

Non-Gaussianity from Inflation

Misao Sasaki

WKYS2011 *Future of Large Scale Structure Formation* KIAS, 27 June – 1 July, 2011

contents

• curvature perturbation from inflation

standard slow-roll inflation

- origin of non-Gaussianity
 subhorizon vs superhorizon
- generation of non-Gaussianity on superhorizon scales
 δN formalism
- curvaton vs multi-brid inflation

• summary

1. Curvature perturbation from slow-roll inflation single-field slow-roll inflation Linde '82, ... metric: $ds^2 = -dt^2 + a^2(t)\delta_{ii}dx^i dx^j$ V(() field eq.: $4 3H\phi + V'(\phi) = 0 \implies \phi = -\frac{V'(\phi)}{3H}$ $\Rightarrow \phi \qquad \left(\frac{\alpha}{a}\right)^2 \equiv H^2 = \frac{8\pi G}{3} \left[\frac{1}{2}\phi + V(\phi)\right]$ $\Rightarrow -\frac{H^2}{H^2} = \frac{\frac{3}{2}\phi^2}{\frac{1}{2}\phi^2 + V} \approx \frac{3}{2}\frac{\phi^2}{V} = 1 \quad \dots \text{ slow variation of } H$ $a \sim e^{Ht} \qquad \text{inflation!}$

3

comoving scale vs Hubble horizon radius

e-folding number: N

curvature perturbation

inflaton fluctuation (vacuum fluctuations=Gaussian)

$$\left|\left\langle \phi \middle| \stackrel{\mathrm{V}}{k} \right\rangle\right|^2 = \left|\varphi_k\right|^2, \quad \varphi_k \sim \frac{1}{\sqrt{2w_k}} e^{-iw_k t}; \quad w_k = \frac{k}{a}? \quad H$$

rapid expansion renders oscillations frozen at k/a < H(fluctuations become classical on superhorizon scales)

$$\varphi_k \sim \frac{H}{\sqrt{2k^3}}; \quad \frac{k}{a} = H \implies \langle \delta \phi_k^2 \rangle = \left(\frac{H}{2\pi}\right)_{k/a \sim H}^2$$

• curvature perturbation on comoving slices

 $R_{c} = -\frac{H}{\sqrt[6]{\delta\phi}} \cdots \text{ conserved on superhorizon scale,}$ for purely adiabatic pertns. evaluated on 'flat' slice

Curvature perturbation spectrum

- > 2

• spectrum
$$P_{\rm R}(k) = \left(\frac{H^2}{2\pi\phi^2}\right)_{k/a=H}$$

~ almost scale-invariant Mukhanov (`85), MS ('86)

• δN - formula Starobinsky ('85)

$$N(\phi) = \int_{t(\phi)}^{t_{end}} H dt = \int_{\phi}^{\phi_{end}} \frac{H}{\phi^2} d\phi$$

$$\implies \delta N(\phi) = \left[\frac{\partial N}{\partial \phi} \delta \phi\right]_{k/a=H} = \left[-\frac{H}{\phi^2} \delta \phi\right]_{k/a=H} = \mathbb{R}_{c}$$

$$P_{\mathbb{R}}(k) = \left(\frac{H^2}{2\pi\phi^2}\right)_{k/a=H}^2 = \left(\frac{\partial N}{\partial \phi}\right)^2 \left\langle\delta\phi_k^2\right\rangle \qquad \left\langle\delta\phi_k^2\right\rangle = \left(\frac{H}{2\pi}\right)_{k/a=H}^2$$

multi-field generalization $\delta N = \sum_{A} \frac{\partial N}{\partial \phi^{A}} \delta \phi^{A}$ MS & Stewart ('96) NL generalization Lyth, Marik & MS ('04)

Comparison with observation

• Standard (single-field, slowroll) inflation predicts scaleinvariant Gaussian curvature perturbations.

CMB (WMAP) is consistent with the prediction.
Linear perturbation theory seems to be valid.

However,....

 Inflation may be non-standard multi-field, non-slowroll, DBI, extra-dim's, ...

