A Diquark Effective Theory and Exotic Hadrons

with Y. J. Sohn and Ismail Zahed, hep-ph/0403205 with C. Song, hep-ph/0407274

Deog Ki Hong (Pusan Nat'l U. and M.I.T.) KIAS, Oct. 25-27, 2004

 $\langle \text{Contents} \rangle$

- 1. Introduction
- 2. Diquark Chiral Effective Theory
- 3. Static properties of Exotics
- 4. Decay Width of Pentaquarks
- 5. Applications to scalar nonet
- 6. Conclusion and Outlook

1. Introduction

- In 60's the naive quark model has been extremely successful. (Gell-Mann and Zweig 1964)
 - 1. Hadrons are made of either three constituent quarks, qqq ($\bar{q}\bar{q}\bar{q}$) or constituent quark and antiquark $q\bar{q}$.
 - 2. Static properties like the magnetic moments or mass differences of hadrons agree with the experimental data more than 10% accuracy.
- QCD tells us why the quark model works. (Georgi and Manohar 1984)
 - 1. Large scale-separation between confinement and χ SB:

 $\Lambda_{\rm QCD} \simeq 150 \sim 200 \,\,{\rm MeV} \ll \Lambda_{\chi \rm SB} \simeq 4\pi f_{\pi} \simeq 1 \,\,{\rm GeV}.$

2. The explicit symmetry breaking terms are quite small:

$$\frac{\mu M}{\Lambda_{\chi \rm SB}^2} \ll 1.$$

• Discovery of Exotic Hadrons (2003)

Figure 1: Experiments on Pentaquarks

- Recent discovery of exotic baryons is well explained by a naive diquark model of Jaffe-Wilczek which assumes strong quark-quark correlation in $(\bar{3}_c, \bar{3}_f, S = 0)$ channel.
- For instance, its prediction on low dimensional multiplets and the mass spectrum of $\overline{10}_f$ were partially confirmed by NA49 data.

 $(\bar{3}_f \otimes \bar{3}_f)_S \otimes \bar{3}_f = \overline{10}_f \oplus 8_f$

- The naive diquark model should be explained by QCD.
- The success of JW model can be explained by the diquark chiral effective theory, which describes the exotic hadrons from QCD.

$$D\chi ET \simeq QCD$$
 with Diquarks

• Predictions of JW model

Figure 2: Degenerate $\overline{10}_f$ and 8_f .

- Competitor 1: Chiral Soliton Model (= Theory of mesons)
 - 1. Inconsistency with large N_C QCD. (T. Cohen; M. Praszalowicz)
 - 2. Large decay width $\sim 30~{\rm MeV}$ (Jaffe '04). (Recent calculation shows $\Gamma=11~{\rm MeV})$
- Competitor 2: Uncorrelated Quark Model: Narrow width??

2. Diquark Chiral Effective Theory

• The diquark field is described by a scalar field,

$$\varphi_{\alpha}^{i}(x) = \lim_{y \to x} \frac{|y - x|^{\gamma_{m}}}{\kappa} \epsilon^{ijk} \epsilon_{\alpha\beta\gamma} \bar{\psi}_{cj}^{\beta}(x) i\gamma_{5} \psi_{k}^{\gamma}(y), \qquad (1)$$

where $\psi_c \equiv C \bar{\psi}^T$ is a charge conjugated field. (cf. Pseudo scalar diquarks are too heavy!)

• To account for the resonance energy of exotic baryons, JW assumed the diquark correlator has a strong peak around 4 - 500 MeV.

