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1．Curvature perturbation from 
slow-roll inflation 

• single-field slow-roll inflation 
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inflation! 

metric： 

field eq.： 

Linde ‟82, ... 
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comoving scale vs Hubble horizon radius 
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e-folding number: N 
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• inflaton fluctuation (vacuum fluctuations=Gaussian) 
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rapid expansion renders oscillations frozen at k/a < H 

(fluctuations become classical on superhorizon scales) 
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• curvature perturbation on comoving slices 

curvature perturbation 

c

H



 R & ∙∙∙ conserved on superhorizon scale,    

            for purely adiabatic pertns. 

evaluated on „flat‟ slice 
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Curvature perturbation spectrum 

• N - formula 
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multi-field generalization 

NL generalization Lyth, Marik & MS (‟04) 

Mukhanov („85), MS (‟86)  

Starobinsky (‟85) 
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Comparison with observation 
Standard (single-field, slowroll) inflation predicts scale-
invariant Gaussian curvature perturbations. 

 CMB (WMAP) is consistent with the prediction. 

 Linear perturbation theory seems to be valid. 
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However,…. 

 Inflation may be non-standard 

         multi-field, non-slowroll, DBI, extra-dim‟s, … 

Quantifying NL/NG effects is important 

2

gauss gauss

3
  

5
5?  C ~;NL NLf f   R R R L

 PLANCK, … may detect Non-Gaussianity 

 B-mode (tensor) may or may not be detected. 

energy scale of inflation 
-10 2

Planck
10   ?2H M



modified (quantum) gravity? NG signature? 

(comoving) curvature perturbation: 
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2. Origin of non-Gaussianity 

• self-interactions of inflaton/non-trivial “vacuum” 

• nonlinearity in gravity 

• multi-field 

classical physics, nonlinear coupling to gravity 
  superhorizon scale during and after inflation 

quantum physics, subhorizon scale during inflation 

classical general relativistic effect, 
              subhorizon scale after inflation 
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Origin of NG and cosmic scales 
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Origin１：self-interaction/non-trivial vacuum 

• conventional self-interaction by potential is ineffective 

4  V  

• need unconventional self-interaction 
  → non-canonical kinetic term can generate large NG 

Non-Gaussianity generated on subhorizon scales 

(quantum field theoretical) 

ex. chaotic inflation 

2 21
 

2
V m  ∙∙∙ free field! 

(grav. interaction is Planck-suppressed) 

Mardacena (‟03) 

21~ ( / )PlO M
1510~ 

extremely small! 
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1a. Non-canonical kinetic term: DBI inflation 

1 21~ ( ) ( )K f f    &kinetic term： 

Silverstein & Tong (2004) 
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Bi-spectrum (3pt function) in DBI inflation 

fNLlarge for equilateral 
configuration 
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WMAP 7yr： 241 266 95equil    CL( % )NLf  

Alishahiha et al. (‟04) 
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2b. Non-trivial vacuum 

• de Sitter spacetime = maximally symmetric 

(same degrees of sym as Poincare (Minkowski) sym) 

gravitational interaction (GI) is negligible in vacuum 

• slow-roll inflation : dS symmetry is slightly broken 

GI induces NG but suppressed by  

(except for graviton/tensor-mode loops) 

2/ PlH M   &

But large NG is possible if the initial state (or state at 
horizon crossing) does NOT respect dS symmetry 

(ie initial state ≠ Bunch-Davies vacuum) 

various types of NG :  

scale-dependent, oscillating, featured, folded ... 

Chen et al. (‟08), Flauger et al. (‟10), ...  

3 1( , )SO
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Origin 2：superhorizon generation 

• NG may appear if  T mn  depends nonlinearly on  ,  
even if   itself is Gaussian. 

This effect is small in single-field slow-roll model 
(⇔ linear approximation is valid to high accuracy) 

• For multi-field models, contribution to T mn from each field 
  can be highly nonlinear. 

NG is always of local type: 

1 2 3

local const.( , , )NL NLf p p p f 

Salopek & Bond (‟90) 

N formalism for this type of NG 

x 

rtot 

 r r=A tot

WMAP 7yr： 10 74 95local    CL( % )NLf  
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Origin 3：nonlinearity in gravity 

ex. post-Newtonian metric in asymptotically flat space 

   2 2 2 2 21 2 2 1 2 2ds dt dr              

NL (post-Newton) terms Newton 
potential 

• important when scales have re-entered Hubble horizon 

5~ ( )NLf O

• effect on CMB bispectrum may not be negligible 

Pitrou et al. (2010)  

(for both squeezed and equilateral types) 

(in both local and nonlocal forms) 

distinguishable from NL matter dynamics? 

? 
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3. N formalism 

• N is the perturbation in # of e-folds counted 

  backward in time from a fixed final time tf 

• N is equal to conserved NL comoving curvature 

  perturbation on superhorizon scales at t>tf 

• tf should be chosen such that the evolution of the 

  universe has become unique by that time. 

