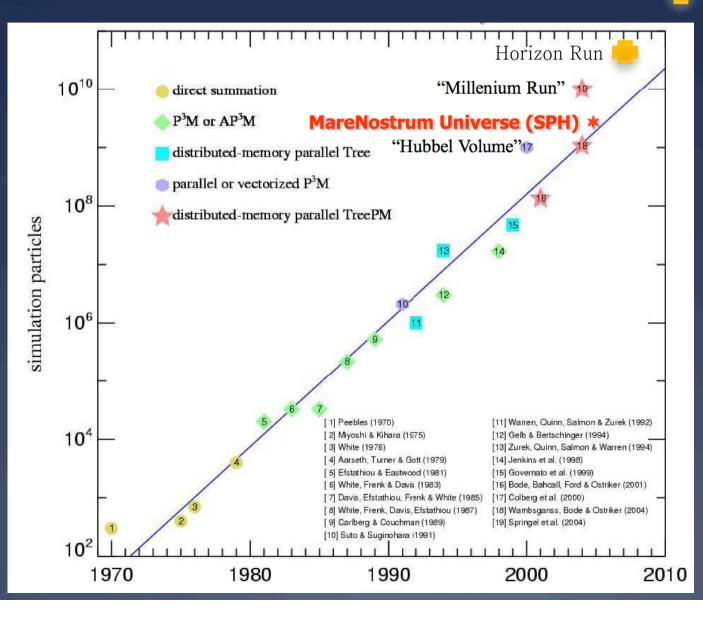
Developing a Cosmological Hydrodynamic Code (Progress Report)

Juhan Kim (CAC@KIAS) Jihye Shin (KHU)

<u>OUTLINE</u>

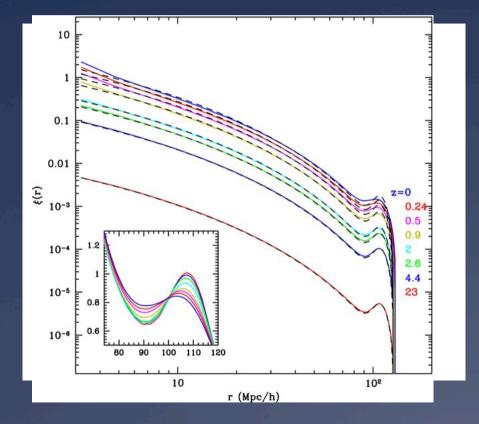
Cosmological N-body solver: GOTPM


Cosmological hydrodynamic code
 Based on the smoothed particle hydrodynamics (SPH)

Popular Cosmological Codes (N>20)

Туре	Package Name (builder)
PM	PM(Klypin, Holtzman), PMFAST(Merz & Pen)
Tree	FLY (Becciani), HOT(Warren & Salmon), PKDGRAV(Quinn)
SPH	Athena (Gardiner, et al.; Godunov scheme)
Tree+SPH	AmonSPH(Schwarzmeier), GADGET, GCD+(Kawata), Treecode(Barnes), DRAGON(Goodwin)
AMR (hydro)	CORAL(Iliev), FLASH(Fryxell), Nirvana (Ziegler)
PM+AMR	Enzo (Bryan), WENO(Feng, Shu, Zhang; PM+WENO), Zeus (Norman; PM+FD+MHD)
Tree+PM+SPH	GADGET-2 (Spingel)
APM	Grommet(Magorrian), MLAPM(Knebe), SUPPERBOX(Fellhauer)
AP3M+SPH	Hydra (Couchman)
PM+HPM	MC2 (Habib)
Tree+PM	TPM(Xu &Bode), GOTPM(Dubinski, Kim, Park), TreePM(Bagla)

