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Reidemeister torsion, complex volume and the
Zograf infinite product for hyperbolic 3–manifolds

JINSUNG PARK

We prove an equality which involves Reidemeister torsion, complex volume and the
Zograf infinite product for hyperbolic 3–manifolds.

32Q45, 57Q10, 58J28

1 Introduction

We prove an equality which involves Reidemeister torsion, complex volume and the
Zograf infinite product for hyperbolic 3–manifolds. We also derive some contributions
from cusps in this equality for hyperbolic 3–manifolds with cusps, which are given by
Dedekind eta functions and theta functions.

To state the main result of this paper, let us introduce some notation. Let M0 denote a
complete hyperbolic 3–manifold with cusps. Then we have a complex-valued invariant,
called complex volume,

(1-1) V .M0/D Vol.M0/C i2�
2 CS.M0/ mod i�2Z;

where the real part Vol.M0/ denotes the hyperbolic volume of M0 and the imagi-
nary part CS.M0/ denotes the Chern–Simons invariant defined by the Levi-Civita
connection of the hyperbolic metric of M0 . The complex volume plays an important
role in the research of hyperbolic 3–manifolds of finite volume, and has been studied
extensively by Neumann and Zagier [26], Yoshida [37], Neumann and Yang [25] and
Zickert [38].

Another main object appearing in our result is the Reidemeister torsion attached to a
certain representation of �1.M0/. This representation is defined to be the composition
of the kth symmetric tensor of the natural action of SL.2;C/ on C2 and an SL.2;C/–
lift of the holonomy representation �W �1.M0/! PSL.2;C/. We denote by �k the
resulting representation of �1.M0/. A choice of the SL.2;C/–lifting corresponds to a
spin structure on M0 . The definition of Reidemeister torsion also involves a choice of
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basis of the homology groups H�.M0; �
k/ in general, hence it is necessary to specify

a basis of H�.M0; �
k/ in order to define Reidemeister torsion. If H�.M0; �

k/ is
nontrivial, there is a canonical way to get a basis of H�.M0; �

k/ from a simple closed
curve ci in the torus section Ti associated to the i th cusp of M0 for i D 1; : : : ; h.
Here h denotes the number of cusps. Let us denote by T .M0; �

k; fcig/ the resulting
Reidemeister torsion.

The third object appearing in our result is the Zograf infinite product, which was
introduced by Zograf in [39]. We also refer to McIntyre and Takhtajan [17] for the
Zograf infinite product. This is defined by

(1-2) Fn.M0/D
Y
Œ�p

1Y
mDn

.1� qm / for n� 3:

Here the first product is taken over the set of conjugacy classes of the primitive
loxodromic elements  2 � � PSL.2;C/, where � is the image of the holonomy
representation � of �1.M0/, and q D exp.�.l C i� // with l and � denoting
the length and the torsion of the prime geodesic determined by the corresponding
conjugacy class Œ�p , respectively.

In our result for hyperbolic 3–manifolds with cusps, there are also contributions from
cusps, so we need to introduce some notation for these. Let us choose a pair of
simple closed curves .mi ; li / on the torus section Ti associated to the i th cusp for
each i , which form a basis of H1.Ti ;Z/. The holonomy representation � induces a
representation of the subgroup of �1.M0/ generated by .mi ; li /, which determines a
complex numbers �i with Im.�i / > 0 for i D 1; : : : ; h. Then �i is the modulus of the
Euclidean structure on Ti with respect to .mi ; li / (see Section 6.1).

The main result of this paper is the following theorem:

Theorem 1.1 Let M0 be a complete hyperbolic 3–manifold of finite volume with h
cusps. For n� 3,

(1-3)
ˇ̌̌̌
T .M0; �

2.n�1/; fmig/

hY
iD1

�.�i /
2

ˇ̌̌̌�1
D

ˇ̌̌
exp

�
1

�

�
n2�nC1

6

�
V .M0/

�
Fn.M0/

ˇ̌̌
;

where �.�i / denotes the Dedekind eta function of �i .

