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We numerically investigate the role of inertia in the synchronization of globally coupled oscillators

in the context of the nature of the synchronization transition. Using the modified Kuramoto model

with an inertial term studied by Tanaka et. al., [Phys. Rev. Lett. 78, 2104 (1997)], we measure

various physical quantities and determine the threshold of the coupling strength for various values of

the magnitude of the inertia that each oscillator possesses. In particular, we employ a conventional

analysis of finite-size effects as well as a hysteresis curve analysis. Finally, we argue for the possibility

of continuous phase transitions even in the presence of inertia, for which the validity of Binder

cumulant’s dip and the hysteresis curve are discussed as signatures of a discontinuous transition.
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I. INTRODUCTION

Since Kuramoto introduced a mathematical model of

coupled nonlinear limit-cycle oscillators [1] by refining

the earlier Winfree’s model [2] to be more mathemati-

cally tractable, it has become a minimal model for collec-

tive synchronization phenomena in real systems ranging

from physics to biology. The original Kuramoto model

(KM) is very simple but exhibits lots of rich behaviors

including a dynamic phase transition, where all the oscil-

lators’ phases are tuned by the coupling strength against

the diversity of natural frequencies, and eventually reach

a phase-locked state (frequency entrainment) including

in-phase synchronization with exactly the same value

(see [3] for detailed discussions).

Up to now, lots of phase models have been proposed

to describe the dynamic behavior of large populations

of nonlinear coupled oscillators. Furthermore, it has also

been widely discussed that the nature of synchronization
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transitions for the continuum version of the original KM
and its variants is subject to the shapes of the natural
frequency distribution function as well as the sequence
generation methods of natural frequencies [4,5].

Consider KM oscillators with finite inertia as follows:
Let φi = φi(t) be the phase of the i-th oscillator and m

denote the strength of uniform inertia for each oscillator.
Then, the nonlinear dynamics of φi is governed by the
following second-order ordinary differential equations:

mφ̈i + φ̇i = ωi +
K

N

N∑
j=1

sin(φj − φi), (1)

which are subject to random initial phase-frequency con-
figurations at t = 0 for i = 1, 2, ..., N . Without loss of
generality, the average of natural frequencies sets to be
zero:

ωc ≡
1
N

N∑
i=1

ωi = 0. (2)

This KM variant with inertia was first introduced by
Ermentrout [6] as a phenomenological model to explain
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Fig. 1. (Color online) The order parameter r versus the
coupling strength K: m=1.0 (left) and m=0.1 (right),
respectively, for various system sizes N with gL(ω)
(Cauchy/Lorentzian) with ωo = 0 and d = 1. Even for
m = 1.0, it seems no jump at a discontinuous transition.

the slow synchronization of certain biological systems,

e.g., fireflies of the Pteroptyx malaccae, and later on, it

has been used to describe various nonlinearly coupled

dynamical systems [7]. Equation (1) can be interpreted

as some mechanical analog in the context of the equation

of motion: mφ̈i (inertia), φ̇i (damping) and ωi (driving

torque), respectively.

In this report, we numerically investigate the relevance

of inertia in synchronization in the context of the issue

addressed by Tanaka and coworkers [8] that the modified

KM with finite inertia exhibits a first-order (discontinu-

ous) phase transition based on discontinuous jumps and

hysteresis curves of the order parameter, in contrast to a

second-order (continuous) phase transition found in the

original KM. We here test the conventional analysis of

finite-size effects as m → 0 besides the hysteresis analysis

of the order parameter.

Fig. 2. (Color online) The susceptibility χ
(1)
2 versus K,

where we use the same setup as Fig. 1, where the peak
of χ

(1)
2 indicates the location/neighborhood of synchro-

nization threshold.

Based on various properties of the order parameter, we
propose comprehensive criteria in determining the nature
of phase transitions with either the dips or the crossings
of the Binder cumulant (BC) near the threshold of the
coupling strength for various system sizes in the presence
of different measurements due to anomalous sample-to-
sample fluctuations. This is attributed to the quenched
disorder average of natural frequencies, first discussed
by Hong and coworkers in the original KM [9] without
inertia. Our BC analysis with finite inertia are compared
to the hysteresis curve analysis [8].

This paper is organized after introduction as follows:
In Sec. II, basic physical quantities are briefly reviewed
and numerically measured for the given distribution of
natural frequencies. Based on the conventional analysis
of finite-size effects and the BC analaysis, we argue the
nature of the synchronization transition in the modified
KM with finite inertia. Finally, some possible scenarios
are summarized in Sec. III with open questions.
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Fig. 3. (Color online) The Binder’s cumulant (BC) U
(1)
4 versus K (the upper plots), and the probability distribution

function (pdf) of r versus K (the lower plots) with the same setup as Fig. 1. While the BC dips become narrow and
deep as N increases with the clear two-peak pdfs for m = 1.0, they are relatively wide and shallow with the unclear
two-peak pdfs for m = 0.1. This implies two possible scenarios, the limitation of finite size systems and the evidence
of continuous phase transitions for the small values of m, respectively.

