Photometric Redshifts in SDSS for Galaxy-Galaxy Lensing

Reiko Nakajima, Rachel Mandelbaum, Uros Seljak, Joanne Cohn, Alison Coil

> Korea Institute of Advanced Studies June 28, 2011

Outline

- galaxy-galaxy lensing
- photometric redshifts
- spectroscopic calibration set
- calibration results

Gravitational lensing

Image Credit: Ned Wright, HST

Why is lensing hard?

Accurate lensing:

- quantify image distortion (shapes)
- need many background galaxies
- background galaxies not at uniform redshift

Redshifts calibrate shear to mass

$$\gamma = \Delta \Sigma / \Sigma_{crit}$$

$$\Sigma_{crit} = \frac{c^2}{4\pi G} \frac{D_S}{D_L D_{LS}}$$

Image Credit: Ned Wright

Wednesday, June 29, 2011

Can we get DM concentration around a galaxy?

Galaxy-galaxy lensing:

- stacking by lens to get many background galaxies
- measures average dark matter distribution around galaxies

Why do we study galaxy-galaxy lensing?

Dark matter simulation

Observed galaxies

- correlates dark matter to galaxies
 - cosmological dark matter studies
 - galaxy formation studies

Why photometric redshifts (photo-z)?

• spectroscopic redshifts are accurate, but expensive

replace with multiband photometry

Why photometric redshifts (photo-z)?

- spectroscopic redshifts are accurate, but expensive
 - replace with multiband photometry
- because everyone else is going to be doing it

Redshifts calibrate shear to mass

$$\gamma = \Delta \Sigma / \Sigma_{crit}$$

$$\Sigma_{crit} = \frac{c^2}{4\pi G} \frac{D_S}{D_L D_{LS}}$$

Image Credit: Ned Wright

Wednesday, June 29, 2011

Requirements on catalog to use photoz's

 source galaxies: as many as possible higher redshift photo-z error tolerance is large

 lens galaxies: need decent photo-z

Requirements on catalog to use photoz's

 source galaxies: as many as possible higher redshift photo-z error tolerance is large

- lens galaxies: need decent photo-z
- need two separate catalogs

r < 21.8

r < 21

SDSS photometry

Photometric redshifts, template based

galaxy SED templates

▶ 4000Å break

different UV strengths

Photometric redshifts, template based

• galaxy SED templates

4000Å break

different UV strengths

Photometric redshifts with SDSS

• $\sigma_{\Delta z/(1+z)} \sim 0.1$

Wednesday, June 29, 2011

Photometric redshifts, training set based

 bright galaxies!! (r<17.7)

http://www.sdss.org/dr7/algorithms/photo-z.html

Calibration sets

- SDSS: 8720 sq deg (low extinction)
- Calib: ~5 sq deg
- Tune it to make fair representation of SDSS

Calibration sets: r magnitude distribution

calibration set

underlying distribution

r magnitude

Wednesday, June 29, 2011

Calibration sets: r magnitude distribution

r magnitude

sky noise

Calibration set correction

original calibration set

all of SDSS

corrected

r magnitude

Wednesday, June 29, 2011

Calibration sets: redshift distribution

Calibration sets: redshift distribution

• Source (r<21.8)

Galaxy-galaxy lensing

Stacking by lens:

- redshift (photo-z)
- SED type
- absolute magnitude
- stellar mass

Photometric redshifts with SDSS

Absolute magnitude error

theoretical curve
distance modulus
k-correction

• z_{phot} distribution

• Ell-type SED (z=0)

• Ell-type SED (z=0)

SDSS bands (observed from z=0)

• Ell-type SED (z=0.3)

SDSS bands (observed from z=0)

• Ell-type SED (z=0.6)

SDSS bands (observed from z=0)

Absolute magnitude

Elliptical SED type:

- each panel = photo-z bin ($\Delta z=0.1$)
- median (line) and
 68 percentile (dash)
 ▶ avg. 𝔅mr value

estimated magnitude
 corrected bins

Error in SED template types

- 6 SED types
- 5 interpolated SEDs in between each
- SED type bin need no modification

Stellar mass-to-light ratio

Bell & De Jong (2003)

 estimate M*/L from z=0 color

 constant for each SED type

Stellar mass estimates

Elliptical SED type:

- each panel = photo-z bin ($\Delta z=0.1$)
- median (line) and
 68 percentile (dash)
 ▶ avg. OlogM* value

estimated magnitudecorrected bins

Lensing bias: source photo-z

Known lens redshift:

- bias for each subsets
- discrepancy in COSMOS
 correction for skynoise

Lensing bias: lens photo-z

Known source redshift:

• bias for each z_{phot} bin

discard z_{phot}<0.1 bin</p>

 lens-source separation would be ideal, but...

Lensing bias: lens and source photo-z

- small dispersion
- I σ z_{phot} cut (cross) no cut (circle)
 same variance
 - same bias

Summary

- Photometric redshifts with SDSS DR8
 all galaxy types (not just LRGs)
 SED template method (k-correction)
- Spectroscopic calibration set
 fair representation of photometric survey
- Galaxy-galaxy lensing calibration
 stacking, binning width
 gravitational lensing signal