Some remarks for the equality (1-3) are in order. First, when k D 2.n � 1/, the
representation �k does not depend on the choice of the lifting to SL.2;C/ since the
representation �2.n�1/ factors through PSL.2;C/. Hence T .M0; �

2.n�1/; fmig/ does
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not depend on this choice. Secondly, the left-hand side of the equality (1-3) does not
depend on a choice of a basis .mi ; li / of H1.Ti ;Z/ since a basis change will also
cause a change of �i . As we can see from its proof in Section 7, these changes cancel
each other.

A corresponding equality to (1-3) for �2n�1 is also given in Theorem 8.1, where the
contributions from cusps are given in terms of the Dedekind eta function and a theta
function. It seems to be desirable to obtain equalities which hold as a relationship
between complex-valued invariants. These refined results without modulus signs
for compact hyperbolic 3–manifolds are given in Theorems 5.2 and 5.3. For the
noncompact case with cusps, some parts of the proofs used for the compact case do not
work, and we are able to prove only the equalities as relationships between absolute
values of complex-valued invariants.

For a hyperbolic 3–manifold with cusps M0 , by the fundamental work of Thurston [34],
there exists a deformation space D.M0/ of (in)complete hyperbolic structures on the
underlying topological manifold of M0 . Let us denote by Mu the corresponding
(in)complete hyperbolic 3–manifold for each point u 2 D.M0/. There is a corre-
sponding holonomy representation �uW �1.Mu/ ! PSL.2;C/, for which one can
define a representation �ku of �1.Mu/ as before. From the definitions of Reidemeister
torsion and Zograf infinite product, which depend on (in)complete hyperbolic structures
through �u , one can see that these invariants extend to be holomorphic functions over
a small open neighborhood V of the origin M0 in D.M0/. We refer to Section 6.2
for the Zograf infinite product for Mu with u 2 V . By [37], which is explained briefly
in Section 6.2, the complex volume V .M0/ also has an extension �2f .u/ over V
in D.M0/ such that exp.2�f / is holomorphic over V . These facts and Theorems 1.1
and 5.2 lead the author to make the following conjecture:

Conjecture 1.2 There exists an open neighborhood V of the origin in D.M0/ where,
for n� 3,

T .Mu; �
2.n�1/
u ; fmig/

�12
hY
iD1

�.�i .u//
�24

D cM0;n exp.2.6n2� 6nC 1/�f .u//Fn.Mu/
12;

where Mu denotes the (in)complete hyperbolic 3–manifold corresponding to u 2 V
and cM0;n is a constant depending only on M0 and n with jcM0;nj D 1.

Let us remark that we need to take the 12th power of the equality (1-3) to have well-
defined complex functions over V � D.M0/ (see also Theorem 5.2). The equality
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conjectured is also suggested by the main results in McIntyre and Takhtajan [17] and
McIntyre and Park [16], where similar equalities are proved for some convex cocompact
hyperbolic 3–manifolds.

Now let us explain the structure of this paper. This paper is a combined version of two
preprints [29; 30], so this paper consists of two parts, which deal with the compact and
noncompact cases, respectively. Part I consists of Sections 2–5, and Part II consists
of Sections 6–8. In Section 2, we review some basic material which is needed for the
proof for the compact case. In Section 3, we introduce various zeta functions and prove
a primitive version of main theorems for the compact case. In Section 4, we prove
equalities between invariants derived from the Selberg trace formulas, and we review
the work of Cappell and Miller [7]. In Section 5, we prove the main theorems for the
compact case by combining all the results developed in the prior sections. In Section 6,
we review some basic material which is needed for the proof for the noncompact case.
In Sections 7 and 8, we prove Theorems 1.1 and 8.1.
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Part I Compact case

The purpose of Part I is to prove Theorems 5.2 and 5.3, which state the equalities
as relationships between complex-valued invariants — Reidemeister torsion, complex
volume and the Zograf infinite product — for compact hyperbolic 3–manifolds.

