Noncommutative Geometry, Effective Field Theory

and Skyrmions in Quantum Hall Systems

Zyun F. Ezawa

Tohoku University

in collaboration with A. Sawada (Kyoto University) D. Terasawa (Tohoku University) Y. Hirayama, N. Kumada, K. Muraki (NTT) G. Tsitsishvili (Tbilisi Mathematical Institute)

Why Quantum Hall Effects are so interesting ?

Why Quantum Hall Effects are so interesting ?

Why Quantum Hall Effects are so interesting ?

- Dynamics arises from noncommutative geometry
- Spin coherence develops spontaneously
 - Charged excitations are CP¹ Skyrmions

Why Quantum Hall Effects are so interesting?

- Dynamics arises from noncommutative geometry
- Spin coherence develops spontaneously
 - Charged excitations are CP¹ Skyrmions
- SU(4) quantum coherence develops in bilayer quantum Hall systems.

 - Interlayer coherence -
- Charged excitations are CP³ at v = 1 and G^{4,2} Skyrmions at v = 2
 - Josephson phenomena \Rightarrow
 - ⇒ Single electron condensation

Why Quantum Hall Effects are so interesting?

- Dynamics arises from noncommutative geometry
- Spin coherence develops spontaneously
 - Charged excitations are CP¹ Skyrmions
- SU(4) quantum coherence develops in bilayer quantum Hall systems

 - Interlayer coherence -
- Charged excitations are CP³ at v = 1 and G^{4,2} Skyrmions at v = 2
 - Josephson phenomena \Rightarrow
 - ⇒ Single electron condensation
- Fractional QH effects, Higher Landau levels, Edge phenomena,

Monolayer QH System

Two-Dimensional World

QH state provides us with an ideal 2-dimensional world, upon which noncommutative geometry is realized

Two-Dimensional World

QH state provides us with an ideal 2-dimensional world, upon which noncommutative geometry is realized

 A world of planar electrons emerges between two different semiconductors

- A electron makes cyclotron motion occupying an area $2\pi \ell_B^2$
 - ⇒ Landau site

$$l_B = \sqrt{\hbar/eB_\perp}$$

Hall current by Lorentz force

Classical and Quantum Hall Effects

Diagonal resistivity

$$R_{\chi\chi} = -\frac{W}{L}\frac{V_{\chi}}{J_{\text{total}}} = 0$$

Hall resistivity

$$R_{xy} = rac{V_y}{J_{ ext{total}}} = rac{1}{
u} rac{2\pi\hbar}{e^2} \propto B_{\perp}$$

with
$$v = \frac{2\pi\hbar\rho_0}{eB_\perp} \equiv \frac{N}{N_\Phi} \Rightarrow \frac{n}{m}$$

(quantized: this is the QH effect)

KIAS, Seoul (2004.10.25-27) – p.5/52

Classical and Quantum Hall Effects

B Ζ $J_{v} = 0$ $J_{\rm tot}$ J_{tot} X **Diagonal resistivity** $R_{XX} = -\frac{W}{L}\frac{V_X}{J_{\text{total}}} = 0$ Hall resistivity 9

$$R_{\chi y} = rac{V_y}{J_{ ext{total}}} = rac{1}{
u} rac{2\pi\hbar}{e^2} \propto B_{\perp}$$

with $v = \frac{2\pi\hbar\rho_0}{eB_\perp} \equiv \frac{N}{N_\Phi} \Rightarrow \frac{n}{m}$ (quantized: this is the QH effect)

KIAS, Seoul (2004.10.25-27) – p.5/52

Classical and Quantum Hall Effects

KIAS, Seoul (2004.10.25-27) – p.5/52

Hall Plateau

- Excitations around v = 1
 - \square $N = N_{\Phi}$ at $\nu = 1$
 - ▶ $N < N_{\Phi}$ at $\nu < 1 \Rightarrow$ holes excited (no spin excitation)
 - $N > N_{\Phi}$ at $\nu > 1 \Rightarrow$ electrons excited (spin excitation)
- Hall plateau is generated when quasiparticles are trapped by impurities

Spin Texture identified with Skyrmion

(experiment)

Experimentally 3.5 flipped spins are observed around v = 1

Barrett et al, PRL74(1995)5112

Spin Texture identified with Skyrmion

(experiment)

Experimentally 3.5 flipped spins are observed around v = 1

A skyrmion and an antiskyrmion flips the same number of spins

Barrett et al, PRL74(1995)5112

Lowest-Landau-Level Projection

Kinetic Hamiltonian generates Landau levels

$$H_{\mathsf{K}} = \frac{\mathbf{P}^2}{2M} = \frac{1}{2M} (P_x - iP_y) (P_x + iP_y) + \frac{1}{2}\hbar\omega_{\mathsf{c}} \qquad \text{with} \quad P_k = -i\hbar\partial_k + eA_x^{\mathsf{ext}}$$

Lowest-Landau-Level Projection

Kinetic Hamiltonian generates Landau levels

$$H_{\mathsf{K}} = \frac{\mathbf{P}^2}{2M} = \frac{1}{2M} (P_x - iP_y) (P_x + iP_y) + \frac{1}{2}\hbar\omega_{\mathsf{c}} \qquad \text{with} \quad P_k = -i\hbar\partial_k + eA_x^{\mathsf{ext}}$$

• Electron coordinate $x \Rightarrow$ guiding center X and relative coordinate R

$$\mathbf{x} = \mathbf{X} + \mathbf{R}$$
 with $\mathbf{R} = \left(-\frac{1}{eB_{\perp}}P_{y}, \frac{1}{eB_{\perp}}P_{x}\right)$

 $[X, Y] = -i\ell_B^2, \quad [P_x, P_y] = i\hbar^2/\ell_B^2,$ $[X, P_x] = [X, P_y] = [Y, P_x] = [Y, P_y] = 0$

Lowest-Landau-Level Projection

Kinetic Hamiltonian generates Landau levels

$$H_{\mathsf{K}} = \frac{\mathbf{P}^2}{2M} = \frac{1}{2M} (P_x - iP_y) (P_x + iP_y) + \frac{1}{2}\hbar\omega_{\mathsf{c}} \qquad \text{with} \quad P_k = -i\hbar\partial_k + eA_x^{\mathsf{ext}}$$

• Electron coordinate $x \Rightarrow$ guiding center X and relative coordinate R

$$\mathbf{x} = \mathbf{X} + \mathbf{R}$$
 with $\mathbf{R} = \left(-\frac{1}{eB_{\perp}}P_{\gamma}, \frac{1}{eB_{\perp}}P_{\chi}\right)$

 $[X, Y] = -i\ell_B^2, \quad [P_X, P_Y] = i\hbar^2/\ell_B^2,$ $[X, P_X] = [X, P_Y] = [Y, P_X] = [Y, P_Y] = 0$

■ Electrons are confined to LLL if $\hbar \omega_c \to \infty$

 $(x, y) \Rightarrow X = (X, Y)$ with $[X, Y] = -i\ell_B^2$

• Kinetic term is quenched by large Landau-level separation ($\hbar \omega_c \rightarrow \infty$)

- Sinetic term is quenched by large Landau-level separation ($\hbar\omega_c \rightarrow \infty$)
- Hamiltonian consists solely of static potentials
 - Coulomb and Zeeman interactions (monolayer systems)

- Sinetic term is quenched by large Landau-level separation ($\hbar\omega_c \rightarrow \infty$)
- Hamiltonian consists solely of static potentials
 - Coulomb and Zeeman interactions (monolayer systems)
- Dynamics arises solely from noncommutative geometry

$$[X, Y] = -i\ell_B^2 \implies [b, b^{\dagger}] = 1$$

with
$$b = \frac{1}{\sqrt{2}\ell_B}(X - iY), \quad b^{\dagger} = \frac{1}{\sqrt{2}\ell_B}(X + iY)$$

Sinetic term is quenched by large Landau-level separation ($\hbar \omega_c \rightarrow \infty$)

- Hamiltonian consists solely of static potentials
 - Coulomb and Zeeman interactions (monolayer systems)
- Dynamics arises solely from noncommutative geometry

$$[X, Y] = -i\ell_B^2 \quad \Rightarrow \quad [b, b^{\dagger}] = 1$$
with

$$b = \frac{1}{\sqrt{2}\ell_B}(X - iY), \quad b^{\dagger} = \frac{1}{\sqrt{2}\ell_B}(X + iY)$$

• The Fock space \mathbb{H}_W is made of the states

$$|n\rangle = \frac{1}{\sqrt{n!}}(b^{\dagger})^{n}|0\rangle, \quad n = 0, 1, 2, \cdots$$

(a) (b) x x $\frac{\ell_B}{\sqrt{2n}}$ (c) 01234567

density

Landau site

QH system is governed by noncommutative geometry

• Weyl-ordering of a classical quantity $f(\mathbf{r})$

 $W[f] = \frac{1}{(2\pi)^2} \int d^2q d^2r \, e^{i\boldsymbol{q}(\boldsymbol{r}-\boldsymbol{X})} f(\boldsymbol{r})$

with X = (X, Y) $[X, Y] = -i\ell_B^2$

• Weyl-ordering of a classical quantity $f(\mathbf{r})$

 $W[f] = \frac{1}{(2\pi)^2} \int d^2q d^2r \, e^{i\boldsymbol{q}(\boldsymbol{r}-\boldsymbol{X})} f(\boldsymbol{r}) \qquad \mathbf{v}$

with X = (X, Y) $[X, Y] = -i\ell_B^2$

• We apply this to the electron density $f(\mathbf{r}) = \delta^2(\mathbf{x} - \mathbf{r}) \equiv \rho(\mathbf{x})$ Here, \mathbf{r} is the electron trajectory, while \mathbf{x} is the coordinate (parameter)

 $W[\rho(\mathbf{x})] = \frac{1}{(2\pi)^2} \int d^2 q \, e^{i \mathbf{q}(\mathbf{x} - \mathbf{X})}$

• Weyl-ordering of a classical quantity $f(\mathbf{r})$

 $W[f] = \frac{1}{(2\pi)^2} \int d^2q d^2r \, e^{iq(r-X)} f(r)$ with X = (X, Y) $[X, Y] = -i\ell_B^2$

• We apply this to the electron density $f(\mathbf{r}) = \delta^2(\mathbf{x} - \mathbf{r}) \equiv \rho(\mathbf{x})$ Here, \mathbf{r} is the electron trajectory, while \mathbf{x} is the coordinate (parameter)

$$W[\rho(\mathbf{x})] = \frac{1}{(2\pi)^2} \int d^2 q \, e^{i \mathbf{q} (\mathbf{x} - \mathbf{X})} \implies W[\rho(\mathbf{q})] = \frac{1}{2\pi} e^{-i \mathbf{q} \mathbf{X}}$$

