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a b s t r a c t

Weprove that any compact almost complexmanifold (M2m, J) of real dimension 2m admits
a pseudo-holomorphic embedding in (R4m+2, J̃) for a suitable positive almost complex
structure J̃ . Moreover, we give a necessary and sufficient condition, expressed in terms of
the Segre class sm(M, J), for the existence of an embedding or an immersion in (R4m, J̃).
We also discuss the pseudo-holomorphic embeddings of an almost complex 4-manifold in
(R6, J̃).

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In this article we give some existence results of pseudo-holomorphic embeddings of almost complex manifolds into
almost complex Euclidean spaces. More precisely, we prove that such an embedding exists if the dimension of the ambient
Euclidean space is at least 4m+2, where 2m is the real dimension of the sourcemanifold.We also give results about pseudo-
holomorphic immersions and embeddings into R4m under certain assumptions on the Chern class. The Euclidean space is
endowed with a suitable non-standard almost complex structure, which is not integrable in general.

As a further result, we provide a condition for the existence of codimension-two pseudo-holomorphic embeddings of
almost-complex 4-manifolds.

We notice that Theorem 1 represents a major improvement of the main result of [1], where the pseudo-holomorphic
embedding was in R6m. We reduce the dimension of the ambient Euclidean space to 4m + 2. It is the best possible result,
since there is an obstruction for pseudo-holomorphic embeddings in R4m, as stated in Theorem 3. We also fix a mistake in
the proof of the main result of [1] that has to do with the homotopy type of the space of linear complex structures on R2n.
These spaces have been considered to be (n− 1)-connected in [1], but this is false. In the present paper we prove a stronger
result, which is represented by Theorem 1.
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The space of positive linear complex structures on R2n is homotopy equivalent to the symmetric space Γ (n) =

SO(2n)/U(n). If k ≤ 2n − 2, the homotopy groups πk(Γ (n)) are said to be stable. The stable homotopy groups of Γ (n)
have been computed by Bott [2], who showed that for k ≤ 2n − 2,

πk(Γ (n)) ∼= πk+1(SO(2n)) ∼=

0 for k ≡ 1, 3, 4, 5
Z for k ≡ 2, 6
Z2 for k ≡ 0, 7.

(mod 8)

For the unstable homotopy groups of Γ (n), see [3–6].
Now we state our main results, which are the following.

Theorem 1. Any almost complex manifold (M2m, J) of real dimension 2m can be pseudo-holomorphically embedded in
(R4m+2, J̃) for a suitable positive almost complex structure J̃ .

Notice that the codimension 2m + 2 improves the 4m of [1, Theorem 1] form > 1.
We denote by c(M, J) the total Chern class of (M, J), and by s(M, J) = c(M, J)−1 the total Segre class of (M, J). Let

sk(M, J) ∈ H2k(M) be the 2k-dimensional term of s(M, J). We also define

I(M, J) = −
1
2
⟨sm(M, J), [M]⟩ ∈ Z.

Remark 2. I(M, J) is an integer because the normal Euler number of an immersion of M2m in R4m is even by a theorem of
Whitney [7]. Indeed, −2I(M, J) is going to be the normal Euler number, see the proof of Theorem 3.

Theorem 3. An almost complexmanifold (M2m, J) of real dimension 2mcan be pseudo-holomorphically immersed in (R4m, J̃) for
a suitable positive almost complex structure J̃ if and only if I(M, J) > 0. In this case, there is a self-transverse pseudo-holomorphic
immersion (M, J) # (R4m, J̃) with exactly I(M, J) double points. Thus, (M, J) can be pseudo-holomorphically embedded in
(R4m, J̃), for some J̃ , if and only if I(M, J) = 0.

The first part of the following corollary is immediate because s1(S, J) = −c1(S, J), hence I(S, J) = 1 − g(S) for a closed
Riemann surface (S, J), see also [8]. The second part is a consequence of known facts, that is the existence of a torus fibration
on S4, which is due to Matsumoto [9]. However, we incorporate this result in the corollary because this construction en-
lightens nicely andmore concretely our results in the case of elliptic curves as a family of pseudo-holomorphic curves in R4.