2 Basic materials, I

2.1 Hyperbolic 3–space as a symmetric space

Let G D SL.2;C/ and K D SU.2/ be a maximal compact subgroup of G. Recall
that G is a double cover of PSL.2;C/, which is the isometry group of the hyperbolic
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3–space H3 . The action of PSL.2;C/ is given by

(2-1)
�
a b

c d

�
q D

aqCb

cqCd
;

where
�
a b
c d

�
2 PSL.2;C/ and q D zC tj is the quaternion representation of a point

.z; t/ 2H3 . Therefore G also acts on H3 and the isotropy subgroup of .0; 1/ 2H3

is SU.2/, hence H3 ŠG=K . From now on, we use this realization of the hyperbolic
3–space as a symmetric space to apply some basic harmonic analysis over a symmetric
space.

Let G DNAK be the Iwasawa decomposition of G, where

(2-2) N D

��
1 xC iy

0 1

� ˇ̌̌
x; y 2R

�
; AD

��
eu 0

0 e�u

� ˇ̌̌
u 2R

�
:

We assume that the Haar measures of N, A and K are given by dn D dxdy , du
and dk , respectively, where dk has total mass 1. A Cartan subgroup T of G is given
by AM, where

(2-3) M D

��
ei� 0

0 e�i�

� ˇ̌̌
� 2 Œ0; 2��

�
:

We take the Haar measure of T to be dt D 1
2�
dud� . The set of unitary characters

of M, denoted by �M, is parametrized by k 2 Z. The character corresponding to k is
given by

(2-4) �k

��
ei� 0

0 e�i�

��
D eik� :

Let g, k, n, a and m be the Lie algebras of G, K , N, A and M, respectively. Let

(2-5) gD k˚ p

be the Cartan decomposition of g given by the Cartan involution � , where k and p

are the 1 and �1 eigenspaces of � , respectively. Let ˛ be the unique positive root
of .g; a/. Let H 2 a be such that ˛.H/D 1. Let aC� a be the positive Weyl chamber
and AC D exp.aC/. Put hD a˚m. Then h is a Cartan subalgebra of g.

The Cartan–Killing form C is positive definite on p and is negative definite on k. We
may identify p with the tangent space to G=K at the identity coset. Then C provides
an invariant metric on G=K . We use a normalized symmetric bilinear form defined by

(2-6) C0.X; Y /D
1
4
C.X; Y / for X; Y 2 g;
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so that the corresponding invariant metric has constant curvature �1. Let fZig be an
orthonormal basis for k with respect to �C0 and fZj g be an orthonormal basis for p
with respect to C0 . Then the normalized Casimir elements � and �K in the universal
enveloping algebra of gC and kC are given by

(2-7) �D�
X
i

Z2i C
X
j

Z2j ; �K D�
X
i

Z2i :

For the right regular representation R of G on C1.G/ defined by R.g2/f .g1/ D
f .g1g2/ for g1; g2 2G and f 2 C1.G/, the normalized Casimir element induces a
differential operator, denoted by R.�/.

Let � be a cocompact torsion-free discrete subgroup of G. Then M� WD �nH3 is
a compact hyperbolic manifold by definition and this is a special case of a locally
symmetric space with a realization of the double coset space �nG=K . Any compact
hyperbolic 3–manifold has such a realization. Since we assume that � is a discrete
subgroup of G D SL.2;C/ rather than PSL.2;C/, the resulting manifold M� is
equipped with a spin structure.