• Weyl-ordering of a classical quantity $f(\mathbf{r})$

 $W[f] = \frac{1}{(2\pi)^2} \int d^2q d^2r \, e^{iq(r-X)} f(r)$ with X = (X, Y) $[X, Y] = -i\ell_B^2$

• We apply this to the electron density $f(\mathbf{r}) = \delta^2(\mathbf{x} - \mathbf{r}) \equiv \rho(\mathbf{x})$ Here, \mathbf{r} is the electron trajectory, while \mathbf{x} is the coordinate (parameter)

$$W[\rho(\mathbf{x})] = \frac{1}{(2\pi)^2} \int d^2 q \, e^{i \mathbf{q} (\mathbf{x} - \mathbf{X})} \implies W[\rho(\mathbf{q})] = \frac{1}{2\pi} e^{-i \mathbf{q} \mathbf{X}}$$

Field-theoretical density reads

$$\hat{\rho}(\boldsymbol{q}) \equiv \langle \Psi | W[\rho(\boldsymbol{q})] | \Psi \rangle = \frac{1}{2\pi} \sum_{mn} \langle m | e^{-i\boldsymbol{q}\boldsymbol{X}} | n \rangle c^{\dagger}(m) c(n)$$

with electron field $\Psi(\mathbf{x})$ confined within the LLL

$$\Psi(\boldsymbol{x}) = \langle \boldsymbol{x} | \Psi \rangle = \sum_{n} \langle \boldsymbol{x} | n \rangle c(n)$$

Density Operators with Spin (Monolayer)

The observables in the monolayer system are the densities

$$\hat{\rho}(\boldsymbol{q}) = \frac{1}{2\pi} \sum_{mn} \langle m | e^{-i\boldsymbol{q}\boldsymbol{X}} | n \rangle c_{\alpha}^{\dagger}(m) c_{\alpha}(n)$$

 $\widehat{S}_{a}(\boldsymbol{q}) = \frac{1}{2\pi} \sum_{mn} \langle m | e^{-i\boldsymbol{q}\boldsymbol{X}} | n \rangle c_{\alpha}^{\dagger}(m) \frac{1}{2} (\tau_{a})_{\alpha\beta} c_{\beta}(n)$

Density Operators with Spin (Monolayer)

The observables in the monolayer system are the densities

$$\hat{\rho}(\boldsymbol{q}) = \frac{1}{2\pi} \sum_{mn} \langle m | e^{-i\boldsymbol{q}\boldsymbol{X}} | n \rangle c_{\alpha}^{\dagger}(m) c_{\alpha}(n)$$

$$\hat{S}_a(\boldsymbol{q}) = \frac{1}{2\pi} \sum_{mn} \langle m | e^{-i\boldsymbol{q}\boldsymbol{X}} | n \rangle c_\alpha^{\dagger}(m) \frac{1}{2} (\tau_a)_{\alpha\beta} c_\beta(n)$$

• The density algebra $W_{\infty}(2)$ is the SU(2) extension of W_{∞}

$$\begin{aligned} &[\hat{\rho}(\boldsymbol{p}), \hat{\rho}(\boldsymbol{q})] = \frac{i}{\pi} \hat{\rho}(\boldsymbol{p} + \boldsymbol{q}) \sin\left(\ell_B^2 \frac{\boldsymbol{p} \wedge \boldsymbol{q}}{2}\right) \\ &[\hat{S}_a(\boldsymbol{p}), \hat{\rho}(\boldsymbol{q})] = \frac{i}{\pi} \hat{S}_a(\boldsymbol{p} + \boldsymbol{q}) \sin\left(\ell_B^2 \frac{\boldsymbol{p} \wedge \boldsymbol{q}}{2}\right) \\ &[\hat{S}_a(\boldsymbol{p}), \hat{S}_b(\boldsymbol{q})] = \frac{i}{2\pi} \epsilon_{abc} \hat{S}_c(\boldsymbol{p} + \boldsymbol{q}) \cos\left(\ell_B^2 \frac{\boldsymbol{p} \wedge \boldsymbol{q}}{2}\right) + \frac{i}{4\pi} \delta_{AB} \hat{\rho}(\boldsymbol{p} + \boldsymbol{q}) \sin\left(\ell_B^2 \frac{\boldsymbol{p} \wedge \boldsymbol{q}}{2}\right) \end{aligned}$$

Density Operators with Spin (Monolayer)

The observables in the monolayer system are the densities

$$\hat{\rho}(\boldsymbol{q}) = \frac{1}{2\pi} \sum_{mn} \langle m | e^{-i\boldsymbol{q}\boldsymbol{X}} | n \rangle c_{\alpha}^{\dagger}(m) c_{\alpha}(n)$$

$$\hat{S}_a(\boldsymbol{q}) = \frac{1}{2\pi} \sum_{mn} \langle m | e^{-i\boldsymbol{q}\boldsymbol{X}} | n \rangle c_\alpha^{\dagger}(m) \frac{1}{2} (\tau_a)_{\alpha\beta} c_\beta(n)$$

• The density algebra $W_{\infty}(2)$ is the SU(2) extension of W_{∞}

$$\begin{aligned} [\hat{\rho}(\boldsymbol{p}), \hat{\rho}(\boldsymbol{q})] &= \frac{i}{\pi} \hat{\rho}(\boldsymbol{p} + \boldsymbol{q}) \sin\left(\ell_B^2 \frac{\boldsymbol{p} \wedge \boldsymbol{q}}{2}\right) \\ [\hat{S}_a(\boldsymbol{p}), \hat{\rho}(\boldsymbol{q})] &= \frac{i}{\pi} \hat{S}_a(\boldsymbol{p} + \boldsymbol{q}) \sin\left(\ell_B^2 \frac{\boldsymbol{p} \wedge \boldsymbol{q}}{2}\right) \\ [\hat{S}_a(\boldsymbol{p}), \hat{S}_b(\boldsymbol{q})] &= \frac{i}{2\pi} \epsilon_{abc} \hat{S}_c(\boldsymbol{p} + \boldsymbol{q}) \cos\left(\ell_B^2 \frac{\boldsymbol{p} \wedge \boldsymbol{q}}{2}\right) + \frac{i}{4\pi} \delta_{AB} \hat{\rho}(\boldsymbol{p} + \boldsymbol{q}) \sin\left(\ell_B^2 \frac{\boldsymbol{p} \wedge \boldsymbol{q}}{2}\right) \end{aligned}$$

Spin rotation \Rightarrow U(1) density modulation \Rightarrow Increase of Coulomb energy

Landau-site Hamiltonian

Coulomb Hamiltonian \Rightarrow LLL projection \Rightarrow Landau-site Hamiltonian

Landau-site Hamiltonian

Coulomb Hamiltonian \Rightarrow LLL projection \Rightarrow Landau-site Hamiltonian

LLL-projection of Coulomb Hamiltonian

$$H_{\mathsf{C}} = \pi \int d^2 q \, V(\boldsymbol{q}) \rho(-\boldsymbol{q}) \rho(\boldsymbol{q}) \Rightarrow \hat{H}_{\mathsf{C}} = \sum_{mnij} V_{mnij} \sum_{\sigma,\tau} c^{\dagger}_{\sigma}(m) c_{\sigma}(n) c^{\dagger}_{\tau}(i) c_{\tau}(j)$$

$$V_{mnij} = \frac{1}{4\pi} \int d^2k \, V_{\mathsf{D}}(\mathbf{k}) \langle m | e^{i\mathbf{X}\mathbf{k}} | n \rangle \langle i | e^{-i\mathbf{X}\mathbf{k}} | j \rangle, \qquad V_{\mathsf{D}}(\mathbf{q}) = \frac{e^2}{4\pi\varepsilon |\mathbf{q}|} e^{-\ell_B^2 \mathbf{q}^2/2}$$

 V_{nnjj} yields the direct interaction, while V_{njjn} the exchange interaction

Landau-site Hamiltonian

Coulomb Hamiltonian \Rightarrow LLL projection \Rightarrow Landau-site Hamiltonian

LLL-projection of Coulomb Hamiltonian

$$H_{\mathsf{C}} = \pi \int d^2 q \, V(\boldsymbol{q}) \rho(-\boldsymbol{q}) \rho(\boldsymbol{q}) \Rightarrow \hat{H}_{\mathsf{C}} = \sum_{mnij} V_{mnij} \sum_{\sigma,\tau} c^{\dagger}_{\sigma}(m) c_{\sigma}(n) c^{\dagger}_{\tau}(i) c_{\tau}(j)$$

$$V_{mnij} = \frac{1}{4\pi} \int d^2k \, V_{\mathsf{D}}(\mathbf{k}) \langle m | e^{i\mathbf{X}\mathbf{k}} | n \rangle \langle i | e^{-i\mathbf{X}\mathbf{k}} | j \rangle, \qquad V_{\mathsf{D}}(\mathbf{q}) = \frac{e^2}{4\pi\varepsilon |\mathbf{q}|} e^{-\ell_B^2 \mathbf{q}^2/2}$$

 V_{nnjj} yields the direct interaction, while V_{njjn} the exchange interaction

• Homogeneous eigen states \Rightarrow degenerate ground states

$$\hat{H}_{\mathsf{C}}|\mathsf{g}\rangle = -\epsilon_{\mathsf{X}}N_{\Phi}|\mathsf{g}\rangle, \qquad \epsilon_{\mathsf{X}} = \frac{1}{4\pi}\int d^{2}k\,V_{\mathsf{D}}(\mathbf{k}) = \frac{1}{2}\sqrt{\frac{\pi}{2}}\frac{e^{2}}{4\pi\varepsilon\ell_{B}}$$

$$\mathsf{g}\rangle = \prod_{n} \left[\sin \theta c_{\uparrow}^{\dagger}(n) |0\rangle + \cos \theta c_{\downarrow}^{\dagger}(n) |0\rangle \right]$$

Exchange Interaction

Exchange interaction is extracted by using the algebraic identity for SU(N)

$$\delta_{\sigma\beta}\delta_{\tau\alpha} = \frac{1}{2}\sum_{A}^{N^{2}-1}\lambda_{\sigma\tau}^{A}\lambda_{\alpha\beta}^{A} + \frac{1}{N}\delta_{\sigma\tau}\delta_{\alpha\beta}$$