Corollary 4. (S, J) can be pseudo-holomorphically immersed in (R4, J̃), for some J̃ , if and only if S is either a torus or a sphere.
Moreover, J̃ can be suitably chosen so that (R4, J̃) admits a two-dimensional holomorphic singular foliation with the property
that the regular leaves but one are pseudo-holomorphically embedded tori, the other regular leaf is a pseudo-holomorphically
embedded cylinder S1 × R, and the singular leaf is a pseudo-holomorphically immersed sphere with one node.

For a closed, oriented 4-manifoldM , we denote the signature ofM by σ(M).

Theorem 5. Suppose that (M, J) is a closed almost complex 4-manifold such that H2(M) has no 2-torsion. Then, (M, J) can be
pseudo-holomorphically embedded in (R6, J̃), for some J̃ , if and only if σ(M) = χ(M) = 0 and c1(M, J) = 0.

Remark 6. Our proof of Theorem 1 also shows the existence of an isometric and pseudo-holomorphic embedding of an al-
most Hermitian manifold (M2m, J, g) into (R2qm , J̃, g0), where g0 is the flat standard metric, J̃ is a suitable almost complex
structure compatible with g0 and qm is a sufficiently large integer. Indeed, the proof of Theorem 1 starts with the use of the
well-known theorem ofWhitney to embedM into R4m+2. If we start our proof of Theorem 1with an isometric embedding f
of (M, g) into (R2qm , g0)where qm is determined as in Nash’s theorem [10], then our proof shows the existence of the suit-
able J̃ compatible with g0 such that f is also pseudo-holomorphic (for recent improvements of qm see [11] and the references
therein).

The paper is organized as follows. In Section 2 we address some preliminaries and fix notations. In Section 3 we prove
Theorems 1 and 3. The proofs make use of Proposition 11, which is proved therein. In Section 4 we quickly recall basic facts
about Lefschetz fibrations, and prove the second part of Corollary 4. Section 5 addresses the four-dimensional case, with
the proof of Theorem 5. We conclude with some remarks in Section 6, providing also the sketch of an alternative proof of
Theorem 5.

2. Preliminaries

Throughout this paper, manifolds are assumed to be connected, oriented, and smooth, that is of class C∞. Maps between
manifolds are also assumed to be smooth, if not differently stated.
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LetM be an even dimensional manifold. An automorphism J : TM → TM satisfying J2 = −id is called an almost complex
structure onM . The pair (M, J) is called an almost complexmanifold. Equivalently, an almost complex structure is a complex
structure on the tangent bundle, where themultiplication by i on TpM corresponds to the action of Jp. In particular, an almost
complex structure determines a preferred orientation on M . If M is already oriented, J is said to be positive if the given
orientation coincides with the one determined by J . Otherwise, J is said to be a negative almost complex structure.

The space Γ (n) of positive linear complex structure on R2n, that is the set of matrices which are conjugate to

Jn =


n


0 −1
1 0


by an element of GL+(R2n), is diffeomorphic with the symmetric space GL+(R2n)/GL(Cn), which in turn is homotopy
equivalent to Γ (n). An almost complex structure on R2n can be considered as a map J : R2n

→ Γ (n).
Definition 7. Let (M, J) and (N, J ′) be almost complex manifolds. A map f : M → N is said to be pseudo-holomorphic if
Tf ◦ J = J ′ ◦ Tf . Equivalently, f is pseudo-holomorphic if and only if the tangent map is complex linear at each point.

Our results depend on well-known theorems of Whitney on the existence of immersions and embeddings of smooth
manifolds into Euclidean spaces [7,12]. We also make use of the Hirsch–Smale theory on the classification of immersions
[13,14]. We first quickly recall Whitney’s theorems.

Theorem 8 (Whitney [7]). Any smooth m-manifold can be embedded in R2m.

Theorem 9 (Whitney [12]). For m > 1, any smooth m-manifold can be immersed in R2m−1.

