}A	$-\sqrt{3}$
	$-\sqrt{6}$	$\pi^{0} p$	-1	π^{-p}	$-\sqrt{2}$	$\pi^{+} \Sigma^{0}$	1
		$77_{9} 9$	$\sqrt{3}$	$\eta_{8}{ }^{n}$	$\sqrt{3}$	$\pi^{0} \Sigma^{+}$	-1
		K^{+}A	$-\sqrt{3}$	$K^{+} \Sigma^{-}$	$\sqrt{2}$	$\eta_{\text {d }} \Sigma^{+}$	$\sqrt{3}$
		$K^{+} \Sigma^{0}$	1	$K^{0}{ }^{0}$	$-\sqrt{3}$	$K^{+} \Xi^{0}$	$\sqrt{2}$
		$K^{0} \Sigma^{+}$	$\sqrt{2}$	$K^{\mathrm{v}} \Sigma^{\mathrm{u}}$	-1	$\bar{K}^{\text {º }}{ }^{\text {p }}$	$-\sqrt{2}$
Σ_{10}^{0}		$\Sigma_{\text {IJ }}^{-}$		Ξ_{10}^{+}		E_{10}^{0}	
$\pi^{+} \Sigma^{-}$	-1	$\pi^{0} \Sigma^{-}$	1	$\pi^{+} \mathrm{E}^{0}$	$\sqrt{6}$	$\pi^{+} \Xi^{-}$	$\sqrt{2}$
$\pi^{0} \mathrm{~A}$	$-\sqrt{3}$	π^{-}M	$-\sqrt{3}$	$R^{0} \Sigma^{+}$	$-\sqrt{6}$	$\pi^{0} \mathrm{E}^{0}$	-2
$\pi^{-} \Sigma^{+}$	1	$\pi^{-} \Sigma^{0}$	-1			$\bar{K}^{0} \Sigma^{0}$	2
$7_{4} \Sigma^{0}$	$\sqrt{3}$	$\eta_{8} \Sigma^{-}$	$\sqrt{3}$			$K^{-} \Sigma^{+}$	$\sqrt{2}$
$K^{+} \mathrm{E}^{-}$	-1	$K^{0} \underline{S}^{-}$	$-\sqrt{2}$				
$K^{0} \Xi^{0}$	-1	$K^{-} n$	$-\sqrt{2}$				
$\bar{K}^{0}{ }_{n}$	1						
$K^{-} p$	-1						
$\Xi^{0} \bar{\Xi}^{-}-{ }^{-10}$		$\Xi^{-\frac{10}{-1}}$					
		$\pi^{-} \Xi^{-}$	$-\sqrt{6}$				
$\pi^{-} \mathrm{E}^{0}$	$-\sqrt{2}$	$K^{-} \Sigma^{-}$	$-\sqrt{6}$				
$\bar{K}^{0} \Sigma^{-}$	$\sqrt{2}$						
$K^{-} \Sigma^{0}$	-2						

Selection rules for the octet pentaquark

$$
\begin{aligned}
\overline{6}_{\mathrm{f}} \otimes \overline{3}_{\mathrm{f}} & =\overline{10}_{\mathrm{f}} \oplus 8_{\mathrm{f}} \quad k: \text { index for the antiquark } \\
S^{i j} \otimes \bar{q}^{k} & =T^{i j k} \oplus S^{[i j, k]}
\end{aligned}
$$

Being an octet representation, one can write

$$
S^{[i j, k]}=\varepsilon^{l j k} P_{l}^{i}+\varepsilon^{l i k} P_{l}^{j} \quad \text { sym in } i, j
$$

Fall- apart mechanism (or generalized OZI rule): in the decay to meson and baryon, the anti- quark should be

$8_{5}-8_{3}-8_{3}$ Lagrangian

$$
g_{8} \varepsilon^{i l m} \bar{S}_{[i j, k]} B_{l}^{j} M_{m}^{k}+\text { h.c. }=2 g_{8} \bar{P}_{i}^{m} B_{i}^{l} M_{m}^{l}+g_{8} \bar{P}_{i}^{m} B_{m}^{l} M_{l}^{i}+\text { h.c. }
$$

Close and Dudek (or Lee,Kim,Oh)