• N is valid independent of gravity theory 

What is N? 

therefore it is nonlocal in time by definition 

isocurvature perturbation that persists until today 
must be dealt separately 
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3 types of N 

originally adiabatic 

end of/after 
inflation  

entropy/isocurvature → adiabatic 

ft t

1 

2 
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Separate Universe approach 
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This is a consequence of causality: 

Field equations reduce to ODE‟s 

Belinski et al. ‟70, Tomita ‟72, Salopek & Bond ‟90, … 

light cone 

L »H-1 

H-1 

• On superhorizon scales, spatial gradient expansion is valid: 

• At lowest order, no signal propagates in spatial directions. 
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 metric on superhorizon scales 
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the only non-trivial assumption 

fiducial `background‟ 

contains GW (~ tensor) modes 

• gradient expansion: 

• metric: 

NL curvature perturbation 
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Local Friedmann equation & N formula 
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xi : comoving (Lagrangean) coordinates. 

 exactly the same as the homogeneous background 

dt =N dt : proper time along fluid flow 
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Nonlinear N - formula 

Choose flat slice at t = t1 [ SF (t1) ] and 
comoving (=uniform density) at t = t2 [ SC (t1) ] : 

( „flat‟ slice: S (t) on which R = 0 ↔ e = a(t) ) 

SF (t1) : flat 

SC(t2) : comoving 
r (t2)=const. 

R(t1)=0 

SF(t2) : flat 

     0 2 12 11 2, , , ; i

FN t N t t N t t xt 

   C2 21, ,; i i

F t t x t xN R

R(t2)=0 
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How do we relate N to matter evolution? 

xi=0 : fiducial background trajectory 

r (xi,t2) = r (0,t2) = uniform on SC(t2) 

need eqn relating „expansion‟ with matter „evolution‟ 

matter fluctuates only on the initial flat slice 
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• Nonlinear N  for multi-component inflation :  

   

1 2

1 2

1
     

!

   

  
  

  




  
 n

n

A A A

n
AA A

AA A
n

N N N

N

n

where  =F is fluctuation on initial flat slice at or after 

horizon-crossing.  

 F may contain non-Gaussianity from  

         subhorizon (quantum) interactions 

eg, in DBI inflation 
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4．NG generation on superhorizon scales 

• curvaton-type 

• multi-brid inflation 

Lyth & Wands (‟01), Moroi & Takahashi („01),... 

MS (‟08), Naruko & MS (‟08),... 

 two efficient mechanisms to convert 
isocurvature to curvature perturbations: 

rcurv<<rtot        highly nonlinear dep on curv  

sudden change/transition in the trajectory 

21

2

a a b

a abN N N       L

 

tensor-scalar ratio r may be large in multi-brid models, 

while it is always small in curvaton-type if NG is large. 

curvature of this surface determines sign of fNL 
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Curvaton model 

Inflation driven by inflaton =  

Final curvature perturbation dominated by curvaton =  

2 21

2
( )totV V m  

during inflation： 2 21

2
( )V m ?

2 2 8

3

( )GV
m H

 
=

curvature perturbation is still dominated by  

 
22 2

2 2
      ~ , ~ '( )

H H
V m      

 
  ?

Lyth & Wands (‟01) 
Moroi & Takahashi („01) 
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after inflation,  thermalizes.  undergoes damped oscillation 
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Assume  dominates the final curvature perturbation: 
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Multi-brid inflation 

• slow-roll eom 
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N as a time variable: 
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∙∙∙ slow-roll ends at F (A)=0. 

MS (2008)  
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q2 

q1 

q 

N=0 

q 

1 2,( )q q

N=const. 

s.t. orbits are radial in space 

1 2
( , ) ( , )N N q Nq   

1 ,   0
( )df q d

dN dN

q
  ( , ) ( ) ( ( ))fN q f q f qq q 

f f
( )q q q

2-dim case: 
coord trans  1 2 1 2,( , ) ( )q q  

q  ∙∙∙ adiabatic pertn 
q  ∙∙∙ isocurvature pertn 
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• N to 2nd order in  :  
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“true” entropy perturbation 
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linear entropy perturbation 
contributes at 2nd order 

• curvature perturbation spectrum 
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just for fun ...  

model parameters: 

outputs: 

2 2
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Komatsu et al. „08 
WMAP 5yr constraint on r & ns 

WMAP+BAO+SN 

WMAP 

example 

and fNL
local can be ~ 50 as well. 
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5. Summary 

• 3 origins of NG in curvature perturbation  

• multi-field model: origin 2. 

• DBI-type model: origin 1. 

1. subhorizon ∙∙∙ quantum origin 

2. superhorizon ∙∙∙ classical (local) origin 

3. NL gravity ∙∙∙ late time classical dynamics 

equil

NLf may be large 

local

NLf may be large: In curvaton-type models r≪1. 
Multi-brid model may give r~0.1. 

NG from 
inflation 

need to be quantified 

• non BD vacuum: origin 1. 

NLfany type of       may be large 
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Identifying properties of non-Gaussianity 
is extremely important for understanding 

physics of the early universe 

not only bispectrum(3-pt function) but also 
trispectrum or higher order n-pt functions 

may become important. 

Confirmation of primordial NG? 

PLANCK (January 2013?) ... 