A key ingredient in the proof of Theorem 8 is the self-intersection number I(f ) of an immersion f : Mm
→ R2m with

normal crossings, that is an immersion f whose self-intersections are all transverse double points.
Whenm is even andM is orientable, I(f ) is the algebraic self-intersection of f (whereas ifm is odd orM is non-orientable,

I(f ) is defined onlymod 2). By results ofWhitney form > 3 and Hirsch (based onwork of Smale) form = 2, two immersions
f and g of Mm into R2m are regularly homotopic if and only if I(f ) = I(g) and moreover any f is regularly homotopic to an
immersion with exactly |I(f )| singular points. In particular, f is regularly homotopic to an embedding if and only if I(f ) = 0.

Our proof of Theorem 3 is based on the following theorem of Hirsch [13] and Smale [14]. We denote by Imm(M,N) the
space of immersions ofM into N , and by Mon(TM, TN) the space of bundle monomorphisms from TM to TN , endowed with
the C∞-topology, withMm and Nn manifolds of dimensionsm < n.

Theorem 10. The tangent map T : Imm(M,N) → Mon(TM, TN) is a weak homotopy equivalence. In particular, the tangent
map induces a bijection π0(Imm(M,N)) ∼= π0(Mon(TM, TN)).

In other words, the classification of immersions up to regular homotopy is reduced to that of monomorphisms up to
homotopy.

For N = Rn, homotopy classes of bundle monomorphisms TM → TRn correspond to homotopy classes of maps
TM → Rn which are linear and injective on each fiber, and in turn these are sections of a bundle over M with fiber
diffeomorphic to the Stiefel manifold Vm(Rn) of linear injective maps Rm

→ Rn, that is the space of n × m matrices of
rankm. Notice that Vm(Rn) is homotopy equivalent to the homogeneous space SO(n)/SO(n − m).

Now we focus on the immersions of a closed, oriented, connected manifold M2m into R4m. By obstruction theory, the
obstructions to homotopy between two sections of a V2m(R4m)-bundle lie in the cohomology groups H i(M, πi(V2m(R4m))).
Since V2m(R4m) is (2m − 1)-connected, the only obstruction lies in

H2m(M;π2m(V2m(R4m))) ∼= π2m(V2m(R4m)) ∼= Z.

Hence, there are identifications

π0(Imm(M,R4m)) ∼= π0(Mon(TM, TR4m)) ∼= π2m(V2m(R4m)) ∼= Z.

This is given exactly by the self-intersection I(f ) for immersions with only normal crossings.
Let νf be the normal bundle of the immersion f . It is well known that the normal Euler class e(νf ) is given by −2I(f )[M]

(see [7,15]). Hence, the normal Euler class also classifies regular homotopy classes of immersions of M2m into R4m. We use
this fact in the proof of Theorem 3.

3. The proofs of Theorems 1 and 3

First, we prove the following proposition. Let J1 be the standard complex structure on Cn.

Proposition 11. (M2m, J) can be pseudo-holomorphically embedded in (R2n, J̃) for a suitable positive almost complex structure
J̃ , if and only if there is an embedding f : M → R2n such that the tangent map Tf : TM → TR2n is homotopic to a complex linear
monomorphism (with respect to J and J1) through a homotopy of monomorphisms covering f .
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Proof. We begin with the ‘only if’ part. Take a pseudo-holomorphic embedding f : (M, J) → (R2n, J̃). We can assume that
J̃ is equal to J1 outside of a sufficiently large ball B2n(R) of radius R > 0 and centered at the origin. We take R such that
f (M) ⊂ B2n(R/2).

Since J̃ and J1 are both positive almost complex structures on the contractible spaceR2n, there exists a homotopy (Jt)t∈[0,1]

of almost complex structures between J0 = J̃ and J1 whose support is in B2n(R).
In other words, we have a smooth map g : B2n(R) × [0, 1] → Γ (n), such that gt = g(·, t) = Jt for all t ∈ [0, 1]. Since

g1 is a constant map, we have the trivial lift ḡ1 : B2n(R) → GL+(R2n), which is the constant map to the identity element.
Hence, by the homotopy lifting property, there exists a lift

ḡ : B2n(R)× [0, 1] → GL+(R2n)

of g with respect to the projection GL+(R2n) → Γ (n). By taking the columns of the corresponding matrix, we obtain vector
fields {e1(t), e2(t), . . . , e2n−1(t), e2n(t)} on R2n, which depend smoothly on t ∈ [0, 1], span pointwise the tangent bundle
TR2n, and satisfy