http://wiki.hmet.net/index.php/Cosmological_Simulation_Codes


History of Simulation Growth

GOTPM: cosmological n-body solver

- * A hybrid method: Particle Mesh + Oct sibling Tree
 - * MPI + OpenMP/CUDA
- One of the fastest and most memory efficient codes
 - 4bytes * [3(position)+3(velocity)+2(index)+2(pointer/FFT mesh)+1(workspace))
 *N_p=44N_p (bytes) (cf. Gadgt2 needs 80 bytes)
 - * One-step-evolution speed=0.03-0.1 ms per particle on a cpu core (cf. Gadget2 speed=0.1 ~ 1 ms)
 - Used for the Horizon Run simulation with 4120³ particles and 1600 cpu cores for 20 days in 2008 (@KISTI)
 - 8 all-sky mock surveys for simulating BOSS
 - * 4 snapshot particle data , etc..
 - Used for $6000^3 \& 7210^3$ particle simulations with $L_{box} = 7,200 \& 10,815 h^{-1} Mpc$ (cf. particle horizon d=10,500h⁻¹ Mpc) @ KISTI
 - completed in this month
 - * Using 8,000 cores, 17 Tbytes memory, 300 Tbytes disk space
 - * 8/27 all-sky mock surveys for simulating BOSS (z_max=0.6/0.7)
 - * FoF +sub halos at 40 time steps for SAM analysis

Horizon Run (HR) Simulation

- * HR simulation (2008)
 - Based on WMAP 5 year cosmology
 - * 4120^3 particles
 - Lbox=6592h⁻¹ Mpc
 - The biggest simulation until 2009
 - To simulate the BOSS of SDSS III
 - Used for study of Power spectrum, correlations, and Genus statistics of matter/ LRG galaxies in comoving space & past lightcone space (Kim, et al. 2009)

Why need gas dynamics for Cosmological Simulations?

* N-body simulation

- Gravitation: dominating force on the formation and evolution of LSS (L_{scale}>a few kpc)
- * Target:
 - Spatial distribution of matter/biased objects,
 - * Merging history,
 - * Density evolution,
 - Cosmological parameters

- * Gas dynamic simulation
 - Gasdynamics: significant on the small scales (I_{scale} < a few kpc)
 - * Target:
 - Star formation (cooling/ heating),
 - SuperNovae feedback,
 - environmental effect on the galaxy morphology
 Dwarf/first star formation

One of motives: Can we achieve the same speed and memory efficiency as we have done in the N-body code?

SPH Basics

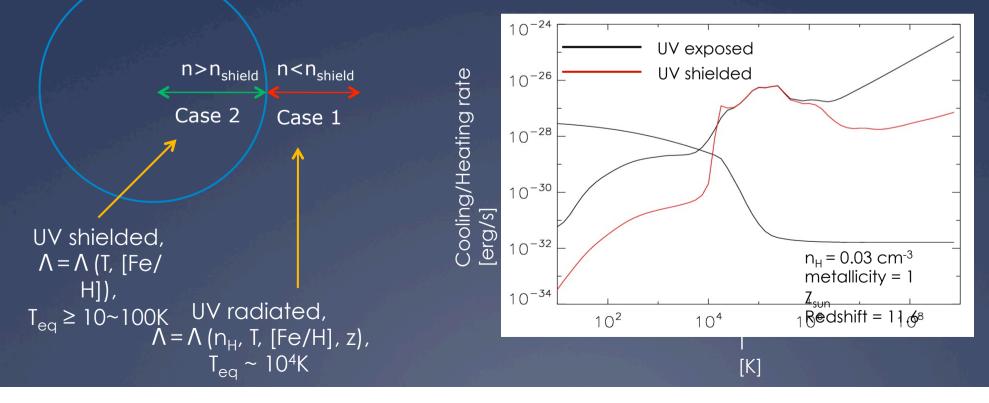
- The usual SPH basic equations are adopted.
- The equation of entropy conservation is applied like Gadget-II.
- N-nearest neighbors are exactly found using the tree walking on the oct-sibling tree.
- * Artificial viscosity term is added to capture shock front.
 - Individual time step is adopted following the Kick-Drift-Kick scheme.

$$\rho_i = \sum_{j=1}^N m_j W(|r_{ij}|, h_i)$$

$$\frac{dv_i}{dt} = -\sum_{j=1}^N mj \left[\frac{P_i}{\rho_i^2} \nabla_i W_{ij}(h_i) + \frac{P_j}{\rho_j^2} \nabla_i W_{ij}(h_j) \right]$$

$$\left|\frac{dv_i}{dt}\right|_{visc} = -\sum_{j=1}^N m_j \Pi_{ij} \nabla_i W_{ij}$$

