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I. Extension Theorems for BMO and Sobolev Spaces.

Q) C RY connected and open, ¢ : Q) — R,

1
||90HBM0(Q) =sup — [ |¢ — poldz
oca Q] Jo

where ) is a |Q| = its measure, pg = ﬁ fQ odz.

Theorem 1: Every ¢ € BMO(Q) has extension in BMO(R?) if and
only if for all z,y €

: s(z o(x x —
lejgligs x,y/WCfS((z)) < C’log%‘ +Clog(2+ﬁ),

where 6(x) = dist(x, 0%2).






Corollary: Q C R? and 092 =T a Jordan curve.

Every ¢ € BMO(Q) has extension in BMO(R?)

0

’U)l - ’U)g’ S C\wl - wg‘

for wy,wy € I’ and w3 on the smaller arc (wy,ws),

i.e. if and only if I is a quasicircle.



wi

wa

Quasicircle Not Quasicircle
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L) ={feLlr(Q):|a|<k=>D"fell(Q)]},

for 1 <p<oo, keN.

Theorem 2: (Acta 1981) For any k, and p there exists a bounded
linear extension operator

Ay LP(Q) — LE(R™)

if and only if 3¢ > 0, 0 < § < oo so that 2 is an (g,0) domain:
ijyEQ,kU—y‘ <9

4

£

3 arc v C  joining z,y with length(y) < | |
Lr—Y
and

|z — z[ly — 2|

dist(z,00) > ¢
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II. BMO and A, Weights.

John-Nirenberg Theorem: ¢ € BMO(RY) < Jc:

1
sup—/ ede@)=¢al gy < oo, (JN)
Q 1QlJg

Theorem 3: (Annals 1978) If ¢ € BMO(RY), then

irif llo — gllBmo ~ sup{c: JN holds}.
geL>



A weight w > 0 on R" is an Ap-weight 1 < p < oo it

Y !QI/ i) 1@1/ wdo)

(holds if and only if singular integrals or H-L. maximal operator is
bounded on LP(w).)

Theorem 4: (Annals 1980)

1_
we A, & w=ww, ’,w,wy € A.

Theorem 4 = Theorem 3.

See also J. L. Rubio de Francia, Annals of Math 1982, for an elegant
non-constructive proof of Theorem 4.



Q C R?is a dyadic cube if 3 n, k; € Z so that
d
Q = ﬂ{kJQ_n S X S (]{5] + 1)2—n}
j=1

p e Llloc is BMOy if

lel|Barog = sup

1
= [ e — poldz < oo
Q@ dyadic |Q| Q

BMO Cc BMOgy, BMO # BMOq, but BMO4 was a simpler space.

Theorem 5: (Pacific J. 1982). Assume

R?Y5 a — o € BMOy
is measurable, ||0||pr0, < 1, go(oi) = 0 for a fixed @), and all . Then
e(r) = lim ;/ Oz + a)da
N—oo (QN)d laj|<N

is BMO and ||¢||pymo < Cy.

Theorem 5 yields BMO theorems like Theorem 3 from their simpler
dyadic counterparts. For related H! result, see B. Davis, TAMS 1980.



Let w € L'(R),w > 0. Then

1 1 1
sup(—/wdx) (—/—da:) < 00
1 Mg ] Jrw
holds if and only if w satisfies the Helson-Szego condition:
T
2 Y
because both hold < Hibert transform is L?*(w) bounded.

w=e""" uwe L™ ||v]|w <

In dimension 1, As and HS imply Theorem 3.

(HS)

Problem: Prove A; = HS directly, without using the L?(w) bound-

edness of H or M.



ITI. Constructions with H> Interpolation, 9, and BMO.

Let {z;} be a sequence in the upper half plane H = {z + iy : y > 0}
and

H* ={f:H— C: f is bounded and analytic}.

Theorem (Carleson 1958) Every interpolation problem

f(Zj) = aj, 3=12,..., (CLj) e > (INT)
has solution f € H* if and only if

(1) infr; |Z]y_—z’“| > ¢ > 0 (hyperbolic separation)

J

and

(ii) for all intervals I C R,

Z y; < O,

xzjely; <|I|

(Carleson measure condition).
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Problems: (already solved) Find constructive solutions to:
(1) INT
(2) p € BMO(R) = ¢ =u+ Hv,u,v € L™

(3) p Carleson measure on H :

pL (0, ) < [lpelle ]
4

OF = pu

has solution on H which is bounded on R.
Theorem 6: (Annals 1980) Constructive solutions to (2) and (3).
Proof uses:

(i) the J. P. Earl solution to (1),

(ii) Approximation of Carleson measures by measures Zyj 0, from
interpolating sequences {z;}, and

(iii) a BMO extension theorem of Varopoulos.
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For another construction, define for o a measure on H:

_x_ Im6 " Vdjolw) ).
R Py p</1mw<lmc(<—w )l )>

Theorem 7: (Acta Math., 1983) If u is a Carleson measure on H,
then

S(p)(z) = /H K(m,z,c)du«) € Lige
satisfies

3S(u) = p on H,

and

Sup 15(1)(@)] < Col|plle-
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Theorem 8: Let {z;} C H satisfy
(1) infjz; |ij7—2’“| > ¢ > 0 (hyperbolic separation)

and
(i) for all intervals I C R, >°, oy ¥ < C|I].