Jt(e2k−1(t)) = e2k(t), e2k−1(1) =
∂

∂xk
, e2k(1) =

∂

∂yk
(k = 1, . . . , n),

where we denote by (x1, y1, . . . , xn, yn) the cartesian coordinates of R2n.
Now, we have a homotopy ψt : (TR2n, J0) → (TR2n, Jt) of C-linear bundle isomorphisms over the identity map R2n

→

R2n such that ψt(ei(0)) = ei(t) for all i = 1, . . . , 2n. Then, Ft = ψt ◦ Tf : TM → TR2n is a homotopy of monomorphisms
covering f such that F0 = Tf and F1 is complex linear with respect to the standard structure J1.

Next, we prove the ‘if’ part. Let (Ft : TM → TR2n)t∈[0,1] be a homotopy of monomorphisms covering f between F0 = Tf
and a C-linear monomorphism F1 : (TM, J) → (TR2n, J1). Let νt be the normal bundle of Ft .

The fiber of ν1 over p ∈ M is the orthogonal complement of F1(TpM) in Tf (p)Cn, which is a complex linear subspace.
Therefore, ν1 admits a complex structure J ′. Since we have a homotopy (νt)t∈[0,1] of normal bundles, we can pull back J ′
to ν0, the normal bundle of f . Thus, we get a complex structure J ′′ = J ⊕ J ′ on the trivial bundle (TR2n)|M , which is a
map J ′′ : f (M) → Γ (n). By construction, J ′′ is null-homotopic. Hence, there is an extension J̃ : R2n

→ Γ (n) of J ′′, and this
concludes the proof. �

Now, we are ready to prove Theorem 1.

Proof of Theorem 1. We take an embedding f : M2m
→ R4m+2. By Proposition 11, it is enough to show the existence of

a complex linear monomorphism which is homotopic to the tangent map Tf via a homotopy of monomorphisms covering
f . A complex linear monomorphism covering f corresponds to a section of a Vm(C2m+1)-bundle over M , where we denote
by Vm(Cn) ≃ U(n)/U(n − m) the complex Stiefel manifold of complex linear injective maps Cm

→ Cn. Notice that the
identification Cn ∼= R2n induces a canonical inclusion Vm(Cn) ⊂ V2m(R2n).

Since Vm(C2m+1) is (2m + 2)-connected, a section uniquely exists up to homotopy. Since V2m(R4m+2) is (2m + 1)-
connected, the homotopy type of monomorphisms covering f is also unique. Hence, a pseudo-holomorphicmonomorphism
exists and it is homotopic to the tangent map Tf via a homotopy of monomorphisms covering f . �

Proof of Theorem 3. We begin with the proof of the ‘only if’ part. Let f : (M2m, J) → (R4m, J̃) be a self-transverse pseudo-
holomorphic immersion. Then the complex bundle TM ⊕ νf is trivial. This implies that the total Chern class satisfies
c(M, J) c(νf ) = 1. The Euler class is given by e(νf ) = cm(νf ) and coincides with the 2m-dimensional term of c(M, J)−1

=

s(M, J). By Whitney’s formula stated at the end of previous section, ⟨−e(νf ), [M]⟩ = 2I(f ), which in our complex case must
be non-negative. Hence, I(M, J) > 0. Moreover, if f is an embedding, we get I(M, J) = 0.

Next prove the ‘if’ part. Since Vm(C2m) is 2m-connected, there is a complex linear monomorphism F : TM → TC2m.
By Theorem 10 there is an immersion f ′

: M → R4m, with normal crossings, such that Tf ′ is homotopic to F as a real
monomorphism.

In particular, the normal bundle νf ′ admits a complex structure J ′. Notice that the Whitney sum TM ⊕ νf ′ is a trivial
complex vector bundle because, by construction, it is equivalent to the pullback (f ′)∗(TC2m). Therefore, we have c(νf ′) =

c(M, J)−1.
It follows that −2I(M, J) = ⟨e(νf ′), [M]⟩. Hence, I(M, J) is the algebraic self-intersection of f ′ [7]. This implies that f ′ is

regularly homotopic to an immersion f : M → R4m with exactly I(M, J) double points, which are necessarily all positive.
Notice that the normal bundle νf , being isomorphic to νf ′ , inherits a complex structure which we still denote by J ′.