$f / d=1 / 3$ in the OZI rule

Ξ_{8}^{-}		Ξ_{8}^{0}		N_{8}^{+}		$\mathrm{Na}_{8}^{\mathrm{g}}$	
$\pi^{-} 5^{0}$	-1	$\pi^{+} \Xi^{-}$	-1	$\pi^{0} p$	$\sqrt{2}$	$\pi^{0} n$	$-\sqrt{2}$
$\pi^{0} \Xi^{-}$	$\frac{1}{\sqrt{2}}$	$\pi^{0} \Xi^{0}$	$-\frac{1}{\sqrt{2}}$	$\pi^{+} n$	2	$\pi^{-} p$	2
$\eta_{8} \mathrm{E}^{-}$	$-\sqrt{\frac{3}{2}}$	$7{ }^{50}$	$-\sqrt{\frac{9}{2}}$	$7_{8}{ }^{p}$	0	$\eta_{8} n$	0
$\bar{K}^{0} \Sigma^{-}$	-2	$K^{-} \Sigma^{+}$	2	$K^{+} \Sigma^{0}$	$\frac{1}{\sqrt{2}}$	$K^{00} \Sigma^{0}$	$-\frac{1}{\sqrt{2}}$
$K^{-} \Sigma^{0}$	$-\sqrt{2}$	$\bar{K}^{0} \Sigma^{0}$	$-\sqrt{2}$	$K^{0} \Sigma^{+}$	1	$K^{+} \Sigma^{-}$	1
$K^{-} \mathrm{A}$	0	$\bar{K}^{0} \mathrm{~A}$	0	K^{+}A	$-\sqrt{\frac{3}{2}}$	$K^{\bullet 0}$	$-\sqrt{\frac{9}{2}}$
Σ_{8}^{0}		Σ_{8}^{+}		Σ_{8}^{-}		A_{8}^{0}	
$\pi^{+} \Sigma^{-}$	$\frac{1}{\sqrt{2}}$	$\pi^{+} \Sigma^{0}$	$-\frac{1}{\sqrt{2}}$	$\pi^{-} \Sigma^{0}$	$\frac{1}{\sqrt{2}}$	$\pi^{-} \Sigma^{+}$	$\sqrt{\frac{9}{2}}$
$\pi^{-} \Sigma^{+}$	$-\frac{1}{\sqrt{2}}$	$\pi^{0} \Sigma^{+}$	$\frac{1}{\sqrt{2}}$	$\pi^{0} \Sigma^{-}$	$-\frac{1}{\sqrt{2}}$	$\pi^{+} \Sigma^{-}$	$\sqrt{\frac{3}{2}}$
$\pi^{0} \mathrm{~A}$	$\sqrt{\frac{9}{2}}$	$\eta_{6} \Sigma^{+}$	$\sqrt{\frac{3}{2}}$	$7_{8} \Sigma^{-}$	$\sqrt{\frac{3}{2}}$	$\pi^{0} \Sigma^{0}$	$\sqrt{\frac{3}{2}}$
$\eta_{6} \Sigma^{0}$	$\sqrt{\frac{2}{2}}$	π^{+}A	$\sqrt{\frac{2}{2}}$	$\pi^{-} \mathrm{A}$	$\sqrt{\frac{9}{2}}$	$\eta_{1} \mathrm{~A}$	$-\sqrt{\frac{9}{2}}$
K^{-p}	$\frac{1}{\sqrt{2}}$	$K^{+} \mathrm{g}^{0}$	2	$K^{0} \Xi^{-}$	-2	$K^{+} \Xi^{-}$	0
$\bar{K}^{0} n$	$-\frac{1}{\sqrt{2}}$	$\bar{K}^{0}{ }_{p}$	1	$K^{-} n$	1	$K^{0} \Xi^{0}$	0
$K^{+} \Xi^{-}$	$-\sqrt{2}$					$K^{-} p$	$-\sqrt{\frac{9}{2}}$
$K^{00} \Xi^{0}$	$-\sqrt{2}$					$\bar{K}^{0}{ }_{n}$	$-\sqrt{\frac{3}{2}}$

Note, some of the decay modes are not allowed by "the OZI rule".

Justification for the generalized OZI rule ?? Ideal mixing

$$
\langle[u d][u d] \bar{d}| H|[u d][u s] \bar{s}\rangle=0
$$

The generalized OZI rule leads to ideal mixing and fall- apart mechanism

Note, $\quad \Theta^{+} \rightarrow K N$ occurs through the fall- apart mechanism. The small width experimentally observed indicates that the fall- apart decay gives small width for the octet pentaquarks

Decay modes in the ideal mixing

Summary

1. In $\operatorname{SU}(3)$ quark model, totally 91 states in $1,8,10,10 \mathrm{bar}, 27,35$.
2. We constructed selection rules for pentaquark decay and mass relations in the tensor notation \rightarrow could be useful for pentaquark search
3. X in 35 - plet has a unique decay mode to be searched in expts.
4. Selection rules for J\&W pentaquark and mass relations are also presented.