Flavor	Color	Spin	ΔE
$\overline{3}(A)$	$\overline{3}(A)$	0(A)	-8
$\overline{3}(A)$	6(S)	1(S)	-4/3
6(S)	$\overline{3}(A)$	1(S)	8/3
6(S)	6(S)	0(A)	4

Figure 3: MAC analysis

- The relevant energy scale of diquark field is $\Lambda_{\rm QCD} < E < \Lambda_{\chi SB}$.
- The effective Lagrangian for diquarks, quarks, and pions is given as

$$\mathcal{L} = \left| \left(D_{\mu} + V_{\mu} \right) \varphi \right|^{2} - M_{0}^{2} \left| \varphi_{i} \right|^{2} - h_{A} \operatorname{Tr} \left(\varphi^{*} \varphi A_{\mu}^{2} \right) - h'_{A} \varphi \varphi^{*} \operatorname{Tr} \left(A_{\mu}^{2} \right) - \left(g \varphi_{i}^{\alpha} \epsilon^{ijk} \epsilon_{\alpha\beta\gamma} \bar{\psi}_{cj}^{\beta} i \gamma_{5} \psi_{k}^{\gamma} + \text{h.c.} \right) + \mathcal{L}'(\phi, \psi, \bar{\psi}) + \mathcal{L}_{\chi Q},$$

where $D_{\mu} \varphi = \partial_{\mu} \varphi + i g_s A^a_{\mu} T^{a*} \varphi$.

• We have introduced to implement the chiral symmetry, consistently with QCD,

$$V_{\mu} = \frac{1}{2} \left(\xi^{\dagger} \partial_{\mu} \xi + \xi \partial_{\mu} \xi^{\dagger} \right), \quad A_{\mu} = \frac{i}{2} \left(\xi^{\dagger} \partial_{\mu} \xi - \xi \partial_{\mu} \xi^{\dagger} \right)$$
(2)

and

$$\xi = e^{i\pi/f_{\pi}},\tag{3}$$

where $\pi = \pi_a T_a$ and T_a are SU(3) generators with a normalization tr $(T_a T_b) = 1/2 \delta_{ab}$. • Under $SU(3)_L \times SU(3)_R$,

$$\xi \mapsto \xi' = L\xi U^{\dagger} = U\xi R^{\dagger}$$

$$\varphi \mapsto \varphi' = U^{\dagger}\varphi U.$$
(4)

- The diquark effective theory describes how diquarks interact with quarks and NG bosons consistently with QCD.
- It incorporates systematically the symmetry breaking terms.
- We can also introduce a pseudoscalar diquark:

$$\varphi_{P\alpha}^{i}(x) = \lim_{y \to x} \frac{|y - x|^{\gamma_{P}}}{\kappa_{P}} \epsilon^{ijk} \epsilon_{\alpha\beta\gamma} \bar{\psi}_{cj}^{\beta}(x) \psi_{k}^{\gamma}(y)$$
(5)

$$\varphi_{R,L} = \frac{1}{2} \left(\varphi_S \pm i \varphi_P \right) \tag{6}$$

• The mass term becomes

$$\mathcal{L}_{m} = -\Delta^{2} |\varphi_{R}|^{2} + \frac{1}{2} g_{\pi} f_{\pi} \varphi_{R} \xi^{2} \varphi_{R} + (R \leftrightarrow L)$$

$$= -\frac{1}{2} M_{0}^{2} |\varphi|^{2} - \frac{1}{2} M_{P}^{2} |\varphi_{P}|^{2} + \cdots$$
(7)

• From the generalized Goldberg-Treiman relation, we get

$$M_P^2 - M_0^2 = g_\pi f_\pi$$

or

$$M_P - M_0 = g_{\pi D} f_\pi \simeq \frac{2}{3} g_{\pi N} f_\pi \simeq \frac{2}{3} M_N,$$

which is consistent with recent observation of chiral doubler in exotic baryons by H1 experiment.

3. Static properties of Exotic Baryons

- The couplings, g, M_0, \cdots are to be determined by experimental data.
- The diquark mass at one-loop:

• The best data is light nonet scalars, which are assumed to be bound states of diquark and anti-diquark.