Cooling/Heating


(made but not yet implemented into the main program)

non-adiabatic processes on the evolution of the baryons

Using the publicly available <u>photoionization package CLOUDY90</u> (Ferland et al. 1998)

Tabulating two kinds of cooling/heating rate

<u>under existence of the uniform UV/X-ray background (Haardt & Madau 2001)</u> case 1: UV radiated medium (Photoionization + collisional ionization + H₂ dissociation) case 2: UV shielded medium (collisional ionization)

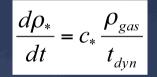
Star Formation

(made but not yet implemented into the main program) Converting gas particles into star particles

Star formation criteria: (Katz et al. 1996)

 $T < 10^4 K$ (or <100K)

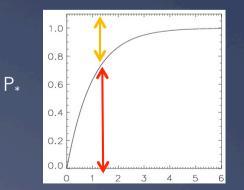
 $n_{\rm H} > 0.1 \ {\rm cm}^{-3}$ $\nabla \cdot v < 0$


 $\overline{\rho} > 57.7 \, \rho_{\text{mean}}(z)$

particle

 Λt

star

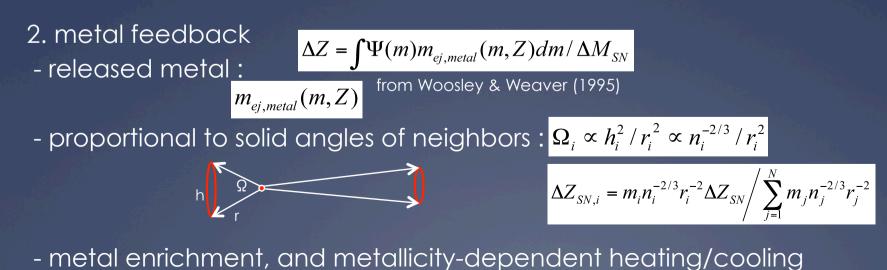

Star formation coefficient (c*) : calibrated by the Schmidt-Kennicutt

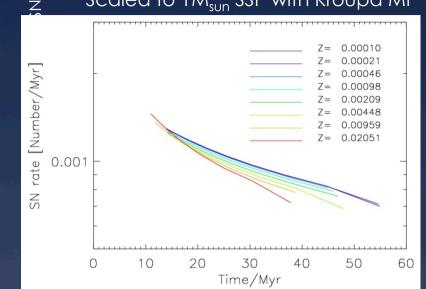
relation (global star-formation properties, Kennicutt 1998)

Star formation probability : $p_* = \frac{m_{gas}}{m_*} \left[1 - \exp\left(-c_* \frac{\Delta t}{t_{dyn}}\right) \right]$

Containing a single stellar population

metallicity - inherited from the parent gas particles mass function - Kroupa (2001) with range of 0.08M_{sun}~100M_{sun}


Super Nova Feedback (built but not yet Scaled to $1M_{sun}$ SSP with Kroupa MF


implemented into the main program) Implementing feedback

in a probabilistic manner (Okamoto, Nemmen, and Bower 2008)

$$P_{SN} = \frac{\int_{t_{SSP,i}}^{t_{SSP,i}+dt} r_{SNII}(t')dt'}{\int_{t_{SSP,i}}^{t_8} r_{SNII}(t')dt'}$$

- 1. energy feedback
- ΔE of star particle : ~10⁵¹erg/1SN_{II}
- delicate Δt for surroundings : to prevent overcooling problem (Durier & Vecchia 2011)
- leading to a self-regulated cycle for star formation activity

Summary

What have been done

- Basic SPH equation
- * Individual time step
- Subroutines of star formation, SN explosion, heating/cooling process

* What should be done

- * To put the subroutines together
- To trim off the redundant memory use & to enhance the speed
- * To check the SPH routines
 - 1D shock tube test (by Shin, passed)
 - Test for collapse of spherical gas cloud
 - External/internal shock on the spherical gas cloud

The code will be publicly available late in this year like Gadget2.