Define

A B

where |a;| = 1 are convergence factors, and

J
Then

Yi \? —1 Yk
F' - 'B. ( ) ’
1(2) = 7B5(2) 2 —7% eXp(logQ/cS = zz_k)

—4
Vi B;(z )eXp<1og2/6 2z — zk>

Y <Y;

satisfies

log2/5
J

4F(Zk)— .k and Z’F ‘<CO

Paul Koosis called this “the Peter Jones mechanical interpolation for-
mula”.
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IV. Corona Theorems and Problems.

When H>(£2) is the algebra of bounded analytic functions on a com-

plex manifold €2, the corona problem for € is: Given fi,..., f, €
H*>°(Q) such that for all z € ,

max |f;(z)] 26 >0

are there g1,...,g, € H>*(Q) such that
figr+ o fagn =17
2 = unit disc D, Yes, Carleson (1962).

Q2 a finite bordered Riemann surface, Yes, E. L. Stout (1964), many
later proofs.

2 a Riemann surface, No, Brian Cole (ca 1970).

Problem: () an infinitely connected plane domain.
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Theorem: (Carleson (1983)) f C\Q=FEF CRand forallz € £

|[ENjz—raz+7]| > cr

then the corona theorem holds for €2.
Forelli Projection: Q2 =D/T,
i) P H(D) — H*(Q) = {f € H(D) : for = f,¥y € T};
i) |[P(f)lloc < ClIflos;
iii) P(fg) = fP(g), feH>Q);
v) P(1) =1.

Forelli Projection = corona theorem for (). Carleson built a Forelli
Projection.

(
(
(
(i

Theorem 9: (Jones and Marshall) Let G(z,() be Green’s function
for Q, fix zp and let {(;} be the critical points of G(z, (). If there is
A > 0 such that all components of

{Ceq:) G(C.¢) > A}
k

are simply connected, then €2 has a projection operator and the corona
theorem holds for €.

For C\ ©Q C R, Theorem 9 = Carleson’s theorem.
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Theorem 10: If C\ Q C R, the corona theorem holds for €.
Note: |E| =0 <= H*(Q) trivial.

Proof of Theorem 10 uses constructions from both Theorem 6 and
Theorem 8.

Problem: Corona theorem for 2 = C\ E, £ C I, a Lipschitz graph.
Known if T is C'¢ or if A{(E N B(z,r)) > cr Vz € E.
Problem: Corona theorem for C\ (K x K), K = i Cantor set.

Problem: Which 2 C C have Forelli Projections?

For C\Q=F CR,itholds <= |[EN[z —r,x+7r]| >cr Ve E.
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V. Harmonic Measure and Integral Mean Spectra.

Theorem: (Makarov, 1985) Let €2 be a simply connected plane do-
main and w harmonic measure for zy € ). Then

a<l=w<<A,

a>1=wl A,

For a bounded univalent function ¢ define

2

B,(t) = inf{ 3 / S (re)t = O((1 - 1))}

|
0
and the integral mean spectrum,

B(t) = sup{ (1)}

Makarov’s Theorem is < B(0) = 0.

Brennan’s Conjecture is B(—2) =1

17



With ¢ =377 | a,2", write A, = supjg_ <1 |an|.
Theorem 11:(Carleson-Jones, Duke J. 1992) For bounded ¢ the limit

. log A,
v = — lim
n—oo logn

exists and there exists bounded ¢ such that

log a,

v = — lim :
n—oo logn
Moreover, 1 —~ = B(1).

Carleson and Jones further conjectured v = %, ie. B(l) = }1. Belyaev
proved 7 < .78, i.e. B(1) > .23.

Brennan-Carlson-Jones-Kraetzer Conjecture: B(t) = %, 1t| < 2.

Theorem 12: (Jones-Makarov, Annals 1995)

B(t)=t—14+0((t—2)?) (t— 2).
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For arbitrary plane domains Jones and Wolff proved:

Theorem 13: (Acta 1988) Let 2 be a plane domain such that 02 has

positive logarithmic capacity. Then there exists F' C 0f) of Hausdorff
dimension < 1 and w(z, F') =1 for z € (.

Proof uses classical potential theory and the formula

1 oG oG
— [ Zlog—dr=vy= Y G(()

2T a0 871 871

from Ahlfors used earlier by Carleson (to show dim w stricly less than
dim 0f) in certain cases).
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VI. Traveling Salesman Theorem.

