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Analyst’s traveling salesman theorem

For a cube Q C R” of sidelength £(Q) and E C R” compact, let

width of smallest tube containing EN Q
«Q) '

Be(Q) =

Q /\
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Analyst’s Traveling Salesman Theorem
Theorem (Jones "90; Okikiolu, '92; Schul, '07)

LetE CR".
1. There is a curve T containing E so that

AN S [diamE+ > Be(3Q)%¢(Q)

Q dyadic
QNE#0



The Analyst's Traveling Salesman Theorem (TST) Main Results: New

Analyst’s Traveling Salesman Theorem
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LetE CR".
1. There is a curve T containing E so that
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Q dyadic
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2. Conversely, ifT is a curve, then
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Q dyadic
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Analyst’s Traveling Salesman Theorem
Theorem (Jones "90; Okikiolu, '92; Schul, '07)

LetE CR".
1. There is a curve T containing E so that

AN S [diamE+ > Be(3Q)%¢(Q)

Q dyadic
QNE#0

2. Conversely, ifT is a curve, then

diaml+ > pr(3Q)*(Q) < ().

Q dyadic
QN0

Hence, for curves I', we have

AN (M) ~diamT + >~ Br(3Q)%(Q).

Q dyadic
QNr#0
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Applications of the TST

Theorem (Bishop, Jones, '90)

Harmonic measure on Q C C simply connected is absolutely continuous w.r.t.
arclength on 9Q N T, I any rectifiable curve.
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Theorem (Bishop, Jones, '90)

Harmonic measure on Q C C simply connected is absolutely continuous w.r.t.
arclength on 9Q N T, I any rectifiable curve.

Theorem (Bishop, Jones, '97)

LetT C R? be a curve s.t. Br(Q) > ¢ whenever Q is centered on T then
diml > 1+ ce2.
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Applications of the TST
Theorem (Bishop, Jones, '90)
Harmonic measure on Q C C simply connected is absolutely continuous w.r.t.
arclength on 9Q N T, I any rectifiable curve.
Theorem (Bishop, Jones, '97)
LetT C R? be a curve s.t. Br(Q) > ¢ whenever Q is centered on T then
diml > 1+ ce2.
Theorem (A., Schul, ’12)

There is C > 0 so that ifT gR” is a connected set, there ist D T
C-quasiconvex so that s (T) <, 7' (I).
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Applications of the TST: ¢?-flatness

Corollary (Bishop, Jones '90)
IfT is a compact connected set, it is 1-rectifiable if and only if

Z Br(3Q)% < oo for #'-ae. x .

xeQ
Q dyadic
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Applications of the TST: ¢?-flatness
Corollary (Bishop, Jones *90)
IfT is a compact connected set, it is 1-rectifiable if and only if

Z Br(3Q)% < oo for #'-ae. x .

xeQ
Q dyadic

Let I' be a Lipschitz curve. Then ' = f([0, 1]), where f is Lipschitz.

10/59



The Analyst's Traveling Salesman Theorem (TST) Main Results: New B-numbers and TST

oooe 000
0000000 0000000

Applications of the TST: ¢?-flatness

Corollary (Bishop, Jones ’90)
IfT is a compact connected set, it is 1-rectifiable if and only if

Z Br(3Q)% < oo for #'-ae. x .

xeQ
Q dyadic

Let I' be a Lipschitz curve. Then ' = f([0, 1]), where f is Lipschitz.

e Rademacher’s theorem says f is differentiable a.e., and so at almost
every x €T, 5r(3Q) | 0 as Q > x decreases.
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Applications of the TST: ¢?-flatness
Corollary (Bishop, Jones ’90)
IfT is a compact connected set, it is 1-rectifiable if and only if

Z Br(3Q)% < oo for #'-ae. x .

xeQ
Q dyadic

Let I' be a Lipschitz curve. Then ' = f([0, 1]), where f is Lipschitz.
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e Rademacher’s theorem says f is differentiable a.e., and so at almost

every x €T, 5r(3Q) | 0 as Q > x decreases.
o However, this isn't enough to imply rectifiability.
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Applications of the TST: ¢?-flatness