Projected Coulomb Hamiltonian

$$\hat{H}_{C} = \sum_{mnij} V_{mnij} \sum_{\sigma,\tau} c_{\sigma}^{\dagger}(m) c_{\sigma}(n) c_{\tau}^{\dagger}(i) c_{\tau}(j) = -\pi \int d^{2}p V_{D}(\boldsymbol{p}) \hat{\rho}(-\boldsymbol{p}) \hat{\rho}(\boldsymbol{p})$$

$$\Rightarrow \hat{H}_{X} = -2 \sum_{mnij} V_{mnij} [S_{a}(m, j) S_{a}(i, n) + \frac{1}{2N} \rho(m, j) \rho(i, n)]$$

$$\hat{H}_{X} = -\pi \int d^{2}p V_{X}(\boldsymbol{p}) \left[\hat{S}(-\boldsymbol{p}) \hat{S}(\boldsymbol{p}) + \frac{1}{4} \hat{\rho}(-\boldsymbol{p}) \hat{\rho}(\boldsymbol{p}) \right]$$

with $V_{X}(\boldsymbol{p}) = \frac{\ell_{B}^{2}}{\pi} \int d^{2}k \, e^{-i\ell_{B}^{2}\boldsymbol{p} \wedge k} e^{-\ell_{B}^{2}\boldsymbol{p}^{2}/2} V(\boldsymbol{k}) = \frac{\sqrt{2\pi}e^{2}\ell_{B}}{4\pi\varepsilon} I_{0}(\ell_{B}^{2}\boldsymbol{p}^{2}/4) e^{-\ell_{B}^{2}\boldsymbol{p}^{2}/4}$

Effective Field Theory

$$\hat{H}_{\mathsf{X}} = -\pi \int d^2 p \, V_{\mathsf{X}}(\boldsymbol{p}) \left[\hat{\boldsymbol{S}}(-\boldsymbol{p}) \hat{\boldsymbol{S}}(\boldsymbol{p}) + \frac{1}{4} \hat{\rho}(-\boldsymbol{p}) \hat{\rho}(\boldsymbol{p}) \right]$$

Effective Field Theory

$$\widehat{H}_{\mathsf{X}} = -\pi \int d^2 p \, V_{\mathsf{X}}(\boldsymbol{p}) \left[\widehat{\boldsymbol{S}}(-\boldsymbol{p}) \widehat{\boldsymbol{S}}(\boldsymbol{p}) + \frac{1}{4} \widehat{\rho}(-\boldsymbol{p}) \widehat{\rho}(\boldsymbol{p}) \right]$$

Landau-site Hamiltonian \Rightarrow Derivative Expansion \Rightarrow Effective Field Theory

$$\hat{H}_{\mathsf{X}} = -\pi \int d^2 p \, V_{\mathsf{X}}(\boldsymbol{p}) \left[\hat{\boldsymbol{S}}(-\boldsymbol{p}) \hat{\boldsymbol{S}}(\boldsymbol{p}) + \frac{1}{4} \hat{\rho}(-\boldsymbol{p}) \hat{\rho}(\boldsymbol{p}) \right]$$

Landau-site Hamiltonian \Rightarrow Derivative Expansion \Rightarrow Effective Field Theory

For sufficient smooth configuration we make the derivative expansion

$$V_{X}(\boldsymbol{p}) = \frac{\sqrt{2\pi e^{2} \ell_{B}}}{4\pi \epsilon} I_{0}(\ell_{B}^{2} \boldsymbol{p}^{2}/4) e^{-\ell_{B}^{2} \boldsymbol{p}^{2}/4} = V_{X}(0) - \frac{2J_{s}}{\pi \rho_{\Phi}^{2}} \boldsymbol{p}^{2} + O(\boldsymbol{p}^{4}/2)$$
with $\rho_{\Phi} = \frac{\rho_{0}}{\nu} = \frac{1}{2\pi \ell_{B}^{2}}, \quad V_{X}(0) = 4\ell_{B}^{2} \epsilon_{X}, \quad J_{s} = \frac{1}{8\pi} \epsilon_{X}$
$$\widehat{H}_{\mathsf{X}} = -\pi \int d^2 p \, V_{\mathsf{X}}(\boldsymbol{p}) \left[\widehat{\boldsymbol{S}}(-\boldsymbol{p}) \widehat{\boldsymbol{S}}(\boldsymbol{p}) + \frac{1}{4} \widehat{\rho}(-\boldsymbol{p}) \widehat{\rho}(\boldsymbol{p}) \right]$$

Landau-site Hamiltonian \Rightarrow Derivative Expansion \Rightarrow Effective Field Theory

For sufficient smooth configuration we make the derivative expansion

$$V_{X}(\boldsymbol{p}) = \frac{\sqrt{2\pi e^{2} \ell_{B}}}{4\pi \epsilon} I_{0}(\ell_{B}^{2} \boldsymbol{p}^{2}/4) e^{-\ell_{B}^{2} \boldsymbol{p}^{2}/4} = V_{X}(0) - \frac{2J_{s}}{\pi \rho_{\Phi}^{2}} \boldsymbol{p}^{2} + O(\boldsymbol{p}^{4}/2)$$
with $\rho_{\Phi} = \frac{\rho_{0}}{\nu} = \frac{1}{2\pi \ell_{B}^{2}}, \quad V_{X}(0) = 4\ell_{B}^{2} \epsilon_{X}, \quad J_{s} = \frac{1}{8\pi} \epsilon_{X}$

Exchange interaction leads to a nonlinear sigma model as an effective theory

 $\mathcal{H}_{X}^{spin} = 2J_{s}\partial_{k}S(x)\partial_{k}S(x)$ with $S(x) = \frac{\rho_{0}}{v}S(x)$

Nonlinear Sigma Model

$$H_{\text{eff}} = 2J_s \int d^2 x \, \partial_k S^{\text{sky}}(\boldsymbol{x}) \, \partial_k S^{\text{sky}}(\boldsymbol{x})$$

Nonlinear Sigma Model

 $H_{\text{eff}} = 2J_s \int d^2 x \,\partial_k S^{\text{sky}}(\boldsymbol{x}) \partial_k S^{\text{sky}}(\boldsymbol{x})$

• Topological solitons are Skyrmions associated with $\pi_2(CP^1) = \mathbb{Z}$

$$Q^{\mathsf{sky}}(\mathbf{x}) = \frac{1}{\pi} \varepsilon_{abc} \varepsilon^{ij} S_a \partial_i S_b \partial_j S_c = \frac{1}{\pi} \frac{4(\kappa \ell_B)^2}{[r^2 + 4(\kappa \ell_B)^2]^2}$$

Skyrmion configuration (its size is fixed to minimize the energy)

$$S_x^{sky} = \sqrt{1 - \sigma_{sky}^2} \cos \theta$$
, $S_y^{sky} = -\sqrt{1 - \sigma_{sky}^2} \sin \theta$, $S_z^{sky} = \sigma_{sky}$

with
$$\sigma_{sky}(\mathbf{x}) = \frac{r^2 - 4(\kappa \ell_B)^2}{r^2 + 4(\kappa \ell_B)^2}$$

I The skyrmion scale **K** is arbitral in 2-dimensional nonlinear sigma model

Spin Wave (Goldstone Mode)

Effective Hamiltonian in the presence of the Zeeman effect

 $\mathcal{H}_{\mathsf{eff}} = 2J_s \partial_k \mathbf{S}(\mathbf{x}) \partial_k \mathbf{S}(\mathbf{x}) - \rho_0 \Delta_{\mathsf{Z}} \mathcal{S}_z(\mathbf{x})$

Spin Wave (Goldstone Mode)

Effective Hamiltonian in the presence of the Zeeman effect

$$\mathcal{H}_{\mathsf{eff}} = 2J_s \partial_k \mathbf{S}(\mathbf{x}) \partial_k \mathbf{S}(\mathbf{x}) - \rho_0 \Delta_{\mathsf{Z}} S_z(\mathbf{x})$$

For small fluctuation, i.e., pseudo-Goldstone mode

$$\mathcal{H}_{\text{eff}} = \frac{1}{2} J_s (\partial_k \sigma)^2 + \frac{1}{2} J_s (\partial_k \vartheta)^2 + \frac{\rho_0 \Delta_z}{4} (\sigma^2 + \vartheta^2)$$

with

$$S_{X}(\boldsymbol{x}) = \frac{1}{2}\sigma(\boldsymbol{x}), \quad S_{Y}(\boldsymbol{x}) = \frac{1}{2}\sqrt{1 - \sigma^{2}(\boldsymbol{x})}\sin\vartheta(\boldsymbol{x}), \quad S_{Z}(\boldsymbol{x}) = \frac{1}{2}\sqrt{1 - \sigma^{2}(\boldsymbol{x})}\cos\vartheta(\boldsymbol{x})$$

Spin Wave (Goldstone Mode)

Effective Hamiltonian in the presence of the Zeeman effect

$$\mathcal{H}_{\mathsf{eff}} = 2J_s \partial_k \mathbf{S}(\mathbf{x}) \partial_k \mathbf{S}(\mathbf{x}) - \rho_0 \Delta_{\mathsf{Z}} S_z(\mathbf{x})$$

For small fluctuation, i.e., pseudo-Goldstone mode

$$\mathcal{H}_{\text{eff}} = \frac{1}{2} J_s (\partial_k \sigma)^2 + \frac{1}{2} J_s (\partial_k \vartheta)^2 + \frac{\rho_0 \Delta_z}{4} (\sigma^2 + \vartheta^2)$$

with

$$S_{X}(\boldsymbol{x}) = \frac{1}{2}\sigma(\boldsymbol{x}), \quad S_{Y}(\boldsymbol{x}) = \frac{1}{2}\sqrt{1 - \sigma^{2}(\boldsymbol{x})}\sin\vartheta(\boldsymbol{x}), \quad S_{Z}(\boldsymbol{x}) = \frac{1}{2}\sqrt{1 - \sigma^{2}(\boldsymbol{x})}\cos\vartheta(\boldsymbol{x})$$

Quantum coherence develops if coherence length \gg magnetic length

$$\xi_{\rm spin} = \sqrt{\frac{2\rho_s}{\rho_0 \Delta_{\rm Z}}} = \frac{7.33}{\sqrt{B_\perp}} \ell_B$$

CP¹ Skyrmion

Due to the $W_{\infty}(2)$ algebra the spin rotation induces a density modulation

$$[\widehat{S}_{a}(\boldsymbol{p}),\widehat{\rho}(\boldsymbol{q})] = \frac{i}{\pi}\widehat{S}_{a}(\boldsymbol{p}+\boldsymbol{q})\sin\left(\frac{\ell_{B}^{2}}{2}\boldsymbol{p}\wedge\boldsymbol{q}\right)$$

CP¹ Skyrmion

Due to the $W_{\infty}(2)$ algebra the spin rotation induces a density modulation

$$[\widehat{S}_{a}(\boldsymbol{p}),\widehat{\rho}(\boldsymbol{q})] = \frac{i}{\pi}\widehat{S}_{a}(\boldsymbol{p}+\boldsymbol{q})\sin\left(\frac{\ell_{B}^{2}}{2}\boldsymbol{p}\wedge\boldsymbol{q}\right)$$