If I(M, J) = 0, f is an embedding and the complex bundle TM ⊕ νf over M gives a map g : f (M) → Γ (2m) which is
homotopic to a constant, since Tf : TM → TR4m is homotopic to a complex linear monomorphism by a homotopy of linear
monomorphisms. Therefore, g can be extended to an almost complex structure J̃ on R4m such that f : (M, J) → (R4m, J̃) is
a pseudo-holomorphic embedding.

Next consider the case I(M, J) > 0. First, isotope f so that the two tangent spaces at the self-intersection points of f (M)
are orthogonal. We regard (TxM)⊥ as a linear subspace of Tf (x)R4m, endowed with the complex structure J ′x. By means of the
linear monomorphism Txf : TxM → Tf (x)R4m, we can also identify TxM with a linear subspace of Tf (x)R4m, for all x ∈ M .
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Let p, q ∈ M be two distinct points such that f (p) = f (q) = r . By the connectedness of Γ (m), we can homotope J ′ in a
neighborhood of p and q so that J ′p = Jq and J ′q = Jp (up to the above identification). Indeed, this can be achieved by changing
J ′ inside disjoint balls around such points p and q.

After performing this homotopy on all such pairs of points, we get an almost complex structure J ⊕ J ′ on R4m which is
well-defined along the immersed manifold f (M), that is a map g : f (M) → Γ (2m).

The composition g ◦ f : M → Γ (2m) is null-homotopic because, by construction, (νf , J ′) is homotopic to νF , and so g ◦ f
is homotopic to the pullback of TC2m by F , which is a constant map.

The space f (M) is obtained from M by identifying finitely many pairs of points. So, f (M) is homotopy equivalent to the
wedge sum of M with n copies of S1, that is f (M) ≃ M ∨ (∨n S1), where n is the number of the double points of f . In order
to show that g is homotopic to a constant, we can assume that g is defined on this wedge sum (up to composing g with a
suitable homotopy equivalence).

Since Γ (2m) is simply-connected, the map g can be homotoped to a constant on the circles S1 in the wedge sum. So, g
factorizes by amap g ′

: M → Γ (2m)which is homotopic to g◦f , hence to a constant. Therefore, g is homotopic to a constant.
This means that g can be extended to a map J̃ : R4m

→ Γ (2m), which is the desired almost complex structure. �

Remark 12. In the case where M2m is open, any almost complex manifold (M2m, J) can be pseudo-holomorphically
embedded in (R4m, J̃) for a suitable positive almost complex structure J̃ . Since the open manifold M2m is isotopic to a
neighborhood of the (2m−1)-skeleton and V2m(R4m) is (2m−1)-connected, the spaceMon(TM2m, TR4m) is path-connected.

4. A pseudo-holomorphic foliation of (R4, J̃) and the proof of Corollary 4

We first recall the notion of Lefschetz fibration. For further details and general facts about Lefschetz fibrations, see for
example [16] or [17, Section 6].

LetM be a closed 4-manifold, and let S be a closed surface. A Lefschetz fibration onM is a map f : M → S such that at the
critical points, f is locally equivalent to the complex non-degenerate quadratic form (z1, z2) → z1z2 (positive critical point),
or to (z1, z2) → z1z̄2 (negative critical point), with respect to suitably chosen local complex coordinates that are compatible
with the given orientations. It follows that a Lefschetz fibration is an open map. We assume that f is injective on the critical
set, which is a finite set.

Away from the critical image Crit(f ) ⊂ S, f is a surface bundle over S − Crit(f ), with fiber a closed, oriented surface F
(the regular fiber of f ). If g is the genus of F , we say that f is a genus-g Lefschetz fibration.