• We find a mass formula

$$M(a_0) = M(f_0) = M_{us} + M_{ds} - B$$

$$M(\kappa) = M_{us} + M_{ud} - B$$

$$M(\sigma) = 2M_{ud} - B,$$
(8)

• Sum rule:

$$2M(\kappa) = \frac{1}{2} \left[M(a_0) + M(f_0) \right] + M(\sigma), \tag{9}$$

which works very well with the experimental values, $M(a_0) = M(f_0) =$ 980 MeV, $M(\kappa) = 800$ MeV, and $M(\sigma) = 500 \sim 600$ MeV. • Taking the renormalization point $\mu\simeq 200$ MeV, we get in units of GeV

M_0	M_{us} , M_{ds}	M_{ud}	В	g^2	
0.35	0.56	0.38	0.15	2.64	
0.40	0.61	0.43	0.25	2.92	(10)
0.42	0.63	0.45	0.28	3.03	(10)
0.45	0.66	0.48	0.34	3.19	
0.48	0.69	0.51	0.40	3.36	

- 1. The coupling is not too large and the higher-order corrections are less than 10%.
- 2. The smallness of the higher-order corrections indicates that indeed the diquark picture captures the correct physics of QCD around $\Lambda_{\rm QCD} < E < \Lambda_{\chi \rm SB}$.
- 3. Diquark mass agrees with the random instanton model by Schafer-Shuryak-Verbaarschot.
- From nonet mass $M_{us} M_{ud} \simeq 180 \sim 250 \text{ MeV}$ we get

$$M(\Xi_{3/2}^{--}) - M(\Theta^{+}) = (2M_{ds} + m_u) - (2M_{ud} + m_s)$$

= 2 (250 ~ 180) MeV - (540 - 360) MeV
= 320 ~ 180 MeV (11)

which works reasonably well with the NA49 data.

• Magnetic Moments of Θ^+ , which is important in photo-production :

$$\vec{\mu}_m(\Theta^+) = \vec{\mu}_{\bar{s}} + \vec{\mu}_L + \delta \vec{\mu}_m, \quad (\mu_{\bar{s}} = 0.75 \text{ n.m.})$$
(12)

• At the leading order the correction becomes (other diagrams vanish)

$$\delta\mu_m = \mu_u \frac{g^2}{16\pi^2} \frac{m_u^2}{M_{ds}^2 - m_u^2} \left[1 - \frac{M_{ds}^2}{M_{ds}^2 - m_u^2} \ln\left(\frac{M_{ds}^2}{m_u^2}\right) \right] + (u \leftrightarrow d)$$

• Since diquarks are in *p*-wave, for 400 MeV $\leq M_0 \leq 450$ MeV,

$$\mu_L = \frac{e}{3} \frac{1}{M_{ud}} \simeq 1.31 \sim 1.46 \text{ n.m..}$$
(13)

• We find $\mu_m(\Theta^+) = 0.71 \sim 0.56$ n.m. for $J^P = \frac{1}{2}^+$, if we take $m_u \simeq m_d \simeq 360$ MeV and $\mu_u = 1.98$ n.m., $\mu_d = -1.10$ n.m..

• For
$$J^P = \frac{3}{2}^+$$
, we get $\mu_m(\Theta^+) = 2.21 \sim 2.06$ n.m.

- It is slightly bigger that the values obtained by QCD sum rule and by Chiral soliton model.
- The corrections, $\delta \mu_m \simeq 5 \times 10^{-3}$ n.m., are quite small.

4. Decay Width of Pentaquarks

• Puzzle: The decay width is unusually narrow!