- PLANCK, ... may detect Non-Gaussianity (comoving) curvature perturbation: $R_{c} = R_{gauss} + \frac{3}{5} f_{NL} R_{gauss}^{2} + L ; \quad f_{NL} \gtrsim 5?$
- B-mode (tensor) may or may not be detected. energy scale of inflation $H^2 \ge 10^{-10} M_{\text{Planck}}^2$? modified (quantum) gravity? NG signature?

Quantifying NL/NG effects is important

2. Origin of non-Gaussianity

• self-interactions of inflaton/non-trivial "vacuum"

quantum physics, subhorizon scale during inflation

• multi-field

classical physics, nonlinear coupling to gravity superhorizon scale during and after inflation

nonlinearity in gravity

classical general relativistic effect, subhorizon scale after inflation

Origin of NG and cosmic scales

Origin1:self-interaction/non-trivial vacuum

Non-Gaussianity generated on subhorizon scales (quantum field theoretical)

conventional self-interaction by potential is ineffective

ex. chaotic inflation

Mardacena ('03)

$$V = \frac{1}{2}m^2\phi^2 \quad \dots \text{ free field!}$$

(grav. interaction is Planck-suppressed)
 $\sim O(1/M_{Pl}^2)$
 $V = \lambda\phi^4 \quad \rightarrow \lambda \sim 10^{-15}$

extremely small!

need unconventional self-interaction
 → non-canonical kinetic term can generate large NG

1a. Non-canonical kinetic term: DBI inflation

Silverstein & Tong (2004)

kinetic term:
$$K \sim f^{-1}(\phi) \sqrt{1 - f(\phi)\phi^{\otimes}} \equiv f^{-1} \gamma^{-1}$$

~ (Lorenz factor)⁻¹

perturbation expansion
$$\left(\delta\gamma = \frac{1}{2}\gamma^3\delta X; X \equiv f\phi^{\&}\right)$$

large NG for large γ

Bi-spectrum (3pt function) in DBI inflation

2b. Non-trivial vacuum

- de Sitter spacetime = maximally symmetric SO(3,1) (same degrees of sym as Poincare (Minkowski) sym)
- ⇒ gravitational interaction (GI) is negligible in vacuum (except for graviton/tensor-mode loops)
- slow-roll inflation : dS symmetry is slightly broken GI induces NG but suppressed by $\varepsilon \equiv -\frac{M}{M_{Pl}^2}$

But large NG is possible if the initial state (or state at horizon crossing) does NOT respect dS symmetry (ie initial state ≠ Bunch-Davies vacuum)

 \Rightarrow various types of NG :

scale-dependent, oscillating, featured, folded ... Chen et al. ('08), Flauger et al. ('10), ...

Origin 2: superhorizon generation

• NG may appear if $T^{\mu\nu}$ depends nonlinearly on $\delta\phi$, even if $\delta\phi$ itself is Gaussian.

This effect is small in single-field slow-roll model (⇔ linear approximation is valid to high accuracy) Salopek & Bond ('90)

• For multi-field models, contribution to $T^{\mu\nu}$ from each field can be highly nonlinear.

NG is always of local type: $f_{NL}(p_1, p_2, p_3) \rightarrow f_{NL}^{\text{local}} = \text{const.}$ WMAP 7yr: $-10 < f_{NL}^{\text{local}} < 74$ (95% CL)

 δN formalism for this type of NG

Origin 3: nonlinearity in gravity

ex. post-Newtonian metric in asymptotically flat space

- important when scales have re-entered Hubble horizon distinguishable from NL matter dynamics?
- effect on CMB bispectrum may not be negligible

 $f_{NL} \sim O(5)$? Pitrou et al. (2010) (for both squeezed and equilateral types)

3. δN formalism What is δN ?

- δN is the perturbation in # of e-folds counted backward in time from a fixed final time t_f therefore it is nonlocal in time by definition
- t_f should be chosen such that the evolution of the universe has become unique by that time.
 isocurvature perturbation that persists until today must be dealt separately
- δN is equal to conserved NL comoving curvature perturbation on superhorizon scales at t>t_f
- δN is valid independent of gravity theory

3 types of δN

Separate Universe approach

• On superhorizon scales, spatial gradient expansion is valid:

$$\left|\frac{\partial}{\partial x^{i}}Q\right| \Box \left|\frac{\partial}{\partial t}Q\right| \Box HQ; \ H \Box \sqrt{G\rho}$$

Belinski et al. '70, Tomita '72, Salopek & Bond '90, ...