II. NUMERICAL RESULTS

In order to speculate various physical properties of
synchronization, we perform the numerical integrations
of Eq. (1) by Heun’s method, so-called the second order
of the Runge-Kutta (RK2) method with two stages [10].
Without loss of generality, the time step dt = 0.05 and
at least 100 different samples are tested.

The order parameter of synchronization is defined as

r(t)eiθ(t) ≡ 1
N

N∑
j=1

eiφj(t). (3)

Here we can consider two-types of sampling average,
namely the disorder average, [...], over natural frequency
sequences and initial configurations, and the temporal
average, 〈...〉, over some period after the system reaches
the steady state. While in the steady-state regime the
order parameter r yields the same result, regardless of

the order of data collections, e.g., [〈r〉] = 〈[r]〉, other

physical quantities can yield different results depending

on the definitions, e.g, susceptibility, χ
(1)
2 6= χ

(2)
2 , and

BC, U
(1)
4 6= U

(2)
4 .

χ(1) ≡ N [〈r2〉 − 〈r〉2]; χ(2) ≡ N([〈r2〉]− [〈r〉]2). (4)

It is well-known that the distribution function shape of

natural frequencies determines the transition threshold

of the coupling strength and the transition nature. So we

specifically choose the single-peak distribution function

that exhibits a continuous transition in the original KM

in order to focus on the relevance of inertia in the nature

of synchronization transitions.

We consider two cases of g(ω), the Gaussian and

Cauchy (Lorentzian):

gG(ω) =
1√

2πσ2
exp−

(ω−ω0)2

2σ2 ; gL(ω) =
1
π

[
d

(ω − ω0)2 + d2
].
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Fig. 4. (Color online) The BC U
(2)
4 versus K, where the

same setup is used as Fig. 1. In contrast to Fig. 3, no
dips exist. Instead, there are the well-known BC cross-
ings. However, their existence doesn’t mean a continuous
transition.

Since both functions are characterized by uncorrelated
natural frequencies between two oscillators and the finite
mean, ωo, so Kc = 2

πg(ω0)
, the data for the case of gL(ω)

are only presented here.
Once the distribution function of natural frequencies,

g(ω), is chosen, the next step is how to generate the se-
quence, {ωi}, for finite-size (N -oscillator) systems, where
i = 1, 2, ..., N . One can generate it either stochastically
(noisy) or deterministically (noiseless), but the genera-
tion method of {ωi} is directly related to the FSS ex-
ponent and the dynamic exponent as reported in [4,11].
Moreover, natural frequencies play a role of the quenched
disorder in synchronization, the definition of U4 should
be also carefully discussed as pointed out in [9].

U
(1)
4 ≡ 1− [〈r4〉]

3[〈r2〉]2
; U

(2)
4 ≡ 1− [

〈r4〉
3〈r2〉2

]. (5)

In the presence of such a disorder, it is important
to check the sample-to-sample fluctuations of physical

Fig. 5. (Color online) Hysteresis curves of r as K in-
creases (forward, FW) from r(0) = 0 and decreases from
r(0) ' 1 (backward, BW) for N = 500 with the same
setup as Fig. 1.

quantities, defined as AO ≡ [<O>2]
[<O>]2 − 1, where O is any

observable physical quantity, e.g., r or r2. AO is pos-

itive definite, which is supposed to vanish as N → ∞
if the system is self-averaging; to remains finite if not.

For the original Kuramoto model, it has been already

reported by Hong and coworkers [9] that Ar2 saturates

to a finite value at criticality due to the relevance of the

quenched randomness in natural frequencies. We have

observed the similar behavior of AO in the the modified

Kuramoto model with finite inertia.

As shown in Figs. 1-5 and stated in the captions, nu-

merical results for m = 1.0 and m = 0.1 are quite similar

in some aspects, but those are quite different in other

aspects. However, with the current resolution of our nu-

merical data, it is not clear to conclude how the BC dips

and crossings at the transition threshold are developed in

the thermodynamic limit as well as the hysteresis curve

of r for the small value of m. In other words, we need
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more careful and systematic techniques to analyze finite
numerical data obtained from various setup conditions
in the context of finite-size scaling and dynamic scaling.

III. SUMMARY AND REMARK

In summary, the relevance of inertia in synchronization
has been numerically revisited in terms of the modified
Kuramoto model with inertia as compared to the ordi-
nary one using the conventional analysis of finite-size ef-
fects in the steady-state limit. Our results impose that it
is quite difficult how to clarify the nature of synchroniza-
tion in the presence of inertia even though some criteria
of the discontinuous (first-order) phase transition seem
exist, such as non-vanishing dips in some specific defini-
tion of BC and hysteresis curves and non-vanishing areas
in the thermodynamic limit.

Finally, we have been aware of very slow relaxation in
the presence of inertia and the setup-dependent scaling
properties through this work. Hence, it is quite crucial
to check out if the system reaches its true steady state
before discussing the main issue of the transition nature.
The dynamic behavior of synchronization near and at
the synchronization transition in the modified Kuramoto
model is under investigation [11] as compared with the
original one.
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