A Skyrmion excitation induces a density modulation

$$\rho^{\mathsf{sky}}(\mathbf{x}) \equiv \langle \mathfrak{S}_{\mathsf{sky}} | \hat{\rho}(\mathbf{x}) | \mathfrak{S}_{\mathsf{sky}} \rangle \simeq Q^{\mathsf{sky}}(\mathbf{x}) - \rho_0$$

with the topological charge

$$Q^{\mathsf{sky}}(\mathbf{x}) = \frac{1}{\pi} \varepsilon_{abc} \varepsilon^{ij} \mathfrak{S}_a \partial_i \mathfrak{S}_b \partial_j \mathfrak{S}_c$$

CP¹ Skyrmion

Due to the $W_{\infty}(2)$ algebra the spin rotation induces a density modulation

$$[\widehat{S}_{a}(\boldsymbol{p}),\widehat{\rho}(\boldsymbol{q})] = \frac{i}{\pi}\widehat{S}_{a}(\boldsymbol{p}+\boldsymbol{q})\sin\left(\frac{\ell_{B}^{2}}{2}\boldsymbol{p}\wedge\boldsymbol{q}\right)$$

A Skyrmion excitation induces a density modulation

$$\rho^{\mathsf{sky}}(\mathbf{x}) \equiv \langle \mathfrak{S}_{\mathsf{sky}} | \hat{\rho}(\mathbf{x}) | \mathfrak{S}_{\mathsf{sky}} \rangle \simeq Q^{\mathsf{sky}}(\mathbf{x}) - \rho_0$$

with the topological charge

$$Q^{\mathsf{sky}}(\mathbf{x}) = \frac{1}{\pi} \varepsilon_{abc} \varepsilon^{ij} \mathfrak{S}_a \partial_i \mathfrak{S}_b \partial_j \mathfrak{S}_c$$

Effective Hamiltonian for nonperturbative excitations

$$H_{\text{eff}} = 2J_s \int d^2 x \,\partial_k S^{\text{sky}}(\boldsymbol{x}) \partial_k S^{\text{sky}}(\boldsymbol{x}) - \rho_0 \Delta_{\text{Z}} \int d^2 x \,S_z^{\text{sky}}(\boldsymbol{x}) \\ + \frac{1}{2} \int d^2 x d^2 y \,\rho^{\text{sky}}(\boldsymbol{x}) V(\boldsymbol{x} - \boldsymbol{y}) \rho^{\text{sky}}(\boldsymbol{y})$$

CP¹ Skyrmion in Microscopic Theory

A microscopic Skyrmion state

$$\mathfrak{S}_{\mathsf{sky}} = \prod_{n=0}^{\infty} \left[u(n) c_{\downarrow}^{\dagger}(n) + v(n) c_{\uparrow}^{\dagger}(n+1) \right] |0\rangle, \qquad u^{2}(n) + v^{2}(n) = 1$$

Solution A hole excitation is a special one: u(n) = 0, v(n) = 1 for all n

$$|\mathfrak{S}_{\mathsf{sky}}\rangle = \prod_{n=1}^{\infty} c^{\dagger}_{\uparrow}(n) |0\rangle$$

CP¹ Skyrmion in Microscopic Theory (continued)

Density and spin modulations

$$\rho^{\text{sky}}(\mathbf{x}) = \frac{1}{(2\pi)^2} \int d^2q \sum_{mn} \langle m | e^{-i\mathbf{q}(\mathbf{x}-\mathbf{X})} | n \rangle \langle \mathfrak{S}_{\text{sky}} | c^{\dagger}(m) c(n) | \mathfrak{S}_{\text{sky}} \rangle$$
$$S_a^{\text{sky}}(\mathbf{x}) = \frac{1}{(2\pi)^2} \int d^2q \sum_{mn} \langle m | e^{-i\mathbf{q}(\mathbf{x}-\mathbf{X})} | n \rangle \langle \mathfrak{S}_{\text{sky}} | c^{\dagger}(m) \frac{\tau_a}{2} c(n) | \mathfrak{S}_{\text{sky}} \rangle$$

 \Rightarrow

$$\rho^{\text{sky}}(\mathbf{x}) = \frac{1}{2\pi} - \frac{1}{2\pi} \frac{1}{\omega^2 + 1} e^{-\frac{1}{2}r^2} M(\omega^2; \omega^2 + 2; r^2/2)$$

$$S_z^{\text{sky}}(\mathbf{x}) = \frac{1}{4\pi} - \frac{1}{4\pi} e^{-\frac{1}{2}r^2} M(\omega^2; \omega^2 + 1; r^2/2) - \frac{1}{4\pi} \frac{\omega^2}{\omega^2 + 1} e^{-\frac{1}{2}r^2} M(\omega^2 + 1; \omega^2 + 2; r^2/2)$$

$$S_x^{\text{sky}}(\mathbf{x}) = \frac{1}{4\pi} \frac{\sqrt{2}\omega x}{\omega^2 + 1} e^{-\frac{1}{2}r^2} M(\omega^2 + 1; \omega^2 + 2; r^2/2)$$

$$M \text{ is the Kummer function}$$

anzats: $u^2(n) = \frac{\omega^2}{n+1+\omega^2}$, $v^2(n) = \frac{n+1}{n+1+\omega^2}$, $\omega = \sqrt{2\kappa\ell_B}$ (κ : Skyrmion scale)

CP¹ Skyrmion and Spin Flip

Skyrmion has a fixed scale to optimize the Coulomb and Zeeman energies

Skyrmion flips many spins coherently

$$N^{\text{spin}} = -\frac{1}{2} \int d^2 x \left[2S_z^{\text{sky}}(\boldsymbol{x}) - \rho_0 \right]$$

Activation Energy and Skyrmions

(Experiment)

 $\textbf{Skyrmion excitation energy } (E_{C}^{0} = e^{2} / 4\pi \varepsilon \ell_{B})$ $E_{sky} \simeq \left\{ \frac{1}{4} \sqrt{\frac{\pi}{2}} + \frac{0.26}{2\kappa} + 2\widetilde{g}\kappa^{2} \ln\left(\frac{\sqrt{2\pi}}{32\widetilde{g}} + 1\right) \right\} E_{C}^{0}$

Activation Energy and Skyrmions

(Experiment)

- $\textbf{Skyrmion excitation energy} (E_{C}^{0} = e^{2}/4\pi\varepsilon\ell_{B}) \\ E_{sky} \simeq \left\{\frac{1}{4}\sqrt{\frac{\pi}{2}} + \frac{0.26}{2\kappa} + 2\widetilde{g}\kappa^{2}\ln\left(\frac{\sqrt{2\pi}}{32\widetilde{g}} + 1\right)\right\}E_{C}^{0}$
- $\textbf{Skyrmion size} \left(\widetilde{g} = \Delta_{\mathsf{Z}} / E_{\mathsf{C}}^{0} \right) \\ \kappa \simeq \frac{1}{2} \left\{ \widetilde{g} \ln \left(\frac{\sqrt{2\pi}}{32\widetilde{g}} + 1 \right) \right\}^{-1/3} \simeq 1$
- Skyrmion spin

 $N^{\text{spin}} \simeq 3.5 \text{ at } B = 7 \text{ Tesla}$

Activation Energy and Skyrmions

(Experiment)

- Skyrmion excitation energy $(E_{C}^{0} = e^{2}/4\pi\varepsilon\ell_{B})$ $E_{sky} \simeq \left\{\frac{1}{4}\sqrt{\frac{\pi}{2}} + \frac{0.26}{2\kappa} + 2\widetilde{g}\kappa^{2}\ln\left(\frac{\sqrt{2\pi}}{32\widetilde{g}} + 1\right)\right\}E_{C}^{0}$
- Skyrmion size $(\widetilde{g} = \Delta_{Z}/E_{C}^{0})$ $\kappa \simeq \frac{1}{2} \left\{ \widetilde{g} \ln \left(\frac{\sqrt{2\pi}}{32\widetilde{g}} + 1 \right) \right\}^{-1/3} \simeq 1$
- Skyrmion spin

 $N^{\text{spin}} \simeq 3.5 \text{ at } B = 7 \text{ Tesla}$

Schmeller et al, PRL75(1995)4290

Multicomponent QH System

Kinetic Hamiltonian for N-component electrons with SU(N) symmetry

$$H_{\mathsf{K}} = \frac{1}{2M} \Psi^{\dagger} (P_{x} - iP_{y}) (P_{x} + iP_{y}) \Psi + \frac{1}{2} \hbar \omega_{\mathsf{c}} \qquad \text{with} \quad P_{k} = -i\hbar \partial_{k} + eA_{x}^{\mathsf{ext}}$$

Kinetic Hamiltonian for N-component electrons with SU(N) symmetry

$$H_{\mathsf{K}} = \frac{1}{2M} \Psi^{\dagger} (P_{\chi} - iP_{\gamma}) (P_{\chi} + iP_{\gamma}) \Psi + \frac{1}{2} \hbar \omega_{\mathsf{c}} \qquad \text{with} \quad P_{k} = -i\hbar \partial_{k} + eA_{\chi}^{\mathsf{ext}}$$

• There are N^2 densities: $\rho(\mathbf{x}) = \Psi^{\dagger}(\mathbf{x})\Psi(\mathbf{x}), \quad I_A(\mathbf{x}) = \frac{1}{2}\Psi^{\dagger}(\mathbf{x})\lambda_A\Psi(\mathbf{x})$

Kinetic Hamiltonian for N-component electrons with SU(N) symmetry

$$H_{\mathsf{K}} = \frac{1}{2M} \Psi^{\dagger} (P_{X} - iP_{Y}) (P_{X} + iP_{Y}) \Psi + \frac{1}{2} \hbar \omega_{\mathsf{c}} \qquad \text{with} \quad P_{k} = -i\hbar \partial_{k} + eA_{X}^{\mathsf{ext}}$$

- There are N^2 densities: $\rho(\mathbf{x}) = \Psi^{\dagger}(\mathbf{x})\Psi(\mathbf{x}), \quad I_A(\mathbf{x}) = \frac{1}{2}\Psi^{\dagger}(\mathbf{x})\lambda_A\Psi(\mathbf{x})$
- Projected Coulomb Hamiltonian

$$\hat{H}_{\mathsf{C}} = -\pi \left[d^2 p \, V_{\mathsf{D}}(\boldsymbol{p}) \hat{\rho}(-\boldsymbol{p}) \hat{\rho}(\boldsymbol{p}) \right]$$

$$\Rightarrow \left| \hat{H}_{\mathsf{X}} = -\pi \int d^2 p \, V_{\mathsf{X}}(\boldsymbol{p}) \left[\hat{\boldsymbol{I}}(-\boldsymbol{p}) \hat{\boldsymbol{I}}(\boldsymbol{p}) + \frac{1}{4} \hat{\rho}(-\boldsymbol{p}) \hat{\rho}(\boldsymbol{p}) \right] \right|$$