This is a consequence of causality:

• At lowest order, no signal propagates in spatial directions.

Field equations reduce to ODE's

metric on superhorizon scales

• gradient expansion:

 $\partial_i \rightarrow \mathcal{E} \partial_i$, \mathcal{E} = expansion parameter

fiducial `background'

Local Friedmann equation & δN formula

 \mathbf{O}

Lyth, Malik & MS ('05)

$$\widetilde{H}^{2}(t,x^{i}) = \frac{8\pi G}{3} \rho(t,x^{i}) + O(\varepsilon^{2})$$
$$\widetilde{H}^{2} \equiv \frac{\partial}{\partial t} \alpha = \frac{\partial}{N\partial t} [\ln \alpha + R]$$

··· geometrical def of "Hubble"

 x^i : comoving (Lagrangean) coordinates.

 $d\tau = N dt$: proper time along fluid flow

exactly the same as the homogeneous background

$$N(t_{2},t_{1}) \equiv \int_{t_{1}}^{t_{2}} H d\tau = N_{0}(t_{2},t_{1}) + R(t_{2},x^{i}) - R(t_{1},x^{i})$$

 $N_{0}(t_{2},t_{1}) \equiv \ln[a(t_{2})/a(t_{1})]$

Nonlinear **N** - formula

Choose flat slice at $t = t_1 [\Sigma_F(t_1)]$ and comoving (=uniform density) at $t = t_2 [\Sigma_C(t_1)]$:

('flat' slice: $\Sigma(t)$ on which $P = 0 \leftrightarrow e^{\alpha} = a(t)$)

How do we relate δN to matter evolution?

need eqn relating 'expansion' with matter 'evolution'

energy conservation!

$$\frac{d}{d\tau}\rho + 3\tilde{H}(\rho + p) = 0 \quad \Longrightarrow \quad \tilde{H}^{\rho} = -\frac{1}{3(\rho + p)}\frac{\partial}{\partial\tau}\rho$$
$$\implies \qquad N(t_{2}, t_{1}) = -\int_{t_{1}}^{t_{2}} dt \frac{1}{3(\rho + p)}\frac{\partial\rho}{\partialt}$$
$$= N_{F}(t_{2}, t_{1}; x^{i}) = -\frac{1}{3}\int_{\Sigma_{F}(t_{1})}^{\Sigma_{C}(t_{2})}\frac{\partial_{t}\rho}{\rho + P}\Big|_{x^{i}}dt + \frac{1}{3}\int_{\Sigma_{F}(t_{1})}^{\Sigma_{C}(t_{2})}\frac{\partial_{t}\rho}{\rho + P}\Big|_{0}dt$$

 $x^{i}=0$: fiducial background trajectory $\rho(x^{i},t_{2}) = \rho(0,t_{2}) =$ uniform on $\Sigma_{C}(t_{2})$ matter fluctuates only on the initial flat slice • Nonlinear δN for multi-component inflation :

$$\delta N = N\left(\phi^{A} + \delta\phi^{A}\right) - N\left(\phi^{A}\right)$$
$$= \sum_{n} \frac{1}{n!} \frac{\partial^{n} N}{\partial \phi^{A_{1}} \partial \phi^{A_{2}} \cdots \partial \phi^{A_{n}}} \,\delta\phi^{A_{1}} \delta\phi^{A_{2}} \cdots \delta\phi^{A_{n}}$$

where $\delta \phi = \delta \phi_F$ is fluctuation on initial flat slice at or after horizon-crossing.

 $\delta \phi_F$ may contain non-Gaussianity from subhorizon (quantum) interactions

eg, in DBI inflation

4. NG generation on superhorizon scales

two efficient mechanisms to convert isocurvature to curvature perturbations:

• curvaton-type Lyth & Wands ('01), Moroi & Takahashi ('01),...