Experiments	Results Mass (MeV)	Width (Mev)	Significance (ơ)
LEPS	1540±10±5	Γ < 25	4,6±1
DIANA	1539±2±"few"	$\Gamma < 8$	4.4
CLAS	$1542 \pm 2 \pm 5$	FWhM < 21	5.3±0.5
SAPHIR	1540±4±2	$\Gamma < 25$	4.8
ITEP (ν 's)	1533±5	$\Gamma < 29$	6.7
HERMES	$1526 \pm 2 \pm 2.5$	$\Gamma < 20$	5.6
World Average	1535±2.5		
Prediction	1530 Γ <	15 I=0	$S=+1$ $J^{P}=\frac{1}{2}^{+}$

• Decay of $\Theta^+ \mapsto K^+ + n$. The decay width is given as

$$\Gamma = \lim_{v \to 0} \sigma(\bar{s} + \phi_{ud} + \phi_{ud} \to K^+ + n) v |\psi(0)|^2, \quad (14)$$

Figure 4: Decay process of $\Theta^+ \to K^+ + n$. Gluons are suppressed.

• Since $M_{jk} < m_j + m_k$, the decay of exotic baryons should occur through tunneling.

Figure 5: Decay as a tunnelling process

• Here d quark tunnels from one diquark φ_{ud} to the other diquark to form a neutron and an off-shell u quark. (If u were to tunnel, the decay is to $K^0 p$ with a comparable decay width.) • The differential cross section is given as

$$d\sigma = \frac{(2\pi)^4 |\mathcal{M}|^2}{4\sqrt{(p_3 \cdot p_2)^2 - m_s^2 M_{ud}^2}} \, 4 \, e^{-2S_0} \, d\Phi(p_3 + p_2; k_1, k_2), \quad (15)$$

• Assuming factorization or small corrections by gluons, the amplitude becomes

$$\mathcal{M} = \frac{g_A g}{\sqrt{2} f_K} \, \bar{v}_s(p_1) \not k_1 \gamma_5 \, \frac{1}{\not k_1 - \not p_1 - m_u} \, \gamma_5 \, v_d(k_2), \tag{16}$$

• Integrating over the phase space and taking $v \rightarrow 0$, we find the decay width

$$\Gamma_{\Theta^+} \simeq 5.0 \ e^{-2S_0} \ \frac{g^2 g_A^2}{8\pi f_K^2} \ |\psi(0)|^2 \,.$$
 (17)

• $e^{-S_0} = \langle n, u | H_{int} | \varphi_{ud}, \varphi_{ud} \rangle$ is the tunnelling amplitude.

• Using the WKB approximation, we get the tunnelling amplitude,

$$e^{-S_0} = \langle n | T e^{i \int d^4 x \, \mathcal{L}_{int}} | d, \varphi_{ud} \rangle \approx e^{-\Delta E \, r_0}, \qquad (18)$$

where $\Delta E = (m_u + m_d) - M_{ud} \simeq 270 \text{ MeV}$ is the diquark binding energy and r_0 is the distance between two diquarks.

• By the naive (di)-quark model,

$$M_{\Theta^+} = 2M_{ud} + m_{\bar{s}} + \frac{2}{M_{ud} r_0^2},$$
(19)

we find $r_0 = (150 \text{ MeV})^{-1} = 1.3 \text{ fm}$, using the empirical mass $M_{\Theta^+} = 1540 \text{ MeV}$.

- The tunneling amplitude becomes $e^{-1.8} \simeq 0.17$.
- The 1S wave function of the quark-diquark at the origin is

$$\psi(0) = \frac{2}{a_0^{3/2}} \frac{1}{\sqrt{4\pi}}, \qquad a_0 \simeq (2\overline{m}\,B)^{-1/2}$$
(20)

• Taking $B = 100 \sim 200$ MeV, comparable to the pentaquark binding energy, $g^2 = 3.03$ and $g_A = 0.75$ from the quark model, we find

$$\Gamma_{\Theta^+} \simeq 2.5 \sim 7.0 \text{ MeV}.$$
 (21)

 Since the binding energy the us (or ds) diquarks ΔE₁ ≃ 270 MeV, for the Ξ⁻⁻_{3/2} the average separation of P-wave strange-diquarks r₁ ≃ (270 MeV)⁻¹.