Kinetic Hamiltonian for N-component electrons with SU(N) symmetry

$$H_{\mathsf{K}} = \frac{1}{2M} \Psi^{\dagger} (P_{\chi} - iP_{\gamma}) (P_{\chi} + iP_{\gamma}) \Psi + \frac{1}{2} \hbar \omega_{\mathsf{c}} \qquad \text{with} \quad P_{k} = -i\hbar \partial_{k} + eA_{\chi}^{\mathsf{ext}}$$

- There are N^2 densities: $\rho(\mathbf{x}) = \Psi^{\dagger}(\mathbf{x})\Psi(\mathbf{x}), \quad I_A(\mathbf{x}) = \frac{1}{2}\Psi^{\dagger}(\mathbf{x})\lambda_A\Psi(\mathbf{x})$
- Projected Coulomb Hamiltonian

$$\hat{H}_{\mathsf{C}} = -\pi \int d^2 p \, V_{\mathsf{D}}(\boldsymbol{p}) \hat{\rho}(-\boldsymbol{p}) \hat{\rho}(\boldsymbol{p})$$
$$\Rightarrow \hat{H}_{\mathsf{X}} = -\pi \int d^2 p \, V_{\mathsf{X}}(\boldsymbol{p}) \left[\hat{\boldsymbol{I}}(-\boldsymbol{p}) \hat{\boldsymbol{I}}(\boldsymbol{p}) + \frac{1}{4} \hat{\rho}(-\boldsymbol{p}) \hat{\rho}(\boldsymbol{p}) \right]$$

Low-energy effective Hamiltonian is SU(N) nonlinear sigma model

$$H_{\mathsf{X}}^{\mathsf{eff}} = 2J_s \int d^2x \,\partial_k \mathfrak{I}(\mathbf{x}) \partial_k \mathfrak{I}(\mathbf{x}) \qquad \text{with} \quad \widehat{I}(\mathbf{x}) = \rho_{\Phi} \mathfrak{I}(\mathbf{x})$$

Solution One Landau site can accomodante k electrons ($k \le N$)

Grassmannian Field

 \blacksquare SU(N) nonlinear sigma model \Rightarrow with spontaneous symmetry breakdown

 $H_{\mathsf{X}}^{\mathsf{eff}} = 2J_s \int d^2 x \ \partial_k \mathfrak{I}(\boldsymbol{x}) \partial_k \mathfrak{I}(\boldsymbol{x})$

If there are $N^2 - 1$ isospin densities $\mathfrak{I}(\mathbf{x})$, but how may independent ones?

Grassmannian Field

SU(N) nonlinear sigma model \Rightarrow with spontaneous symmetry breakdown

 $H_{\mathsf{X}}^{\mathsf{eff}} = 2J_s \int d^2 x \ \partial_k \mathfrak{I}(\mathbf{x}) \partial_k \mathfrak{I}(\mathbf{x})$

 \square There are $N^2 - 1$ isospin densities $\Im(\mathbf{x})$, but how may independent ones?

Dynamical fields are Grassmannian fields at v = k taking values on G^{N,k}

$$G^{N,k} = rac{U(N)}{U(k) \otimes U(N-k)} = rac{SU(N)}{U(1) \otimes SU(k) \otimes SU(N-k)},$$

 $G^{N,1} \equiv CP^{N-1}$

Dimension is $2k(N-k) \Rightarrow 2k(N-k)$ Goldstone modes

Grassmannian Field

SU(N) nonlinear sigma model \Rightarrow with spontaneous symmetry breakdown

 $H_{\mathsf{X}}^{\mathsf{eff}} = 2J_s \int d^2 x \, \partial_k \mathfrak{I}(\mathbf{x}) \partial_k \mathfrak{I}(\mathbf{x})$

If there are $N^2 - 1$ isospin densities $\mathfrak{I}(\mathbf{x})$, but how may independent ones?

Dynamical fields are Grassmannian fields at v = k taking values on $G^{N,k}$

$$G^{N,k} = rac{U(N)}{U(k) \otimes U(N-k)} = rac{SU(N)}{U(1) \otimes SU(k) \otimes SU(N-k)},$$

Dimension is $2k(N-k) \Rightarrow 2k(N-k)$ Goldstone modes

• Topological solitons are $G^{N,k}$ Skyrmions at v = k

according to
$$\pi_2(G^{N,k}) = \mathbb{Z}$$

 $G^{N,1} \equiv CP^{N-1}$

Charge-Isospin Separation

Spinless electrons are bosonized by attaching a flux composite bosons

 $\psi(\mathbf{x}) = e^{-i\Theta(\mathbf{x})}\phi(\mathbf{x})$ with $\varepsilon_{jk}\partial_j\partial_k\Theta(\mathbf{x}) = 2\pi\rho(\mathbf{x})$

Charge-Isospin Separation

Spinless electrons are bosonized by attaching a flux \Rightarrow composite bosons

 $\psi(\mathbf{x}) = e^{-i\Theta(\mathbf{x})}\phi(\mathbf{x})$ with $\varepsilon_{jk}\partial_j\partial_k\Theta(\mathbf{x}) = 2\pi\rho(\mathbf{x})$

U(N) electrons are also bosonized

 $\psi_{\alpha}(\mathbf{x}) = e^{-i\Theta(\mathbf{x})} \overline{\phi(\mathbf{x})} n_{\alpha}(\mathbf{x})$ with $\sum n_{\alpha}^{\dagger}(\mathbf{x}) n_{\alpha}(\mathbf{x}) = 1$

If there are N-1 complex degree of freedom in $n_{\alpha} \Rightarrow \mathbb{CP}^{N-1}$ field

Effective Field Theory with CP^{N-1} Field at v = 1

Relation between isospin field and CP^{N-1} field:

$$\mathfrak{I}_A(\boldsymbol{x}) = \boldsymbol{n}^{\dagger}(\boldsymbol{x}) \frac{\lambda_A}{2} \boldsymbol{n}(\boldsymbol{x})$$

Effective Field Theory with CP^{N-1} Field at v = 1

Pelation between isospin field and CP^{N-1} field:

$$\mathfrak{I}_A(\boldsymbol{x}) = \boldsymbol{n}^{\dagger}(\boldsymbol{x}) \frac{\lambda_A}{2} \boldsymbol{n}(\boldsymbol{x})$$

• Equivalence between the SU(N) sigma model and the CP^{N-1} model

$$\mathcal{H}_{\mathsf{X}} = 2J_s \sum_{A=1}^{N^2 - 1} \left[\partial_k \mathfrak{I}_A\right]^2 = 2J_s \sum_{\alpha=1}^{N} \left(\partial_j n^{\alpha \dagger} + iK_j n^{\alpha \dagger}\right) \left(\partial^j n^{\alpha} + iK_j n^{\alpha}\right)$$

with $K_{\mu} = -i \sum_{\alpha} n^{\alpha \dagger} \partial_{\mu} n^{\alpha}$

Effective Field Theory with CP^{N-1} Field at v = 1

Relation between isospin field and CP^{N-1} field:

$$\mathfrak{I}_A(\boldsymbol{x}) = \boldsymbol{n}^{\dagger}(\boldsymbol{x}) \frac{\lambda_A}{2} \boldsymbol{n}(\boldsymbol{x})$$

• Equivalence between the SU(N) sigma model and the CP^{N-1} model

$$\mathcal{H}_{\mathsf{X}} = 2J_s \sum_{A=1}^{N^2 - 1} \left[\partial_k \mathfrak{I}_A\right]^2 = 2J_s \sum_{\alpha=1}^{N} \left(\partial_j n^{\alpha \dagger} + iK_j n^{\alpha \dagger}\right) \left(\partial^j n^{\alpha} + iK_j n^{\alpha}\right)$$

with $K_{\mu} = -i \sum_{\alpha} n^{\alpha \dagger} \partial_{\mu} n^{\alpha}$

There are N-fold degeneracy in the ground state

If \mathbb{C}^{N-1} One ground state is chosen spontaneously with a \mathbb{C}^{N-1} Skyrmion on it

$$\boldsymbol{n}_{g}(\boldsymbol{x}) = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix} \implies \boldsymbol{n}_{sky}(\boldsymbol{x}) = \begin{pmatrix} \kappa_{N-1} \\ \vdots \\ \kappa_{1} \\ Z \end{pmatrix}$$

Effective Field Theory with $G^{N,k}$ Field at v = k

At v = k there are N electrons in one Landau site

 \square We need k CP^{N-1} fields to describe such a system: Grassmannian field

Grassmannian field: $Z(\mathbf{x}) = (\mathbf{n}_1, \mathbf{n}_2, \cdots, \mathbf{n}_k)$

Isospin field:
$$\mathcal{I}_A(\mathbf{x}) = \mathsf{Tr}\left[Z^{\dagger}(\mathbf{x})\frac{\lambda_A}{2}Z(\mathbf{x})\right] = \frac{1}{2}\sum_{i=1}^k \mathbf{n}_i^{\dagger}(\mathbf{x})\lambda_A \mathbf{n}_i(\mathbf{x})$$

Effective Field Theory with $G^{N,k}$ Field at v = k

At v = k there are N electrons in one Landau site

 \square We need k CP^{N-1} fields to describe such a system: Grassmannian field

Grassmannian field: $Z(\mathbf{x}) = (\mathbf{n}_1, \mathbf{n}_2, \cdots, \mathbf{n}_k)$

Isospin field:
$$\mathcal{I}_A(\mathbf{x}) = \text{Tr}\left[Z^{\dagger}(\mathbf{x})\frac{\lambda_A}{2}Z(\mathbf{x})\right] = \frac{1}{2}\sum_{i=1}^k \mathbf{n}_i^{\dagger}(\mathbf{x})\lambda_A \mathbf{n}_i(\mathbf{x})$$

• Equivalence between the SU(N) sigma model and the $G^{N,k}$ model

$$\mathcal{H}_{\mathsf{X}} = 2J_s \sum_{A=1}^{N^2 - 1} \left[\partial_k \mathfrak{I}_A \right]^2 = 2J_s \mathsf{Tr} \left[\left(\partial_j Z - iK_j Z \right)^{\dagger} \left(\partial_j Z - iK_j Z \right) \right]$$

with $K_j = -iZ^{\dagger}\partial_j Z$

Effective Field Theory with $G^{N,k}$ Field at v = k

• At v = k there are N electrons in one Landau site

 \square We need k CP^{N-1} fields to describe such a system: Grassmannian field

Grassmannian field: $Z(\mathbf{x}) = (\mathbf{n}_1, \mathbf{n}_2, \cdots, \mathbf{n}_k)$

Isospin field:
$$\Im_A(\mathbf{x}) = \operatorname{Tr}\left[Z^{\dagger}(\mathbf{x})\frac{\lambda_A}{2}Z(\mathbf{x})\right] = \frac{1}{2}\sum_{i=1}^{k} \mathbf{n}_i^{\dagger}(\mathbf{x})\lambda_A \mathbf{n}_i(\mathbf{x})$$