Corollary (Bishop, Jones ’90)
IfT is a compact connected set, it is 1-rectifiable if and only if

Z Br(3Q)% < oo for #'-ae. x .

xeQ
Q dyadic

Let I' be a Lipschitz curve. Then ' = f([0, 1]), where f is Lipschitz.
e Rademacher’s theorem says f is differentiable a.e., and so at almost
every x €T, 5r(3Q) | 0 as Q > x decreases.
o However, this isn't enough to imply rectifiability.

e The corollary tells us that the flatness must be decaying fast enough to
characterize rectifiability.

sults: New B-numbers and TST
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Applications of the TST: ¢?-flatness

Corollary (Bishop, Jones ’90)
IfT is a compact connected set, it is 1-rectifiable if and only if

Z Br(3Q)% < oo for #'-ae. x .

xeQ
Q dyadic

Let I' be a Lipschitz curve. Then ' = f([0, 1]), where f is Lipschitz.
e Rademacher’s theorem says f is differentiable a.e., and so at almost
every x €T, 5r(3Q) | 0 as Q > x decreases.
o However, this isn't enough to imply rectifiability.
e The corollary tells us that the flatness must be decaying fast enough to
characterize rectifiability.

e |t also gives us more information for rectifiable sets: Not only does
Br(3Q) | 0, but at a square summable rate!
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Higher dimensional 5’s are not adequate for TST

If ECR", d < n, and we define

d : dist(x, P) . }
o(Q)=inf{ sup ———2: Pisad-plane
(@) =] sup ST P

then the first direction of the TST holds for d = 2 (Pajot, '96) and for d > 2
under some assumptions (David-Toro, '12), but not the other.
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Higher dimensional 5’s are not adequate for TST

If ECR", d < n, and we define
d . diSt(X7 P) . }
o(Q)=inf{ sup ———2: Pisad-plane
(@) =] sup ST P

then the first direction of the TST holds for d = 2 (Pajot, '96) and for d > 2
under some assumptions (David-Toro, '12), but not the other.

Theorem (Jones, Fang)
There is a 3-dimensional Lipschitz graph T in [0,1]* so that

> B=(3Q2(Q)° = .

acio, 14
QNE#D

Thus, in generalizing either the TST or the Bishop-Jones corollary, we need a
new S-number.
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Dorronsoro’s theorem, ’85

Let f € W'2(R?) and define (recall f, fdu = 5 [, fdu)

a(x, r) = inf { (]i( ) (W)z d,v) : . Ais linear }
19~ [ [ e Fox

/\/\/\/
" B

Then
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TST for graphs

For S, E C R", define

1/2
1 dist(y, P)\? J
IBE 2(8) Padplane <(dlam S)d /SmE ( diam S ) s (y)>

Theorem (Dorronsoro)

Letf:R?Y — R"™9 be L-Lipschitz (L very small) and T C R" be its graph.

Then - d
:
[ ] BtatBoeny S an ~ v
rJo
or equivalently,

> BLa(BQ%UQ)7 ~ VA5

QNIr#0
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TST for graphs

For E C R” and S a cube or ball, define

1/2
d ey 1 dist(y, P)\? . a
Pea(S) = Palmane <(diam S)d /sm; ( dams ) 470
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TST for graphs

For E C R” and S a cube or ball, define

1/2
d _ . 1 diSt(y, P) 2 d
Bea(S) =, int | <(diam Sy /SﬁE ( dams ) 470

If supp f = B(0, R) C RY, ||Vf||oo < 1, and I is its graph over B(0, R),
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TST for graphs

For E C R" and S a cube or ball, define
1 dist(y, P)\2 "2
d o 1St Y, d
Pea(S) =, Jnt | <(diam 5 /SﬁE ( diam ) St )>
If supp f = B(0, R) C RY, ||Vf|| < 1, and I is its graph over B(0, R),

= [ 9~ [ ()
B(0,R) B(0,R)

= () — wgR?