A singular fiber Fa = f −1(a), a ∈ Crit(f ), is an immersed surface with one node singularity. Notice that this node can be
positive or negative, accordingly with its sign as a critical point of f . We denote by Crit+(f ) ⊂ S the set of positive critical
values of f , and by Crit−(f ) ⊂ S the set of negative critical values. Hence, we have Crit(f ) = Crit+(f ) ⊔ Crit−(f ). By looking
at the local model, one can show that there is a simple curve ca ⊂ F , which is called a vanishing cycle, such that Fa ∼= F/ca.
The monodromy of a small loop around a in S is a Dehn twist about the curve ca. The vanishing cycles are not uniquely
determined, depending on the choice of generators for π1(S − Crit(f )).

Given a Lefschetz fibration f : M → S, it is a known fact that there are almost complex structures J̃ onM+ = M−Crit−(f )
and J on S such that f| : (M+, J̃) → (S, J) is pseudo-holomorphic. In particular the fibers of f|M+

are pseudo-holomorphic
(possibly immersed) curves, which define a pseudo-holomorphic singular foliation. For the sake of completeness, we give
the construction of such almost complex structures.

For any positive critical point a of f , take a local complex chart (Ua, ϕa) around a and a local complex chart (Va, ψa)
around f (a) such that (ψa ◦ f ◦ ϕ−1

a )(z1, z2) = z1z2. Moreover, we assume that Va = f (Ua) and Cl(Va) ∩ Cl(Va′) = ∅ for all
a ≠ a′. Take also a smaller compact neighborhood U ′

a ⊂ Ua of a.
Next, we endow M with a Riemannian metric g such that ϕa is an isometry in a neighborhood of U ′

a, for all a ∈ Crit+(f ),
where C2 is endowed with the Euclidean metric.

Also, endow S with a complex structure J . Since the space Γ (1) is contractible, up to deforming J in a neighborhood of
f (U ′

a), we can assume that ψa : (Int(f (U ′
a)), J) → C is complex analytic for all a.

Next, define an almost complex structure J̃ onM+−Crit+(f ) such that J̃ is a 90◦-rotation in the counterclockwise direction
(with respect the given orientation) on any tangent plane TpFp to a fiber Fp = f −1(f (p)) for p ∈ M+ − Crit+(f ), while on its
orthogonal complement (TpFp)⊥, J̃ is the pullback of J through the isomorphism (Tpf )| : (TpFp)⊥ → Tf (p)S.

It follows that J̃ coincides in U ′
a − {a} with the integrable complex structure determined by the local chart ϕa, hence J̃

extends over Crit+(f ).
By construction, f : (M+, J̃) → (S, J) is pseudo-holomorphic, hence the fibers are pseudo-holomorphic curves.

Matsumoto’s fibration on S4. In [9] Matsumoto constructed a genus-1 Lefschetz fibration f : S4 → S2 with two critical points
{a+, a−} of opposite signs (see also [16, Example 8.4.7] for a description in terms of Kirby diagrams).

We sketch this construction here.We beginwith the Hopf fibration h : S3 → S2, which is the projectivizationC2
−{0} →

CP1 ∼= S2 restricted to S3 ⊂ C2, which is defined by the equation |z1|2 +|z2|2 = 1. Thenmake the suspensionΣh : S4 → S3.
The map f can be described topologically as a perturbation of f1 = h◦Σh. It is worth noting that both f1 and f are nice maps
that represent the generator of π4(S2) ∼= Z2.
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The construction of f goes as follows. Recall that the Hopf fibration is given by

h(z1, z2) = (2z1z̄2, |z1|2 − |z2|2),

where we consider S2 ⊂ C × R to be defined by the equation |z|2 + x2 = 1.
The suspension can be represented by

Σh(z1, z2, x) =


2z1z̄2, |z1|2 − |z2|2 + ix


2 − x2


,

where S4 ⊂ C2
× R has equation |z1|2 + |z2|2 + x2 = 1.

After some straightforward simplifications, we get that f1 = h ◦Σh can be expressed by the formula

f1(z1, z2, x) =


4z1z̄2


|z1|2 − |z2|2 − ix


2 − x2


, 8|z1|2|z2|2 − 1


.