$$\Gamma_{\Xi_{3/2}^{--}} \simeq 0.51 \ e^{-2\Delta E_1 r_1} \cdot \frac{g^2 g_A^2}{8\pi f_\pi^2} \ |\psi_u(0)|^2 \simeq 1.7 \sim 4.8 \ \text{MeV}, \ (22)$$

• The relative partial decay width is

$$\frac{\Gamma_{\Xi_{3/2}^{--}}}{\Gamma_{\Theta^+}} \simeq 0.1 \left[\frac{f_K |\psi_u(0)|}{f_\pi |\psi_s(0)|} \right]^2 e^{2(\Delta E r_0 - \Delta E_1 r_1)} \simeq 0.7.$$
(23)

$$\Gamma_{S \to \pi\pi} = \frac{1}{16\pi} \frac{|\mathcal{M}|^2}{M_1 M_2} \frac{|\vec{k}_1|}{\sqrt{\vec{k}_1^2 + m_A^2} + \sqrt{\vec{k}_1^2 + m_B^2}} |\Psi(0)|^2, \qquad (25)$$

• Fitting the couplings with data

set	h_A	h_A'	$\Gamma_{\sigma \to 2\pi}$ (MeV)	$\Gamma_{f_0 \to 2\pi}$ (MeV)	$\Gamma_{a_0 \to \eta \pi}$ (MeV)
1	1.46	-1.66	317	67	83
2	1.20	-1.38	234	71	57

• Postdiction for subdominant modes: $\Gamma_{f_0 \to 2K}^{\exp} = 5.6 \sim 32 \text{ MeV}$

$$\Gamma_{S \to \pi^A \pi^B} = N \int_{s_{min}}^{s_{max}} \frac{\mathrm{d}s}{4\pi^2 s} \frac{|\vec{k}_f| |\mathcal{M}|^2}{\sqrt{\vec{k}_f^2 + m_A^2} + \sqrt{\vec{k}_f^2 + m_B^2}} \frac{m_S \Gamma_S |\Psi_s(0)|^2}{(s - m_S^2)^2 + m_S^2 \Gamma_S^2}$$

• We obtain 75 MeV with set 1 and 59 MeV with set 2 for $\Gamma_{f_0 \rightarrow 2K}$.

6. Conclusion and Outlook

• Diquark effective theory captures a correct physics of QCD.

 $\frac{g^2}{16\pi^2} \simeq 0.2$

- It provides a systematic approach for exotics:
 - 1. Magnetic moment:

$$\mu_m(\Theta^+) = 0.71 \sim 0.56 \text{ n.m. for } J^P = \frac{1}{2}^+,$$

 $2.21 \sim 2.06 \text{ n.m. for } J^P = \frac{3}{2}^+$

2. Mass spectrum in $\overline{10}_f$:

 $M(\Xi_{3/2}^{++}) - M(\Theta^{+}) = 320 \sim 180 \text{ MeV}$

3. Decay widths

$$\Gamma_{\Theta^+} \simeq 5.0 \ e^{-2S_0} \ \frac{g^2 g_A^2}{8\pi f_K^2} \ |\psi(0)|^2 \simeq 2.5 \sim 7.0 \ \text{MeV}$$

$$\Gamma_{\Xi^{++}} \simeq 0.51 \ e^{-2\Delta E_1 r_1} \cdot \frac{g^2 g_A^2}{8\pi f_\pi^2} \ |\psi_u(0)|^2 \simeq 1.7 \sim 4.8 \ \text{MeV}.$$

which is quite small due to the tunneling, $e^{-2S_0} \simeq 0.03$.

\star N.B. We need to know more about the diquark potential.

- Rigorous QCD calculations like lattice QCD or others are needed to estimate the diquark correlation.
- In reasonably good agreement with the experimental data on the decay width of scalar nonet. $h_A = 1.20$, $h'_A = -1.38$
- Production of pentaquarks in $D\chi QET$ (with Song and Sohn)