Results: New 3

ers and TST
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0008000

TST for graphs

For E C R” and S a cube or ball, define

1/2
d oren 1 / dist(y, P)\? , 4
Bea(S) =, int | <(diam 5 sm;( dams ) 470
If supp f = B(0, R) C RY, ||Vf|| < 1, and I is its graph over B(0, R),
= [ 9~ [ ()
B(0,R) B(0,R)
= () — wgR°

Hence,

A ~ A+ o~ [ [ 5a(BOx ) L () + (diam ).
rJo

22/59



The Analyst's Traveling Salesman Theorem (TST) Results: New 3-numbers and TST

0000000

David-Semmes Theorem

Theorem
Let E C R" be Ahlfors d-regular, meaning

AHY(B(x,r)NE)~r? forallx e E, r>0.

Then the following are equivalent:
1. do := BL,(B(x,r))?dx% is a Carleson measure, meaning
a(B(x,r) x (0,r)) < Cr? forall x € E andr > 0.
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David-Semmes Theorem

Theorem
Let E C R" be Ahlfors d-regular, meaning

AHY(B(x,r)NE)~r? forallx e E, r>0.

Then the following are equivalent:
1. do := BL,(B(x,r))?dx% is a Carleson measure, meaning
a(B(x,r) x (0,r)) < Cr? forall x € E andr > 0.
2. E is uniformly rectifiable: there is L > 0 so that for every x € E and
r>0,thereisf: ACR? — R" L-Lipschitz so that f(A) C En B(x, r)
and s (f(A)) > L='r?.
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David-Semmes Theorem

Theorem
Let E C R" be Ahlfors d-regular, meaning

AHY(B(x,r)NE)~r? forallx e E, r>0.

Then the following are equivalent:
1. do := BL,(B(x,r))?dx% is a Carleson measure, meaning
a(B(x,r) x (0,r)) < Cr? forall x € E andr > 0.

2. E is uniformly rectifiable: there is L > 0 so that for every x € E and
r>0,thereisf: ACR? — R" L-Lipschitz so that f(A) C En B(x, r)
and s (f(A)) > L='r?.

This is like the TST in the sense that it gives a condition for when a big piece
of E is contained in a Lipschitz surface, rather than all of it.
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How far we can get with 3¢ ,

Theorem
Let E C R" have 0 < #°(E) < co. Then E is d-rectifiable if (Tolsa, '15) and
only if (A., Tolsa, '15) [} B2 »(B(x, r))?% < co.
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How far we can get with 3¢ ,

Theorem
Let E C R" have 0 < #°(E) < co. Then E is d-rectifiable if (Tolsa, '15) and
only if (A., Tolsa, '15) [} B2 »(B(x, r))?% < co.

Theorem (Edelen, Naber, Valtorta, '16)
If ;v is Radon on R", 0%(1, x) < b and [} B2 ,(B(x, r))?

< M for u-a.e.
x € B(0,1), then u(B(x,r)) < (b+ M)r® forx € B(0,1), r >

0.

dr
1),
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How far we can get with 3¢ ,

Theorem
Let E C R" have 0 < #°(E) < co. Then E is d-rectifiable if (Tolsa, '15) and

only if (A., Tolsa, '15) [} B2 »(B(x, r))?% < co.

Theorem (Edelen, Naber, Valtorta, '16)
If ;v is Radon on R", 6%(ui, x) < b and [} B2 ,(B(x,r))*< < M for u-a.e.
x € B(0,1), then u(B(x,r)) < (b+ M)r® for x € B(0,1), r > 0.