It can be proved that f1 is a genus-1 Lefschetz fibration with two critical points a± = (0, 0,±1) ∈ S4 of opposite signs.
The problem is that f1(a+) = f1(a−), so the singular fiber is a sphere with two opposite nodes. This is due to the fact that
Σh(a+) = (0, i) and Σh(a−) = (0,−i) belong to the same fiber of h. We handle this issue by taking an orientation-
preserving diffeomorphism k : S3 → S3 such that k(0, i) and k(0,−i) belong to different fibers of h. Finally put

f = h ◦ k ◦Σ f .

It follows that f is a genus-1 Lefschetz fibration with two critical points a± such that f (a+) ≠ f (a−).
The singular fibers of f are two immersed spheres Σ± = f −1(f (a±)), each one with one positive or negative node

singularity. Notice thatΣ± − {a±} ∼= S1 × R.
By the above construction, we get an almost complex structure J̃ on S4 − {a−} ∼= R4, such that f| : (R4, J̃) → S2 is

pseudo-holomorphic, and this concludes the proof of Corollary 4.

Remark 13. In [18] we show by different methods that J̃ can be taken integrable.

5. Almost complex 4-manifolds in R6

In this section we prove Theorem 5. We will make use of the following theorem.

Theorem 14 (Cappell–Shaneson [19,20]). A closed, orientable, smooth 4-manifold M embeds in R6 if and only if w2(M) = 0
and σ(M) = 0.

Proof of Theorem 5. We begin with the ‘only if’ part. Take a pseudo-holomorphic embedding f : (M, J) → (R6, J̃). Since f
is a codimension-2 embedding in a Euclidean space, the normal complex line bundle νf is trivial (see for example [21, Sec.
8, Theorem 2]), so

c(M, J) = c(M, J) c(νf ) = f ∗(c(R6, J̃)) = 1.

Therefore, c1(M, J) = 0 and χ(M) = ⟨c2(M, J), [M]⟩ = 0. Moreover,w2(M) = 0 and σ(M) = 0 by Theorem 14.
Next, we prove the ‘if’ part. Since σ(M) = 0 and w2(M) ≡ c1(M, J) (mod 2) is zero, there is an embedding f : M → R6

by Theorem 14. The normal bundle νf is trivial [21]. Let J ′ be a complex structure on νf such that J ′ is compatible with the
normal orientation induced by the embedding f .

Thus, we get an almost complex structure J ⊕ J ′ on (TR6)|M ∼= TM ⊕ νf , that is a map g : M → Γ (3). Now we show that
g is null-homotopic. Take a cell decompositionM(0)

⊂ M(1)
⊂ M(2)

⊂ M(3)
⊂ M(4)

= M , whereM(i) is the i-skeleton of M .
Recall that

πi(Γ (3)) = πi(Γ (3)) =


0 for i = 1, 3, 4
Z for i = 2.

Therefore, the only obstructionΩ(g) for g to be null-homotopic lies in

H2(M;π2(Γ (3))) = H2(M).

In other words, g is homotopic to a constant map over the 2-skeletonM(2) if and only if the elementΩ(g) ∈ H2(M) is zero.
Moreover, once g has been homotoped to a constant on M(2), we can extend this homotopy over higher skeleta because
π3(Γ (3)) = π4(Γ (3)) = 0.

Since c1(M, J) = 0 and since H2(M) has no 2-torsion, the following lemma implies that Ω(g) = 0, and this concludes
the proof. �

Lemma 15. 2Ω(g) = c1(M, J).

Proof. For a topological group G, we denote by BG the classifying space of G, so that there is a natural bijection between the
set of equivalence classes of principal G-bundles over any CW-complex X , and the set of homotopy classes of maps [X, BG],
see [22,23].
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The inclusion U(3) → SO(6) induces a fibration BU(3) → BSO(6)with fiber Γ (3) [24, p. 680]. Let ι : Γ (3) → BU(3) be
the inclusion. Then the composition ι ◦ g : M → BU(3) is the classifying map of the complex vector bundle TM ⊕ νf .

