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@ Game with 2 players: o and .

@ Each of them alternately move R (right) or L (left) to form a
string

@ The game ends when each player placed N moves, for
some predetermined N > 1.

@ The collection of strings of length 2N is partitioned into two
subsets A and B, known before the game starts.

@ WINNING RULE: Player o wins if the final string ends in A
and player 5 wins if the final string ends in B.
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Zermelo’s algorithm

Zermelo’s Theorem dictates that either player o has a winning
strategy or player 3 has a winning strategy.

Zermelo’s algoritm
@ Label the string that ends in A with 1, and the ones that
end in B with 0.
@ Proceed backwards filling all the nodes with 1’s or O’s.

@ If the value at the root of the game Vy is 1, then a has a
winning strategy. If Viy = 0, 8 has a winning strategy.
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Randomizing the game

@ Fix a probability p € (0, 1), and consider a coin:

X = 0 with prob p
X =1 with prob 1 — p.

@ For each of the strings, toss the coin to decide if the string
endsin Aorin B.
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Randomizing the game

@ Fix a probability p € (0, 1), and consider a coin:

X = 0 with prob p
X =1 with prob 1 — p.

@ For each of the strings, toss the coin to decide if the string
endsin Aorin B.

The value at the root of the tree V) becomes a Bernoulli

variable with
P(Vy =0) = hM(p)

where

h(p) = P (Max(min(xi, xz), min(xs, x4)) = 0) = (1 — (1 — p)?).

dlez joint work with: F. Durango, J.L. Fernandez, P, A limit theorem for random games



0.4

0.2




h(p) = P (Max(min(xy, x2), min(xs, x4)) = 0) = (1 — (1 — p)?)2.

) /in(0,1)
) =0, h(1) =1
H(0)=H(1)=0

h(p
h(0
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P(Vy = 0) = ht")(p)
Therefore, as N — oo:

e If p< p*, then P(Vy = 0) = hN)(p) — 0, and « is almost
certain to win. Vy — 1

@ If p= p*, then P(Vy = 0) = htN)(p) = p*. Vy — X, where
X is a Bernoulli variable with prob. of success (1 — p*).

e If p> p*, then P(Vy = 0) = hN)(p) — 1, and 3 is almost
certaintowin. Vy — 0

In terms of quantiles: Viy — Qx(p*) J
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Problem

Generalization

Consider a monotone Boolean function H : {0,1}" — {0, 1}.
(Voting rule)

Ex: n=3

H(1,1,1)=1 1 1 H(0,0,1)=1
H(1,1,0)=1 H(0,1,0)=0 H(1,0,0)=0 H(0,0,0)=0

@ Identify the subsets of {1,2, 3} with elemets of {0, 1}3.
@ Look for the minimal subsets A under the action of H, i.e.
H(A) =1, and for any B with B C A, H(B) = 0.

Note that the minimal subsets are {1,2}, {3} and
H = max (min(xq, X2), X3)
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Problem

Sperner family

We can associate to each monotone Boolean function H a
family of subsets S = {A¢, Ao, ..., Ac} of {1,2, ..., n}, such that
no A; is contained in any other A;. We will call it a Sperner
family.

In fact H can be represented as the Sperner statistic
associated to S:

H = max (ming,, ming,, ...,ming, ).

where
mina(xq, X2, ..., Xn) = min(x;; x; € A).
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Problem

Examples

@ Projection (or dictatorship): H(x1, X2, ..., Xn) = X;

@ Majority rule: H(xq, X2, ..., Xn) = X(x1+x24r:..,+xn>1/2)

@ Order statistics: Hip,r) (X1, X2, ..., Xn) = X, where
Xi, < X;, < ...X; < ...X;,- The Sperner family are all the
subsets of size n—r + 1.

@ Zermelo statistics: The Sperner family associated is such

that all the subsets A; are pairwise disjoint.
The one associated to the game is a Zermelo statistic.
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Problem

Problem

Consider Bernoulli variables X that take values 0 and 1 with
probabilities p and 1 — p respectively.

Define the operator H(X) acting on Bernoulli variables X by
H(X) = H(Xj, ..., X,) where X; are independent copies of X.

Problem: Understand the convergence (in distribution) of the
iterates HV),
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NoTe: H™ is a Bernoulli variable that take values 0 and 1
k
{H(X'I ) --~»Xn) = 0} = ﬂ{minAi(X1 ) "')Xn = 0}
i=1
Therefore, P(H(X) = 0) is the polynomial
hp) = 1= (1 =p)M + (1 p)AUA - ..
i i<j

and
P(HM(X) = 0) = hM)(p)
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Problem
Easy cases

his in[0,1] with h(0) = 0, h(1) =1, H(0) = | N A;| and
H' (1) = number of singletons.

@ Projection: h(p) = P(H(X) = 0) = P(X; = 0) = p. Therefore
HM(X) = X.

@ Upper case: The family S contains no singleton and
N% A; # 0, then h(p) > p. Therefore htN)(p) — 1 if p # 0.

HM(X) - Qx(0) ]

@ Lower case: The family S contains a singleton and
N A; = 0, then h(p) < p.. Therefore K™ (p) — 0 if p # 1.

HM(X) - Qx(1) |
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Results
Sperner polynomial

To study the remaining case (/' (0) = H'(1) = 0) we consider
the Sperner polynomial

g(p)=1-h(1—-p)

Then g(p) = P(H(X) = 1) where the Bernoulli variable X has
probability of success p.

Note also that

Var,(H) = g(p)(1 — 9(p))
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Results

Fourier Analysis: Influences

We define the influence of the variable ;1 < i < nas
li(H) = Pp(H(X) # H(X @ &))
where X ® e; means X with the i-th bit flipped.
The total influence of H, I,(H), is the sum of all the influences.
Russo’s Lemma: g'(p) = Ip(H)

Efron-Stein inequality (Isoperimetric inequality):

_
p(1 —p)

with equality if and only if H is a projection.

Ib(H) > Var,(H)
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Results

Sperner point

As a consequence we obtain

oy a(p)(1 —9(p))
g(p) =1p(H) = o1 p)

So, if p is a fixed point of the Sperner polynomial g(p), then
gd'(p) > 1. Infact. g’(p) > 1 unless H is a projection.

Let S = {Aq,..., Ac} be a Sperner family with k > 2 each A; > 2
and (N A; = 0, then the polynomial hs has a unique fixed point
(Sperner point) wy € (0, 1) that happens to be repellent.
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Results

Continuous selectors

A continuous selector H is a continuous function defined in
R" such that

H(X17X27 --an) € {X13X27 --->Xn}

Theorem: Any continuous selector is a Sperner statistic, and
conversely.

Key point:  Continuous selectors are monotone and they are
determined by their restriction to the Boolean cube.
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Note: If H is a continuous selector, then for all t,
1 H o)ty = H sty 1> ty)
Consequently:

Let X be a random variable with distribution function Fy, and
Xi, ..., Xn independent copies of X. Then

P(H(Xi,..., Xn) < 1) = h (Fx(1))

Write H(X) = H(Xj, ..., X), iterating the expression above, we
get
PHM(X) < t) = hM(Fy(1))
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Let H be a continuous selector. Then, except for projections,
there is a unique point wy € [0, 1] so that for any random
variable X

HM(X) = Qx(wh)
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