There are also other 8-numbers defined for measures and results that
characterize the 1-rectifiable structure of the measure (Badger and Schul,16).
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What we’d like to do

We'd like to generalize the TST to a d-dimensional surface E, so we need a 8
number so that
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What we’d like to do

We'd like to generalize the TST to a d-dimensional surface E, so we need a 8
number so that

1. we don’t need to assume E has finite d-measure (or any prescribed
measure)
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What we’d like to do

We'd like to generalize the TST to a d-dimensional surface E, so we need a 3
number so that

1. we don’t need to assume E has finite d-measure (or any prescribed
measure)

2. we can deduce E has finite measure in terms of its beta numbers and
bound its area,
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What we’d like to do

We'd like to generalize the TST to a d-dimensional surface E, so we need a 3
number so that

1. we don’t need to assume E has finite d-measure (or any prescribed
measure)

2. we can deduce E has finite measure in terms of its beta numbers and
bound its area,

3. we can bound a square sum of 8 numbers in terms of #%(E),

32/59



The Analyst's Traveling Salesman Theorem (TST)

000000

What we’d like to do

We'd like to generalize the TST to a d-dimensional surface E, so we need a 3
number so that

1. we don’t need to assume E has finite d-measure (or any prescribed
measure)

2. we can deduce E has finite measure in terms of its beta numbers and
bound its area,

3. we can bound a square sum of 8 numbers in terms of #%(E),
4. we can't useé Beo.
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A new S-number

Recall that
d ez 1 / dist(y, P)\? |, 4
BE’Z(S) o Palcﬂjane (dlam S)d SNE diam S ax (,V)

— inf ] =l (st P)Y?
_Pa'E,f.ane(diamS)d/O - <{XGSHE'(diamS Zrp e
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A new S-number

Recall that
Al o2 1 / dist(y, P)\* |, 4
Pea(S) = Pa'(mane (diam S)? Sk < diam S dA(y)

o 1 © 4 [ dist(y, P)\?
= e e (diamS)d/O K ({XGSHE' ( dams ) ~ ()9
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A TST for "nice” surfaces

Theorem (A., Schul)
Let E C R" be so that for all x € E and r € (0,diam E),

HL(ENB(x,r) > cr.
Then

HUE) < (diamE)' + > BE(3Q)%UQ)°.
QNE#)
Moreover, for "nice” surfaces,

(diam E)* + Y~ BE.(3Q)*((Q)! < s (E).
QNE#Q

36/59



Main Results: New B-numbers and TST
ooe

Nice surfaces

e-Reifenberg flat sets: Let § > 0, E C R" be so that, for all x € E and
0 < r < édiam E, there is a d-plane Py, so that

dist(E N B(x,r), Px,r N B(x,r)) <er.
Haus
For these kinds of sets, we have

(diamE)* + > BE.(8Q)*U(Q) ~s #°(E)
QNE#()
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ooe

Nice surfaces

e-Reifenberg flat sets: Let § > 0, E C R" be so that, for all x € E and
0 < r < édiam E, there is a d-plane Py, so that

dist(E N B(x,r), Px,r N B(x,r)) <er.
Haus

For these kinds of sets, we have

(diamE)* + > BE.(8Q)*U(Q) ~s #°(E)
QNE#()

Proof: Let 7, denote Christ cubes on E of sidelength k. Let 2 = | %k, and
for Q € 2,let Bg be a large ball around Q.

If Qo € 2o and € > 0 small enough, we’ll show

> Be(Ba)*((R)’ < #°(E).

RCQy
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Sketch of proof for Reifenberg flat sets

o Let Pq be the best approximating plane to E in Bg.
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Sketch of proof for Reifenberg flat sets

o Let Pq be the best approximating plane to E in Bg.

e Construct Sy C 2 by putting Qo € S and adding Q € 2 to S if its parent
isin Sand Z(Pq, Pq,) < a. Remove a few bottom cubes so that minimal
cubes in S close to each other have comparable sizes. Let Stop(1) be
these minimal cubes and Total(1) = Sp.
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Sketch of proof for Reifenberg flat sets

o Let Pq be the best approximating plane to E in Bg.