For a nontrivial  2 � , there exist g 2G, a 2 AC and m 2M such that

(2-8) gg�1 D am :

It is known that a depends only on  and m is determined by  up to conjugacy
in M (see Lemma 6.6 of [35]). By definition, there exist ` > 0 and � 2 Œ0; 2�� such
that

(2-9) a D exp.`H/D
�
e`=2 0

0 e�`=2

�
; m D

�
ei�=2 0

0 e�i�=2

�
:

From (2-1), it follows that am acts on H3 by .z; t/! .e`Ci� z; e` t /. The positive
real number ` is the length of the unique closed geodesic C in M� that corresponds
to the conjugacy class of  in � . A closed geodesic C also corresponds to a fixed
point of the geodesic flow on the unit sphere bundle �nG=M over M� Š �nG=K .
Its tangent bundle is given by �nG �M .xn˚ a˚ n/, where xnD �.n/, and M acts on
xn˚a˚n by the adjoint action Ad. The Poincaré map P.C / is the differential of the
geodesic flow at C , which is given by P.C /D Ad.am / if  D am . Now we
put

(2-10) D./ WD
ˇ̌
det.Ad.am /jxn˚n� Id/

ˇ̌1=2
D e�`

ˇ̌
det.Ad.am /jn� Id/

ˇ̌
D e` det.Id�Ad.am /jxn/D e` .1� e�.`Ci� //.1� e�.`�i� //:
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A nontrivial  2 � is called primitive if it cannot be written as  D k0 for some other
0 2 � and k > 0. For any nontrivial  2 � , there exists a unique primitive element
0 2 � and n 2N such that  D n0 .

2.2 Bundles induced by representations

By Proposition 2.2.3 of [12], for an integer m � 0, there exists a unique (up to
equivalence) irreducible representation

(2-11) �mW G! SL.Sm.C2//;

which is given by the mth symmetric power of the standard representation of G on C2 .
The restrictions of �m to AM decomposes as

(2-12) �mjAM D

mM
kD0

e.m=2�k/˛˝ �m�2k :

Here we use the notation ˛ and �m�2k explained in the previous subsection.

For a finite-dimensional irreducible representation .�; V�/ of � , we define a flat vector
bundle E� over M� D �nG=K by

(2-13) E� D �n.G=K �V�/;

where � acts on G=K �V� by .gK; v/D .gK; �./v/. In this paper, we mainly
use the restriction of the representation �m in (2-11) to � to define a flat vector bundle
by (2-13). Throughout, we denote by E�m the resulting flat vector bundle over M� .

For a finite-dimensional irreducible representation .�; V� / of K , we also define a
locally homogeneous vector bundle E� over M� by

(2-14) E� D .�nG �V� /=K;

where K acts on �nG �V� by .�g; v/k D .�gk; �.k/�1v/.

For m� 0, we denote by �m the irreducible representation of K given by the restriction
of �m to K . By (2-12),

(2-15) �mjM D

mM
kD0

�m�2k :
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Let R.K/ and R.M/ denote the representation rings of K and M, respectively. The
inclusion {W M !K induces the restriction map {�W R.K/!R.M/. By (2-15),

{�.�m� �m�2/D �mC ��m for m� 2;

{�.�1/D �1C ��1;

{�.�0/D �0:

(2-16)

Note that �1 is the spin representation of K and �1 and ��1 are the half-spin repre-
sentations of M.

2.3 Eta invariant and Chern–Simons invariant

The locally homogeneous vector bundle E�1 defined by the spin representation �1 is
equipped with the Dirac operator

(2-17) Ds D

3X
iD1

c.ei /r
�1
ei
s for s 2 C1.M� ; E�1/;

where c.ei / denotes the Clifford multiplication of an local orthonormal frame feig
of TM� and r�1 denotes the unique locally G–invariant connection of E�1 . Then
canonically the vector bundle E�1˝E�k�1 is equipped with the Dirac operator defined
in a similar way to (2-17), replacing r�1 by r�1 ˝ IdC Id˝r�k�1 , where r�k�1

denotes the unique locally G–invariant connection of E�k�1 . We denote by D.�k/
the resulting Dirac operator acting on C1.M� ; E�1˝�k�1/. The representations �k
and �k�1 are related by