Geometric Lemma: (SLLM 1384) Let I' = {y(z) : x € [0,1]} be a
Lipschitz graph in R?. For a dyadic interval I C R set

1
Br(I) = — infsup dist(y(z), L),
| | L zer

Then
D BRI < CAy(T).

IcJ

20



preeset,
)

Bere

AT

I
J

20a




For bounded K C R? and Q a dyadic square of side £(Q) in R?, let
w(Q) be the width the narrowest strip containing K N 3@ and

Br(Q) = %

Theorem 14: There exists a rectifiable curve I' D K if and only if

F(K) = Br(QUQ) < oo
Q

Moreover,

A (D) € C(diamK + 5*(K)).

21



JOTTTTLL
. .n“' TIne.
y [
. -
** )
o )
.

21a



VI1I. Work with Bishop: Harmonic Measure and Kleinian Groups.

Let I' be a rectifable curve in C, 2 a simply connected domain, and
¢ : D — Q a conformal mapping.

Theorem 15: (Annals 1990) On I' N 09, Q-harmonic measure is ab-
solutely continuous to linear measure:

EcCcTl'noQ, and w(z, F,Q) > 0= A (F) > 0.

Proof uses Theorem 14 and a related estimate on the Schwarzian
derivative.

I is Ahlfors regular if A;(I'N B(z,7)) < Mr for all z € I.
Theorem 16: I' is Ahlfors regular if and only if there is Cp such that
for all Q2 and ¢ : D — Q,

Al(QO_l(F N Q)) S Cp.

22
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A Kleinian group is a discrete group G of Mobius transformations
acting on S (and the hyperbolic 3-ball) B such that the limit set A(G)
(accumulation points of the orbit {y(0) : v € G}) # S2.

The Poincaré exponent

i(G) = inf{s ; Ze_pB(O’V(O)) < oo}

G
measures the speed at which «(0) tends to S? = OB.

The conical limit set of G is A.(G) C A(G) consists of the nontan-
gential accumulation points of the orbit.

23
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Theorem 17:(Acta 1997) If A(G) is infinite, then

dimHauSd (Ao(G)) = 5(G) .

G is geometrically finite if some finite-sided hyperbolic polygon in
B is a fundamental domain.

G is analytically finite if Q(G)/G is a finite union of compact sur-
faces minus finitely many points.

Theorem 18: If G is analytically finite but not geometrically finite,
then

dimpgausa (A(G)) = 2.
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VI1II. Applied Mathematics.

Jones, Maggioni and Schul construct local coordinates on a domain
in R? (or on a C* manifold) using Laplace eigenfunctions:

Dirichlet or Neumann eigenfunctions {¢,} for A on 2 with || < oo,

0< A< <A<

#{j: N < T} < CwT?|Q.
Theorem 19: (PNAS 2008) Assume |2 = 1. There are constants
c1,...,¢¢ (depending on d and Cy) so that for z € Q and R

R, = dist(z,09), there exist indices ji,...,Jj; and constants cgR <
Y1 ...7%¢ < 1 so that

Bp(z) 3 2 — (2) = (119, (2), - - 1a95.(7))

satisfies
Blloy = wal] < [[@(a1) — @(z2)]| < Fllrs — o]

for x1, 29 € B, r(z), and the corresponding eigenvalues satisfy

C4 Cs5
RSN S Ry
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IX. Random Welding.

Let I' C C be a Jordan curve bounding domains €24 and let f, : Dy —
)+ be conformal. Then ¢ = f;l of_ : T —Tis the welding map.

Welding Problem: Characterize welding maps.

Beurling-Ahlfors: (1956) ¢ quasisymmetric = 3 welding, but I is a
quasicircle.

Theorem 20 (Astala, Jones, Kupiainen, Saksman) Let

g0(627rit) _ 627rih(t)

Y

where

and 7 is the random measure

dr = XM gt
With0§5<\/§and

= 1
X(t) = Z %(An cos 2mnt + B,, sin 2mnt)
n=1

where A,, B,, are i.i.d. N(0,1) Gaussians. Then almost surely ¢ is a
Holder continuous circle homeomorphism and ¢ is the welding for a
Jordan curve I' = 9f, (D), f. and I' are Holder continuous, and I" is
unique up to Mobius tranformations.
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Notes: Almost surely, I' is not a quasicircle.
In proof X is replaced by a white noise approximation X..

Uniqueness follows from Hélder continuity and a theorem of Jones and
Smirnov.

Existence uses Lehto’s solution of the Beltrami equation f> = uf, for
degenerate 1 and three giant steps:

(1) The (1956) Beurling-Ahlfors extension of ¢ to f : D — D and a
careful analysis of images f(Q), @ C D a Whitney cube.

(2) Sharp probalistic estimates for % for adjacent dyadic intervals
J,J' C0,1).

(3) A representation of Gaussian free field X (¢) due to Barcy and
Muzy.
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Thank you.
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