• Equivalence between the SU(N) sigma model and the $G^{N,k}$ model

$$\mathcal{H}_{\mathsf{X}} = 2J_s \sum_{A=1}^{N^2 - 1} \left[\partial_k \mathfrak{I}_A \right]^2 = 2J_s \mathsf{Tr} \left[\left(\partial_j Z - iK_j Z \right)^{\dagger} \left(\partial_j Z - iK_j Z \right) \right]$$

with $K_j = -iZ^{\dagger}\partial_j Z$

• One ground state is chosen spontaneously with a $G^{N,k}$ Skyrmion on it

Bilayer QH System

Pseudospins in Bilayer System

Pseudospins in Bilayer System

Pseudospin (ppin) P is a powerful tool to elucidate bilayer system

$$H_{\text{pZ}} = \sum_{i} \left[-\Delta_{\text{SAS}} P_{X}(i,i) - eV_{\text{bias}} P_{Z}(i,i) \right] \qquad \langle P_{Z} \rangle = \frac{1}{2} \sigma_{0}, \quad \langle P_{Z} \rangle = \frac{1}{2} \sqrt{1 - \sigma_{0}^{2}}$$

 \square Imbalace parameter P_z is controlled experimentally

$$\sigma_0 \equiv \frac{\rho^{\text{front}} - \rho^{\text{back}}}{\rho^{\text{front}} + \rho^{\text{back}}} = 2P_Z, \qquad eV_{\text{bias}} = \frac{\sigma_0}{\sqrt{1 - \sigma_0^2}} \Delta_{\text{SAS}}$$

Quantum Hall Ferromagnets: Monolayer with SU(2)

(review)

Coulomb Hamiltonian \Rightarrow LLL-projection \Rightarrow Landau-site Hamiltonian

Coulomb interactions induce spin coherence

$$H_{\mathsf{C}} = \pi \int d^{2}q \,\rho(-\boldsymbol{p})V(\boldsymbol{p})\rho(\boldsymbol{p}) \quad \Rightarrow$$

$$H_{\mathsf{X}}^{\mathsf{spin}} = -\pi \int d^{2}p \,V_{\mathsf{X}}(\boldsymbol{p}) \left[\hat{\boldsymbol{S}}(-\boldsymbol{p})\hat{\boldsymbol{S}}(\boldsymbol{p}) + \frac{1}{4}\hat{\rho}(-\boldsymbol{p})\hat{\rho}(\boldsymbol{p}) \right]$$

$$V_{\mathsf{X}}(\boldsymbol{p}) = \frac{\ell_{B}^{2}}{\pi} \int d^{2}k \, e^{-i\ell_{B}^{2}\boldsymbol{p}\wedge\boldsymbol{k}} e^{-\ell_{B}^{2}\boldsymbol{p}^{2}/2} V(\boldsymbol{k}), \qquad V(\boldsymbol{k}) = \frac{e^{2}}{4\pi\varepsilon|\boldsymbol{k}|}$$

Quantum Hall Ferromagnets: Spinless Bilayer with SU(2)

Coulomb Hamiltonian \Rightarrow LLL-projection \Rightarrow Landau-site Hamiltonian

Coulomb interactions induce interlayer coherence in bilayer system

$$H_{\mathsf{C}} = \pi \left[d^2 q \left[\rho(-\boldsymbol{p}) V^+(\boldsymbol{p}) \rho(\boldsymbol{p}) + 2P_z(-\boldsymbol{p}) V^-(\boldsymbol{p}) P_z(\boldsymbol{p}) \right] \quad \Rightarrow \quad$$

 $H_{\mathsf{X}}^{\mathsf{ppin}} = -\pi \int d^2 p \left[V_{\mathsf{X}}^d(\boldsymbol{p}) \sum_{a=xy} \hat{P}_a(-\boldsymbol{p}) \hat{P}_a(\boldsymbol{p}) + 2V_{\mathsf{X}}^-(\boldsymbol{p}) \hat{P}_z(-\boldsymbol{p}) \hat{P}_z(\boldsymbol{p}) + \frac{1}{4} V_{\mathsf{X}}(\boldsymbol{p}) \hat{\rho}(-\boldsymbol{p}) \hat{\rho}(\boldsymbol{p}) \right]$

$$V_{X}^{\pm}(\boldsymbol{p}) = \frac{\ell_{B}^{2}}{\pi} \int d^{2}k \, e^{-i\ell_{B}^{2}\boldsymbol{p}\wedge\boldsymbol{k}} e^{-\ell_{B}^{2}\boldsymbol{p}^{2}/2} V^{\pm}(\boldsymbol{k}), \quad V^{\pm}(\boldsymbol{k}) = \frac{e^{2}}{8\pi\varepsilon|\boldsymbol{k}|} \left(1 \pm e^{-d/\ell_{B}}\right)$$

 $V_{\mathsf{X}}^{\pm}(\boldsymbol{p}) = \frac{1}{2} \left[V_{\mathsf{X}}(\boldsymbol{p}) \pm V_{\mathsf{X}}^{d}(\boldsymbol{p}) \right]$

$$H_{\mathsf{X}}^{\mathsf{ppin}} = -\pi \int d^2 p \left[V_{\mathsf{X}}^d(\boldsymbol{p}) \sum_{a=xy} \hat{P}_a(-\boldsymbol{p}) \hat{P}_a(\boldsymbol{p}) + 2V_{\mathsf{X}}^-(\boldsymbol{p}) \hat{P}_z(-\boldsymbol{p}) \hat{P}_z(\boldsymbol{p}) + \frac{1}{4} V_{\mathsf{X}}(\boldsymbol{p}) \hat{\rho}(-\boldsymbol{p}) \hat{\rho}(\boldsymbol{p}) \right]$$

$$H_{\mathsf{X}}^{\mathsf{ppin}} = -\pi \int d^2 p \left[V_{\mathsf{X}}^d(\boldsymbol{p}) \sum_{a=xy} \hat{P}_a(-\boldsymbol{p}) \hat{P}_a(\boldsymbol{p}) + 2V_{\mathsf{X}}^-(\boldsymbol{p}) \hat{P}_z(-\boldsymbol{p}) \hat{P}_z(\boldsymbol{p}) + \frac{1}{4} V_{\mathsf{X}}(\boldsymbol{p}) \hat{\rho}(-\boldsymbol{p}) \hat{\rho}(\boldsymbol{p}) \right]$$

Landau-site Hamiltonian \Rightarrow Derivative Expansion \Rightarrow Effective Field Theory

$$H_{\mathsf{X}}^{\mathsf{ppin}} = -\pi \int d^2 p \left[V_{\mathsf{X}}^d(\boldsymbol{p}) \sum_{a=xy} \hat{P}_a(-\boldsymbol{p}) \hat{P}_a(\boldsymbol{p}) + 2V_{\mathsf{X}}^-(\boldsymbol{p}) \hat{P}_z(-\boldsymbol{p}) \hat{P}_z(\boldsymbol{p}) + \frac{1}{4} V_{\mathsf{X}}(\boldsymbol{p}) \hat{\rho}(-\boldsymbol{p}) \hat{\rho}(\boldsymbol{p}) \right]$$

Landau-site Hamiltonian \Rightarrow Derivative Expansion \Rightarrow Effective Field Theory

Coulomb interactions induce interlayer coherence in bilayer system

$$\begin{split} H_{\mathsf{C}}^{\mathsf{ppin}} &\simeq 2 \int d^2 x \left(\sum_{\substack{a=x,y \\ a=x,y}} J_s^d [\partial_k \mathcal{P}_a(\boldsymbol{x})]^2 + J_s [\partial_k \mathcal{P}_z(\boldsymbol{x})]^2 \right) \\ & \frac{J_s^d}{J_s} = -\sqrt{\frac{2}{\pi}} \frac{d}{\ell_B} + \left(1 + \frac{d^2}{\ell_B^2} \right) e^{d^2/2\ell_B^2} \mathsf{erfc} \left(d/\sqrt{2}\ell_B \right), \qquad J_s = \frac{1}{16\pi} \sqrt{\frac{\pi}{2}} \frac{e^2}{4\pi\varepsilon\ell_B} \end{split}$$

$$H_{\mathsf{X}}^{\mathsf{ppin}} = -\pi \int d^2 p \left[V_{\mathsf{X}}^d(\boldsymbol{p}) \sum_{a=xy} \hat{P}_a(-\boldsymbol{p}) \hat{P}_a(\boldsymbol{p}) + 2V_{\mathsf{X}}^-(\boldsymbol{p}) \hat{P}_z(-\boldsymbol{p}) \hat{P}_z(\boldsymbol{p}) + \frac{1}{4} V_{\mathsf{X}}(\boldsymbol{p}) \hat{\rho}(-\boldsymbol{p}) \hat{\rho}(\boldsymbol{p}) \right]$$

Landau-site Hamiltonian \Rightarrow Derivative Expansion \Rightarrow Effective Field Theory

Coulomb interactions induce interlayer coherence in bilayer system

$$H_{\mathsf{C}}^{\mathsf{ppin}} \simeq 2 \int d^2 x \left(\sum_{a=x,y} J_s^d [\partial_k \mathcal{P}_a(\mathbf{x})]^2 + J_s [\partial_k \mathcal{P}_z(\mathbf{x})]^2 \right)$$

$$\frac{J_s^d}{J_s} = -\sqrt{\frac{2}{\pi}} \frac{d}{\ell_B} + \left(1 + \frac{d^2}{\ell_B^2}\right) e^{d^2/2\ell_B^2} \operatorname{erfc}\left(d/\sqrt{2\ell_B}\right), \qquad J_s = \frac{1}{16\pi} \sqrt{\frac{\pi}{2}} \frac{e^2}{4\pi\varepsilon\ell_B}$$

■ Topological solitons ppin-Skyrmions : π₂(CP¹) = Z
⇒ flipping many peudospins coherently

Bilayer Quantum Hall Ferromagnets with SU(4)