 $\rho_{curv} < < \rho_{tot} \Leftrightarrow$ highly nonlinear dep on $\delta \phi_{curv}$

• multi-brid inflation MS ('08), Naruko & MS ('08),...

sudden change/transition in the trajectory $\delta N = \partial_a N \delta \phi^a + \frac{1}{2} \partial_{ab}^2 N \delta \phi^a \delta \phi^b + L$ curvature of this surface determines sign of f_{NL} tensor-scalar ratio r may be large in multi-brid models, while it is always small in curvaton-type if NG is large.

Curvaton model

Lyth & Wands ('01) Moroi & Takahashi ('01)

Inflation driven by inflaton = ϕ

Final curvature perturbation dominated by curvaton = χ

$$V_{tot} = V(\phi) + \frac{1}{2}m_{\chi}^{2}\chi^{2}$$
 $m_{\chi}^{2} = H^{2} \approx \frac{8\pi G V(\phi)}{3}$

during inflation: $V(\phi)$? $\frac{1}{2}m_{\chi}^{2}\chi^{2}$

curvature perturbation is still dominated by ϕ

$$\delta\phi \sim \frac{H}{2\pi}, \ \delta\chi \sim \frac{H}{2\pi} \Rightarrow |V'(\phi)\delta\phi|? \ m_{\chi}^2 |(\chi + \delta\chi)^2 - \chi^2|$$

after inflation, ϕ thermalizes. χ undergoes damped oscillation

$$\implies \begin{cases} \rho_{\phi} = \rho_{\gamma} \propto a^{-4} \\ \rho_{\chi} \propto a^{-3} \end{cases} \implies R_{c} \sim \frac{4\rho_{\gamma}R_{\phi} + 3\rho_{\chi}R_{\chi}}{4\rho_{\gamma} + 3\rho_{\chi}} \qquad f_{NL} \sim 1/q \end{cases}$$

Assume $\delta \chi$ dominates the final curvature perturbation:

$$R_{c} \approx \frac{q}{4-q} \left(2\frac{\delta\chi}{\chi} + \left(\frac{\delta\chi}{\chi}\right)^{2} + \cdots \right)_{q} \approx \left(\frac{q}{2}\frac{\delta\chi}{\chi}\right) + \left(\frac{1}{q}\left(\frac{q}{2}\frac{\delta\chi}{\chi}\right)^{2}\right)^{2}$$

$$q \equiv \frac{\rho_{\chi}}{\rho_{\chi} + \rho_{\gamma}} \bigg|_{t=t_{decay}} \cdots \text{ density fraction when } \chi \text{ decays}$$

$$\left[\frac{\text{large NG if } q <<1}{\text{large NG if } q <<1} \right] \text{ Enqvist & Nurmi (`05)}$$

$$\text{tensor-scalar ratio will be strongly suppressed:}$$

$$r = \frac{P_{T}(k)}{P_{R\chi}(k)} = \frac{P_{T}(k)}{P_{R\chi}(k)} \frac{P_{R\chi}(k)}{P_{R\chi}(k)} = \frac{P_{T}(k)}{P_{R\chi}(k)} = 1$$

Multi-brid inflation

"multi"-field hy"brid" inflation $L_{\phi} = -\frac{1}{2} \sum_{A} g^{\mu\nu} \partial_{\mu} \phi_{A} \partial_{\nu} \phi_{A} - V(\phi) \qquad \text{MS (2008)}$

• slow-roll eom $(8\pi G = M_{\text{Planck}}^{-2} = 1)$

$$\frac{d\phi_A}{dt} = -\frac{1}{3H} \frac{\partial V}{\partial \phi_A} , \quad 3H^2 = V$$

N as a time variable: dN = -Hdt

 \cdots slow-roll ends at $F(\phi_A)=0$.