e Construct S, C 2 by putting Qy € S and adding Q € 2 to S if its parent
isin Sand Z(Pq, Pq,) < a. Remove a few bottom cubes so that minimal
cubes in S close to each other have comparable sizes. Let Stop(1) be
these minimal cubes and Total(1) = Sp.

e For each R € Stop(N), make a stopping-time region Sg by putting
R € Sg and adding cubes Q to Sy if Q’s parent is in Sg and if
Z(Pq, Pr) < a. Again, remove a cube to smoothen out minimal cubes,

then let

Stop(N+1)= | J minimal cubes in Sx.
Re Stop(N)

Total(N + 1) = cubes not contained in any cube from Stop(N + 1).
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0000000
e We can use David-Toro to construct a surface Ey so that

dist(x, En) < inf  e(Q) forallx e E
x€Qe Total(N)

and Ey is a Ce-Lip graph near Q (i.e. in Bg) over Pq.

o |f we never stop over x in our N-th stopping time, x € EyN E.

/EN\
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e We can use David-Toro to construct a surface Ey so that

. < .
dist(x, En) < ereIr'}jtal(N) el(Q) forallx € E

and Ey is a Ce-Lip graph near Q (i.e. in Bg) over Pq.

o |f we never stop over x in our N-th stopping time, x € EyN E.

R

Pq
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e We can use David-Toro to construct a surface Ey so that

. < .
dist(x, En) < Xeoelr;;‘ta/w) el(Q) forallx € E

and Ey is a Ce-Lip graph near Q (i.e. in Bg) over Pq.

o |f we never stop over x in our N-th stopping time, x € EyN E.

QCE

T\EN+1
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e We can use David-Toro to construct a surface Ey so that

. < .
dist(x, En) < ereIr'gtal(N) e/(Q) forallx € E

and Ey is a Ce-Lip graph near Q (i.e. in Bg) over Pq.
o If we never stop over x in our N-th stopping time, x € EyN E.

e For Q € Stop(N), I' := Bo N En.+ is a graph above Bq N Pq with
respect to a Ca-Lipschitz function AY : Po — P5.

x + A¥(x)

ME N—+1

X PQ

45/59



st's Traveling Salesman Theorem (TST) Main Results: New B-numbers and TST

6;60000
e We can use David-Toro to construct a surface Ey so that

dist(x, En) < inf el(Q) forallx e E
x€ Qe Total(N)

and Ey is a Ce-Lip graph near Q (i.e. in Bg) over Pq.
o |If we never stop over x in our N-th stopping time, x € Ey N E.

e For Q € Stop(N), I' := Bo N En.+ is a graph above Bq N Pq with
respect to a Ca-Lipschitz function AY : Po — P5. Note that

|DAY| > Xy (R) when R € Stop(N + 1).

X + A¥(x)

46/59



The Analyst's Traveling Salesman Theorem (TST) Main Results: New 3-numbers and TST

Sketch of proof for Reifenberg flat sets
Lemma

Yo D UQT S HE).

N Qe Stop(N)
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Sketch of proof for Reifenberg flat sets
Lemma

SO «@Y 5 0E).

N Qe Stop(N)

e Say Q € Type(1,N) if Q € Stop(N) and
A°(TY) — |Ba N Pg| < Cel(Q)°.
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Sketch of proof for Reifenberg flat sets
Lemma

Y. D UQTsHYUE).

N Qe Stop(N)

e Say Q € Type(1,N) if Q € Stop(N) and
A°(T) — |Ba N Pal < Cet(Q)°.
Then for e < «,

D R A

Re Stop(N-+1) Q Pq
RCQ

- c
2(#°(18) — Ban Pol) < 5 4Q)° < Q)
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Sketch of proof for Reifenberg flat sets
Lemma
> > U S HE).
N Qe Stop(N)
e Say Q € Type(1,N) if Q € Stop(N) and
A°(MY) — |Ba N Pg| < Cel(Q)°.
Then for e < «,

D R A

Re Stop(N-+1) Q Pq
RCQ

- c
2(#°(18) — Ban Pol) < 5 4Q)° < Q)

e If Z(Q) C Q are points not contained in a cube from Stop(N + 1),

SO qrsY. S #M2Q) < #YE).