Physical Variables

$$\rho(\mathbf{x}) = \psi^{\dagger}(\mathbf{x})\psi(\mathbf{x}), \qquad S_{a}(\mathbf{x}) = \frac{1}{2}\psi^{\dagger}(\mathbf{x})\tau_{a}^{\mathsf{spin}}\psi(\mathbf{x}) P_{a}(\mathbf{x}) = \frac{1}{2}\psi^{\dagger}(\mathbf{x})\tau_{a}^{\mathsf{ppin}}\psi(\mathbf{x}), \qquad R_{ab}(\mathbf{x}) = \frac{1}{2}\psi^{\dagger}(\mathbf{x})\tau_{a}^{\mathsf{spin}}\tau_{a}^{\mathsf{ppin}}\psi(\mathbf{x})$$

with

$$\tau_{X}^{\text{spin}} = \begin{pmatrix} \tau_{X} & 0 \\ 0 & \tau_{X} \end{pmatrix} \qquad \tau_{Y}^{\text{spin}} = \begin{pmatrix} \tau_{Y} & 0 \\ 0 & \tau_{Y} \end{pmatrix} \qquad \tau_{Z}^{\text{spin}} = \begin{pmatrix} \tau_{Z} & 0 \\ 0 & \tau_{Z} \end{pmatrix}$$
$$\tau_{X}^{\text{ppin}} = \begin{pmatrix} 0 & 1_{2} \\ 1_{2} & 0 \end{pmatrix} \qquad \tau_{Y}^{\text{ppin}} = \begin{pmatrix} 0 & -i1_{2} \\ i1_{2} & 0 \end{pmatrix} \qquad \tau_{Z}^{\text{ppin}} = \begin{pmatrix} 1_{2} & 0 \\ 0 & -1_{2} \end{pmatrix}$$

Bilayer Quantum Hall Ferromagnets with SU(4)

Physical Variables

$$\rho(\mathbf{x}) = \psi^{\dagger}(\mathbf{x})\psi(\mathbf{x}), \qquad S_{a}(\mathbf{x}) = \frac{1}{2}\psi^{\dagger}(\mathbf{x})\tau_{a}^{\mathsf{spin}}\psi(\mathbf{x}) P_{a}(\mathbf{x}) = \frac{1}{2}\psi^{\dagger}(\mathbf{x})\tau_{a}^{\mathsf{ppin}}\psi(\mathbf{x}), \qquad R_{ab}(\mathbf{x}) = \frac{1}{2}\psi^{\dagger}(\mathbf{x})\tau_{a}^{\mathsf{spin}}\tau_{a}^{\mathsf{ppin}}\psi(\mathbf{x})$$

with

$$\begin{aligned} \tau_{X}^{\mathsf{spin}} &= \begin{pmatrix} \tau_{X} & 0 \\ 0 & \tau_{X} \end{pmatrix} & \tau_{Y}^{\mathsf{spin}} &= \begin{pmatrix} \tau_{Y} & 0 \\ 0 & \tau_{Y} \end{pmatrix} & \tau_{Z}^{\mathsf{spin}} &= \begin{pmatrix} \tau_{Z} & 0 \\ 0 & \tau_{Z} \end{pmatrix} \\ \tau_{X}^{\mathsf{ppin}} &= \begin{pmatrix} 0 & 1_{2} \\ 1_{2} & 0 \end{pmatrix} & \tau_{Y}^{\mathsf{ppin}} &= \begin{pmatrix} 0 & -i1_{2} \\ i1_{2} & 0 \end{pmatrix} & \tau_{Z}^{\mathsf{ppin}} &= \begin{pmatrix} 1_{2} & 0 \\ 0 & -1_{2} \end{pmatrix} \end{aligned}$$

Effective Hamiltonian describes SU(4) coherence with SU(4) Skyrmions

$$\mathcal{H}_{\mathsf{X}} = J_{s}^{d} \left(\sum \left[\partial_{k} \mathbb{S}_{a} \right]^{2} + \left[\partial_{k} \mathbb{P}_{a} \right]^{2} + \left[\partial_{k} \mathbb{R}_{ab} \right]^{2} \right) + 2J_{s}^{-} \left(\sum \left[\partial_{k} \mathbb{S}_{a} \right]^{2} + \left[\partial_{k} \mathbb{P}_{z} \right]^{2} + \left[\partial_{k} \mathbb{R}_{az} \right]^{2} \right)$$

CP³ Skyrmions in Bilayer Quantum Hall Ferromagnets

Charge-isospin separation \Rightarrow CP³ field *n*

 $\rho(\mathbf{x}) = \psi^{\dagger}(\mathbf{x})\psi(\mathbf{x}), \qquad S_{a}(\mathbf{x}) = \frac{1}{2}\mathbf{n}^{\dagger}(\mathbf{x})\tau_{a}^{\mathsf{spin}}\mathbf{n}(\mathbf{x})$ $\mathcal{P}_{a}(\mathbf{x}) = \frac{1}{2}\mathbf{n}^{\dagger}(\mathbf{x})\tau_{a}^{\mathsf{ppin}}\mathbf{n}(\mathbf{x}), \qquad \mathcal{R}_{ab}(\mathbf{x}) = \frac{1}{2}\mathbf{n}^{\dagger}(\mathbf{x})\tau_{a}^{\mathsf{spin}}\tau_{a}^{\mathsf{spin}}\mathbf{n}(\mathbf{x})$

CP³ Skyrmions in Bilayer Quantum Hall Ferromagnets

Charge-isospin separation \Rightarrow CP³ field *n*

 $\rho(\mathbf{x}) = \psi^{\dagger}(\mathbf{x})\psi(\mathbf{x}), \qquad S_{a}(\mathbf{x}) = \frac{1}{2}\mathbf{n}^{\dagger}(\mathbf{x})\tau_{a}^{\mathsf{spin}}\mathbf{n}(\mathbf{x})$ $\mathcal{P}_{a}(\mathbf{x}) = \frac{1}{2}\mathbf{n}^{\dagger}(\mathbf{x})\tau_{a}^{\mathsf{ppin}}\mathbf{n}(\mathbf{x}), \qquad \mathcal{R}_{ab}(\mathbf{x}) = \frac{1}{2}\mathbf{n}^{\dagger}(\mathbf{x})\tau_{a}^{\mathsf{spin}}\tau_{a}^{\mathsf{spin}}\mathbf{n}(\mathbf{x})$

CP³ Skyrmions

\$

\$

Experiments in Bilayer QH States (v = 1&2)

Sawada et al, PRL80(1998)4534

Experimental Results I ($\nu = 1$)

٩

Data by changing the density balance

Н

1.0

Bilayer to Monolayer QH Systems ($\nu = 1$)

System is controled continuously from balanced point to monolayer limit

- Pseudopin textures in bilayer ⇒ Spin textures in monolayer
- Pseudospin SU(2) \Rightarrow SU(4) \Rightarrow Spin SU(2) 9
- Ppin CP¹ Skyrmion \Rightarrow CP³ Skyrmion \Rightarrow Spin CP¹ Skyrmion

Topological charge is the same: : $\pi_2(CP^1) = \pi_2(CP^3) = \mathbb{Z}$

imbalance parameter: $\sigma_0 \equiv \frac{\rho^{\text{front}} - \rho^{\text{back}}}{\rho^{\text{front}} + \rho^{\text{back}}} = 2 \mathcal{P}_z$

CP³ Skyrmion interpolates ppin Skyrmion to spin Skyrmion continuously

$$n_{\text{sky}}(\boldsymbol{x}) = \begin{pmatrix} n^{\text{A}\downarrow} \\ n^{\text{A}\uparrow} \\ n^{\text{B}\downarrow} \\ n^{\text{B}\uparrow} \end{pmatrix} = \begin{pmatrix} \kappa_{\text{r}} \\ \kappa_{\text{p}} \\ \kappa_{\text{s}} \\ Z \end{pmatrix}, \qquad \begin{pmatrix} n^{\text{f}\uparrow}(\boldsymbol{x}) \\ n^{\text{f}\downarrow}(\boldsymbol{x}) \\ n^{\text{b}\uparrow}(\boldsymbol{x}) \\ n^{\text{b}\downarrow}(\boldsymbol{x}) \end{pmatrix} = \begin{pmatrix} Z\sqrt{1+\sigma_0} + \kappa_p\sqrt{1-\sigma_0} \\ \kappa_s\sqrt{1+\sigma_0} + \kappa_r\sqrt{1-\sigma_0} \\ Z\sqrt{1-\sigma_0} - \kappa_p\sqrt{1+\sigma_0} \\ \kappa_s\sqrt{1-\sigma_0} - \kappa_r\sqrt{1+\sigma_0} \end{pmatrix}$$

CP³ Skyrmion interpolates ppin Skyrmion to spin Skyrmion continuously

$$n_{\mathsf{sky}}(\boldsymbol{x}) = \begin{pmatrix} n^{\mathsf{A}\downarrow} \\ n^{\mathsf{A}\uparrow} \\ n^{\mathsf{B}\downarrow} \\ n^{\mathsf{B}\uparrow} \end{pmatrix} = \begin{pmatrix} \kappa_{\mathsf{r}} \\ \kappa_{\mathsf{p}} \\ \kappa_{\mathsf{s}} \\ z \end{pmatrix}, \qquad \begin{pmatrix} n^{\mathsf{f}\uparrow}(\boldsymbol{x}) \\ n^{\mathsf{f}\downarrow}(\boldsymbol{x}) \\ n^{\mathsf{b}\uparrow}(\boldsymbol{x}) \\ n^{\mathsf{b}\downarrow}(\boldsymbol{x}) \end{pmatrix} = \begin{pmatrix} z\sqrt{1+\sigma_0} + \kappa_p\sqrt{1-\sigma_0} \\ \kappa_s\sqrt{1+\sigma_0} + \kappa_r\sqrt{1-\sigma_0} \\ z\sqrt{1-\sigma_0} - \kappa_p\sqrt{1+\sigma_0} \\ \kappa_s\sqrt{1-\sigma_0} - \kappa_r\sqrt{1+\sigma_0} \end{pmatrix}$$

ppin CP¹ Skyrmion ($\kappa_{spin} = \kappa_{res} = 0$; $\kappa_{ppin} \neq 0$) is excited at balanced point

CP³ Skyrmion interpolates ppin Skyrmion to spin Skyrmion continuously

$$n_{\mathsf{sky}}(\boldsymbol{x}) = \begin{pmatrix} n^{\mathsf{A}\downarrow} \\ n^{\mathsf{A}\uparrow} \\ n^{\mathsf{B}\downarrow} \\ n^{\mathsf{B}\uparrow} \end{pmatrix} = \begin{pmatrix} \kappa_{\mathsf{r}} \\ \kappa_{\mathsf{p}} \\ \kappa_{\mathsf{s}} \\ z \end{pmatrix}, \qquad \begin{pmatrix} n^{\mathsf{f}\uparrow}(\boldsymbol{x}) \\ n^{\mathsf{f}\downarrow}(\boldsymbol{x}) \\ n^{\mathsf{b}\uparrow}(\boldsymbol{x}) \\ n^{\mathsf{b}\downarrow}(\boldsymbol{x}) \end{pmatrix} = \begin{pmatrix} z\sqrt{1+\sigma_0} + \kappa_p\sqrt{1-\sigma_0} \\ \kappa_s\sqrt{1+\sigma_0} + \kappa_r\sqrt{1-\sigma_0} \\ z\sqrt{1-\sigma_0} - \kappa_p\sqrt{1+\sigma_0} \\ \kappa_s\sqrt{1-\sigma_0} - \kappa_r\sqrt{1+\sigma_0} \end{pmatrix}$$

ppin CP^1 Skyrmion ($\kappa_{spin} = \kappa_{res} = 0$; $\kappa_{ppin} \neq 0$) is excited at balanced point