2-dim case:

analytical multi-brid model

> Exponential potential: $V = V_0 \exp[m_1\phi_1 + m_2\phi_2]$

Inflation ends at $g^2(\phi_1^2 + \phi_2^2) = \sigma^2$ realized by a waterfall field χ :

$$V_{0} = \frac{1}{2}g^{2}(\phi_{1}^{2} + \phi_{2}^{2})\chi^{2} + \frac{\lambda}{4}\left(\chi^{2} - \frac{\sigma^{2}}{\lambda}\right)^{2}$$

$$\phi_{1,f} = \frac{\sigma}{g} \cos \gamma, \quad \phi_{2,f} = \frac{\sigma}{g} \sin \gamma$$

trajectory specified by " γ "

• δN to 2^{nd} order in $\delta \phi$:

 ϕ_1

$$\delta N = \frac{\delta \phi_1 \cos \gamma + \delta \phi_2 \sin \gamma}{m_1 \cos \gamma + m_2 \sin \gamma} + \frac{g}{2\sigma} \frac{(m_2 \delta \phi_1 - m_1 \delta \phi_2)^2}{(m_1 \cos \gamma + m_2 \sin \gamma)^3}$$

$$SN = \delta_L N + \frac{3}{5} f_{NL}^{\text{local}} \left(\delta_L N + S \right)^2$$
 linear entropy perturbation contributes at 2nd order
$$\delta_L N \equiv \frac{\delta \phi_1 \cos \gamma + \delta \phi_2 \sin \gamma}{m_1 \cos \gamma + m_2 \sin \gamma}, \quad S \equiv \frac{\delta \phi_1 \sin \gamma - \delta \phi_2 \cos \gamma}{m_2 \cos \gamma - m_1 \sin \gamma}$$

"true" entropy perturbation

curvature perturbation spectrum

$$P_{s}(k) = \frac{1}{(m_{1}\cos\gamma + m_{2}\sin\gamma)^{2}} \left(\frac{H}{2\pi}\right)^{2} \bigg|_{k=Ho}$$

spectral index: $n_s = 1 - (m_1^2 + m_2^2)$

tensor/scalar: $r \equiv \frac{P_T(k)}{P_S(k)} = 8(m_1 \cos \gamma + m_2 \sin \gamma)^2$ non-Gaussianity: $f_{NL}^{\text{local}} = \frac{5g}{6\sigma} \frac{(m_2 \cos \gamma - m_1 \sin \gamma)^2}{m_1 \cos \gamma + m_2 \sin \gamma}$ just for fun ... $1 = M_{Pl} = (8\pi G)^{-1/2} = 2.43 \times 10^{18} \text{GeV}$ model parameters: $m_1^2 \sim 0.005, m_2^2 \sim 0.035$ assume $m_1 \cos \gamma \gtrsim m_2 \sin \gamma \quad (\Leftrightarrow \gamma = 1)$ outputs: $n_s = 1 - (m_1^2 + m_2^2) \sim 0.96$ $r \approx 8m_1^2 \sim 0.04$ indep. of waterfall field $3H^2 = \sigma^4/4\lambda \sim 1.5 \times 10^{-9} \quad (\Leftrightarrow P_s(k) \sim 2.5 \times 10^{-9})$ $\implies \sigma^2 \sim \lambda^{1/2} \times 10^{-4}$ $\Box \qquad f_{NL}^{\text{local}} \approx \frac{5gm_2^2}{6\sigma m_1} \sim 40 \frac{g}{\lambda^{1/4}}$

34

and f_{NL}^{local} can be ~ 50 as well.

5. Summary

- 3 origins of NG in curvature perturbation
 - 1. subhorizon ··· quantum origin
 - 2. superhorizon ··· classical (local) origin

NG from inflation

- 3. NL gravity … late time classical dynamics
- DBI-type model: origin 1. f_{NL}^{equil} may be large
- non BD vacuum: origin 1. any type of f_{NL} may be large
- multi-field model: origin 2.

 f_{NL}^{local} may be large:

In curvaton-type models $r \ll 1$. Multi-brid model may give $r \sim 0.1$.

need to be quantified

Identifying properties of non-Gaussianity is extremely important for understanding physics of the early universe

> not only bispectrum(3-pt function) but also trispectrum or higher order n-pt functions may become important.

Confirmation of primordial NG?

PLANCK (January 2013?) ...