N QeType(1,N) N QeType(1,N)
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Sketch of proof for Reifenberg flat sets

« Say Q € Type(2, N) if Q € Stop(N) and
A(TR) = |Bg N Pg| > Cet(Q)°.
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Sketch of proof for Reifenberg flat sets

e Say Q € Type(2,N) if Q € Stop(N) and

H°(TY) — |Bgn Po| > Cet(Q)°.

e Define amap Fy : Ex — En.1 by "looking up at En1 from Ep”.
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Sketch of proof for Reifenberg flat sets

* Say Q € Type(2, N) if Q € Stop(N) and
() — |Bo N Po| > Cet(Q)°.

e Define amap Fy : Ex — En.1 by "looking up at En1 from Ep”.

o () ~ #°(Fn(Bq N En)) and |Bq N Pg| =~ 5% (Bo N En)| fore > 0
small, and so for C large

% (Fn(Bg M En)) — #%(En N Bg) > 0(Q)°.
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t's Traveling Salesman Theorem (TST)

Sketch of proof for Reifenberg flat sets
e Say Q € Type(2, N) if Q € Stop(N) and
A°(TY) — |Ba N Pgl > Cel(Q)°.

e Define amap Fy : Ey — Eny1 by "looking up at En.1 from Ep”.
° j‘f"(l"g) ~ H(Fn(Bo N En)) and |Bg N Pg| = 5% (Bq N Ex)| fore > 0
small, and so for C large

A#°(Fn(Bg N En)) — #°(En N Bg) > e4(Q)°.

Then
> HQ s > (#(Fn(BanEn)) — #°(EnN Bo))
Qe Type(2,N) Qe Type(2,N)
- > [ wn-ns[ a1
Qe Type(2,N) ¥ BaNEN En

= A (Eny1) — 2% (En)
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000
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Sketch of proof for Reifenberg flat sets
e Say Q € Type(2,N) if Q € Stop(N) and
A°(Ty) — |Ba N Pal > Cet(Q)°.

e Define amap Fy : Ey — Eny1 by "looking up at En.1 from Ep”.
(] %d(rg) ~ %d(FN(BQ N EN)) and |BQ n PQ| ~ <fipd(BQ N EN)| fore >0
small, and so for C large
A (Fn(Ba N En)) — 2% (En N Bg) > e£(Q)°.

Then

Soou@se > (#UFu(Ban En)) — #°(En N Bg))
Qe Type(2,N) Qe Type(2,N)
Maybe Jr, —1<0l= >° / (JFN71)§/(JFN71)
ocType(2,n) ! BaNEN En
= H°(Ens1) — % (En) + Error(N)

Main Results: New B-numbers and TST
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Sketch of proof for Reifenberg flat sets

e Use Dorronsoro to show

> Bry (BR)2U(R)° < ¢(Q)? whenever Q € Stop(N).

RESQ
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Sketch of proof for Reifenberg flat sets

e Use Dorronsoro to show

> Bry (BR)2U(R)° < ¢(Q)? whenever Q € Stop(N).

RESQ

e These approximate

ST BeBRPUR =D ST ST Be(3RYUR

RECQy N QeStop(N) RESq

S0 Y BFN(SF?)ZE ¢4 Error

N QeStop(N) ReSq

<S>0 «@)f + Error

N Qe Stop(N)
< H(E).



The Analyst's Traveling Sales
0000 000
0O0000e0

Future Work

1. Most quantitative rectifiability results are for Ahlfors regular sets, but
maybe we don’t need this.

2. What other kinds of sets are "nice”?

an Theorem (TST) Main Results: New B-numbers and TST
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Thanks!

OEELCH

Och grattis pa fodelsedagen!
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