• isospin CP³ Skyrmion ($\kappa_{spin} \neq 0$; $\kappa_{ppin} \neq 0$; $\kappa_{res} \simeq 0$) is excited in general

CP³ Skyrmion interpolates ppin Skyrmion to spin Skyrmion continuously

$$n_{\text{sky}}(\boldsymbol{x}) = \begin{pmatrix} n^{\text{A}\downarrow} \\ n^{\text{A}\uparrow} \\ n^{\text{B}\downarrow} \\ n^{\text{B}\uparrow} \end{pmatrix} = \begin{pmatrix} \kappa_{\text{r}} \\ \kappa_{\text{p}} \\ \kappa_{\text{s}} \\ z \end{pmatrix}, \qquad \begin{pmatrix} n^{\text{f}\uparrow}(\boldsymbol{x}) \\ n^{\text{f}\downarrow}(\boldsymbol{x}) \\ n^{\text{b}\uparrow}(\boldsymbol{x}) \\ n^{\text{b}\downarrow}(\boldsymbol{x}) \end{pmatrix} = \begin{pmatrix} z\sqrt{1+\sigma_0} + \kappa_p\sqrt{1-\sigma_0} \\ \kappa_s\sqrt{1+\sigma_0} + \kappa_r\sqrt{1-\sigma_0} \\ z\sqrt{1-\sigma_0} - \kappa_p\sqrt{1+\sigma_0} \\ \kappa_s\sqrt{1-\sigma_0} - \kappa_r\sqrt{1+\sigma_0} \end{pmatrix}$$

ppin CP¹ Skyrmion ($\kappa_{spin} = \kappa_{res} = 0$; $\kappa_{ppin} \neq 0$) is excited at balanced point

- **isospin CP**³ Skyrmion ($\kappa_{spin} \neq 0$; $\kappa_{ppin} \neq 0$; $\kappa_{res} \simeq 0$) is excited in general
- **spin CP**¹ Skyrmion ($\kappa_{ppin} = \kappa_{res} = 0$; $\kappa_{spin} \neq 0$) is excited in monolayer limit

Activation Energy vis Density Difference ($\nu = 1$)

ppin CP¹ Skyrmion ($\kappa_{spin} = \kappa_{res} = 0$; $\kappa_{ppin} \neq 0$) is excited at balanced point

■ isospin CP³ Skyrmion ($\kappa_{spin} \neq 0$; $\kappa_{ppin} \neq 0$; $\kappa_{res} \simeq 0$) is excited in general

• spin CP¹ Skyrmion ($\kappa_{ppin} = \kappa_{res} = 0$; $\kappa_{spin} \neq 0$) is excited in monolayer limit

Experimental Results II ($\nu = 1$)

٩

Terasawa et al. Physica E (2004)52

Parallel Magnetic Field in Bilayer System

The effect of parallel magnetic field

$$\begin{split} \psi^{\alpha}(\boldsymbol{x}; B_{\parallel}) &= \exp\left[\mp (\boldsymbol{y} - \bar{y}_{k}^{0}) \delta_{\mathsf{m}} - \frac{1}{8} \delta_{\mathsf{m}}^{2} \ell_{B}^{2} \right] \psi^{\alpha}(\boldsymbol{x}) & \text{without coherence} \\ \psi^{\alpha}(\boldsymbol{x}; B_{\parallel}) &= \exp\left(\mp \frac{i}{2} \delta_{\mathsf{m}} \boldsymbol{x} \right) \psi^{\alpha}(\boldsymbol{x}) & \text{with coherence} \end{split}$$

CP³ Skyrmion is modified only by phase in coherent phase

$$n_{\text{sky}}(x; B_{\parallel}) = \exp\left(\mp \frac{i}{2}\delta_{\text{m}}x\right)n_{\text{sky}}(x)$$
,

$$\delta_{\mathsf{m}} = rac{edB_{\parallel}}{\hbar}$$

KIAS, Seoul (2004.10.25-27) – p.41/52

Activation Energy of CP³ Skyrmions (v = 1)

Excitations require the exchange, Coulomb, Zeeman and tunneling energies

$$E_{\mathsf{sky}} = E_{\mathsf{X}}^{\Theta=0} + E_{\mathsf{self}}^{+}(\kappa) + \frac{1}{2}\varepsilon_{\mathsf{cap}}(1 - \sigma_{0}^{2})N_{\mathsf{ppin}}(\kappa_{p}) + \frac{N_{\mathsf{spin}}(\kappa_{s})\Delta_{\mathsf{Z}}^{\Theta}}{N_{\mathsf{ppin}}(\kappa_{p})\Delta_{\mathsf{SAS}}^{\Theta}} + \frac{N_{\mathsf{ppin}}(\kappa_{p})\Delta_{\mathsf{SAS}}^{\Theta}}{N_{\mathsf{ppin}}(\kappa_{p})} + \frac{N_{\mathsf{spin}}(\kappa_{s})\Delta_{\mathsf{Z}}^{\Theta}}{N_{\mathsf{ppin}}(\kappa_{s})} + \frac{N_{\mathsf{ppin}}(\kappa_{s})\Delta_{\mathsf{Z}}^{\Theta}}{N_{\mathsf{ppin}}(\kappa_{s})} + \frac{N_{\mathsf{ppin}}(\kappa_{s})\Delta_{\mathsf{Z}}^{\Theta}}{N_{\mathsf{ppin}}(\kappa_{s})} + \frac{N_{\mathsf{ppin}}(\kappa_{s})\Delta_{\mathsf{Z}}^{\Theta}}{N_{\mathsf{ppin}}(\kappa_{s})} + \frac{N_{\mathsf{ppin}}(\kappa_{s})\Delta_{\mathsf{Z}}^{\Theta}}{N_{\mathsf{ppin}}(\kappa_{s})} + \frac{N_{\mathsf{ppin}}(\kappa_{s})\Delta_{\mathsf{Z}}^{\Theta}}{N_{\mathsf{ppin}}(\kappa_{s})} + \frac{N_{\mathsf{ppin}}(\kappa_{s})}{N_{\mathsf{ppin}}(\kappa_{s})} + \frac{N_{\mathsf{ppin}}(\kappa_{s})}{N_$$

$$\Delta_{\mathsf{Z}}^{\Theta} = g^* \mu_B B_{\perp} \sqrt{1 + \tan^2 \Theta}, \quad N_{\mathsf{spin}}(\kappa_s) \propto \kappa_s^2, \quad N_{\mathsf{ppin}}(\kappa_s) \propto \kappa_p^2, \quad \kappa^2 \equiv \kappa_s^2 + \kappa_p^2$$

$$\Delta_{\mathsf{SAS}}^{\Theta} = \begin{cases} \frac{1}{\sqrt{1-\sigma_0^2}} \Delta_{\mathsf{SAS}} - \frac{2\pi d^2 J_s^d}{\ell_B^2} (1-\sigma_0^2) \tan^2 \Theta & \text{for } \Theta < \Theta^* \\ \frac{1}{\sqrt{1-\sigma_0^2}} \Delta_{\mathsf{SAS}} - \frac{2\pi d^2 J_s^d}{\ell_B^2} (1-\sigma_0^2) \tan^2 \Theta^* & \text{for } \Theta > \Theta^* \end{cases}$$

where Θ^* is commensurate-incommensurate transition point, $\tan \Theta^* = B_{\parallel}^* / B_{\perp}$ \checkmark Ezawa et al. PRB70(2004)125304 KIAS, Seoul (2004.10.25-27) – p.42/52

Excitation of Ppin CP¹ Skyrmions (v = 1)

Murphy et al., PRL72(1994)728

Excitation of CP³ Skyrmions ($\nu = 1$)

Terasawa et al. Physica E (2004)52

Composition of two spins (two pseudospins)

v = 2: $2 \otimes 2 = 1 \oplus 3$

Composition of two spins (two pseudospins)

 $\nu = 2: \quad 2 \otimes 2 = 1 \oplus 3$

- Two types of QH states
 - spin-singlet and ppin-triplet ppin-phase

spin-triplet and ppin-singlet spin-phase

Muraki et al, SSC 112(1999)625

Two types of QH states

- spin-singlet and ppin-triplet ppin-phase
- spin-triplet and ppin-singlet spin-phase
- Is the spin-phase unique?

Is it an uncorrelated two-monolayer system or a genuine bilayer system

Grassmannian Soliton

- In zero tunnelling gap (two electrons distinguishable)
 - \square Two layers behave independently \Rightarrow two CP¹ fields
 - one CP^1 Skyrmion with charge e is excited

Grassmannian Soliton

In zero tunnelling gap (two electrons distinguishable)

- \square Two layers behave independently \Rightarrow two CP¹ fields
- one CP^1 Skyrmion with charge e is excited

Grassmannian Soliton

In zero tunnelling gap (two electrons distinguishable)

- \square Two layers behave independently \Rightarrow two CP¹ fields
- one CP^1 Skyrmion with charge e is excited

In large tunnelling gap (two electrons indistinguishable)

- \square Two layers behave coherently \Rightarrow one Grassmannian G^{4,2} field
- **one** $G^{4,2}$ Skyrmion with charge 2e is excited
- flipped spin number twice as much as that of CP¹ Skyrmion

Grassmannian solitons arise based on

 $\pi_2(G^{N,k}) = \mathbb{Z}, \quad G^{N,k} = SU(N) / [U(1) \otimes SU(N) \otimes SU(N-k)]$

CP¹ versus G^{4,2} Skyrmions

(experiment)

✔Kumada et al, JPSJ69(2000)3178

Josephson-like Effects

Josephson tunneling current (predicted by Ezawa&Iwazaki, 1992)

Josephson-like Effects

Josephson tunneling current (predicted by Ezawa&Iwazaki, 1992)

Plasmon excitations expected (detectable by microwave)

Josephson-like Tunneling (Experiments)

Layer coherence

⇒ Coherent tunneling (Ezawa-Iwazaki, 1993)

Spielman, Eisenstein, PRL84(2000)5808;PRL87(2001)36803

Conclusions

- An ideal system realizing
 - ⇒ noncommutatvie geometry
 - Noncommutative geometry
 - ⇒ quantum coherence
 - SU(2) spin coherence
 - \Rightarrow CP¹ Skyrmions
 - SU(4) isospin coherence
 - ⇒ CP³ and G^{4,2} Skyrmions
- Interlayer coherence
 - \Rightarrow Josephson-like phenomena
 - Condensation of single charge *e*
 - ⇒ Statistical transformation

2nd Fersion Comming Boon !!

Quantum Hall Effects

Field Theoretical Approach and Related Topics

Zyun F. Ezawa