The homotopy exact sequence for the fibration Γ (3) → BU(3) → BSO(6), that is

π3(BSO(6)) → π2(Γ (3)) → π2(BU(3)) → π2(BSO(6)) → π1(Γ (3))

is given by 0 → Z → Z → Z2 → 0. Hence, themap ι∗ : π2(Γ (3)) → π2(BU(3)) is the double map in Z. Thus,Ω is mapped
to

2Ω ∈ H2(M;π2(BU(3))) = H2(M),

which is the obstruction for ι ◦ g to be null-homotopic overM(2).
On the other hand, (ι ◦ g)|M(2) determines the class (ι ◦ g)∗c1, where c1 is a generator of H2(BU(3)) ∼= Z. Hence, 2Ω(g) is

equal to the first Chern class of the complex vector bundle TM ⊕ νf . Therefore, we obtain 2Ω(g) = c1(M, J ⊕ J ′) = c1(M, J).
We note that a similar argument can be found in the proof of Theorem 8.18 in [25] and in Section 8.1 of [26].

6. Final remarks

(1) In the proofs of Theorems 1 and 5 we actually showed that any given embedding f of M into the ambient Euclidean
space can bemade pseudo-holomorphic with respect to a suitable almost complex structure on the ambient space (that
is,R4m+2 orR6). The same holds for a given immersion intoR4m in the proof of Theorem3withminimal self-intersection,
provided it is self-orthogonal at the self-intersection points.

(2) By a theorem of Dold and Whitney [27] and by Hirzebruch’s signature formula [28], we have that w2(M) = 0 and
σ(M) = χ(M) = 0 if and only ifM is parallelizable.

In general, if M2m has trivial Euler characteristic and embeds in R2m+2, then M2m is parallelizable. This follows from
Kervaire’s theorem about the generalized curvatura integra [29]. We quickly sketch this proof.

Let Mn
⊂ Rn+k, k > 1, be a framed submanifold, that is an embedded submanifold M along with a trivialization of

the normal bundle, which is essentially a map G : M → Vk(Rn+k) (the generalized Gauss map). Since Vk(Rn+k) is (n− 1)-
connected, the element

G∗([M]) ∈ Hn(Vk(Rn+k)) ∼= πn(Vk(Rn+k)) ∼=


Z n even
Z2 n odd,

which is called the generalized curvatura integra, is the only obstruction for G to be null-homotopic.
In [29], Kervaire expressed G∗([M]) in terms of the Hopf invariant of the framed submanifold M , the Euler

characteristic χ(M), and the Kervaire semi-characteristic ofM . In particular, for n = 2m, G∗([M]) =
1
2 (χ(M)).

Therefore, for a real oriented codimension-2 submanifoldM2m
⊂ Cm+1 withχ(M) = 0, we have that the generalized

curvatura integra G∗([M]) is zero for any trivialization of the normal bundle. This implies that G : M → V2(R2m+2)
is homotopic to the constant map given by the complex vector field ∂/∂zm+1, where (z1, . . . , zm+1) ∈ Cm+1 are the
standard coordinates. Hence, TM is homotopic, as a subbundle of TCm+1, to the trivial bundle M × Cm. Therefore, M2m

is parallelizable.
These considerations lead to an alternative proof of Theorem 5. Let (M, J) be an almost complex 4-manifold which

satisfies the hypotheses of Theorem5. So, we can considerM as a real submanifold ofC3, having trivial curvatura integra.
It follows that a trivialization of the normal bundle is homotopic to the vector field ∂/∂z3, and the tangent bundle is

homotopic to M × C2 in (TC3)|M = M × C3. This way, M inherits another almost complex structure J1 induced by the
identification TM ∼= M × C2.

The assumption thatH2(M) has no 2-torsion is equivalent to the condition that spinc structures onM are classified by
the first Chern class (see for example Theorem 2.4.9 in [16]). A spinc structure onM can be identified with the homotopy
class of a complex structure over the 2-skeletonM(2) that extends over the 3-skeletonM(3) [30].

It follows that the two almost complex structure J and J1 on M are homotopic over M(2) because both of them have
trivial first Chern class.

Let J ′ be a complex structure on the normal bundle ofM . We have that the standard complex structure on the bundle
(TC3)|M is homotopic, over M(2), with the Whitney sum J ⊕ J ′. Therefore, the obstructionΩ(g) defined in the previous
section is trivial, implying that the map g : M → Γ (3) is null-homotopic.
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