(2-18) �k � ��k D .�1� ��1/˝ i
�.�k�1/;

where i�W R.K/ ! R.M/. By the above construction, D.�1/ denotes the Dirac
operator defined by a spin structure, and D.�2/ denotes the odd signature operator.
The Dirac operator D.�k/ is a first-order selfadjoint differential operator with spec-
trum consisting of real eigenvalues of finite multiplicities f�`g`2Z . The eta function
�.D.�k/; s/ is defined by

(2-19) �.D.�k/; s/D
X
�`>0

��s` �
X
�`<0

.��`/
�s for Re.s/� 0;

which has a meromorphic extension to C and is regular at s D 0. The eta invariant
of D.�k/ is defined by

(2-20) �.D.�k//D �.D.�k/; 0/:

We refer to [2; 9] for more details on the eta invariant.
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As explained in [37, Section 3], the following 3–form is a left-invariant form on
PSL.2;C/, which can be identified with the frame bundle F.H3/:

(2-21) C D
1

4�2
.4�1^�2^�3�d.�1^�23C�2^�31C�3^�12//

C
i

4�2
.�12^�13^�23��12^�1^�2��13^�1^�3��23^�2^�3/:

Here �i and �ij denote the fundamental form and the connection form, respectively,
of the Levi-Civita connection on F.H3/. The differential of the developing map from
the universal cover �M� to H3 defines a map from F. �M�/ to F.H3/. The pullback
of C by this map also descends to the frame bundle F.M�/ since it is left-invariant
under the action of � . Now the complex volume of M� is defined by

(2-22)
1

�2
V .M�/ WD

1

�2
.Vol.M�/C i2�

2CS.M�//D

Z
M�

s�C mod iZ:

Here s denotes a section from M� to F.M�/ and the ambiguity in the phase part
of (2-22) by iZ is due to a choice of s . The Chern–Simons invariant has the following
relation to the eta invariant of the odd signature operator D.�2/ over M� :

(2-23) 2CS.M�/D 3�.D.�2// mod Z:

Actually this equality holds for any closed Riemannian 3–manifold M. We refer to [3]
for more details about this formula.

2.4 Hodge Laplacian

We begin with the general case of a Riemannian manifold. Let M be an oriented
Riemannian manifold of dimension n. For the differential d W �p�1.M/!�p.M/,
its formal adjoint operator d�W �p.M/!�p�1.M/ is defined by

(2-24) d� D .�1/npCnC1?d?;

where ?W �p.M/!�n�p.M/ is the Hodge star operator with ?2 D .�1/p.n�p/ Id
on �p.M/. Then the Hodge Laplacian on �p.M/ is defined by �p D .d C d�/2 .

For a flat vector bundle E over M, the above operators are extended as follows. Let U
be an open subset in M, where

Vp�1
T �M and E are trivial over U. Let e1; : : : ; er

be a basis of flat sections of EjU , where r is the rank of E. Then any � 2�p�1.U;E/
can be written as

(2-25) � D

rX
iD1

�i ˝ ei ;
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where �i 2�p�1.U /. Now d W �p�1.U;E/!�p.U;E/ is defined by

(2-26) d� D

rX
iD1

d�i ˝ ei :

Note that this is well defined since the flat vector bundle E has a constant transition
map. The operator in (2-24) can be extended to an operator d�;[W �p.M; E/ !

�p�1.M; E/ by

(2-27) d�;[ D .�1/npCnC1.?˝ IdE / d.?˝ IdE /:

Here note that .d�;[/2 D 0. Now an extension of the Hodge Laplacian �p on
�p.M; E/ is defined by

(2-28) �[p D .d C d
�;[/2;

where d and d�;[ are as defined in (2-26) and (2-27).

Assuming a Hermitian metric h � ; � iE on E, we define the usual formal adjoint operator
d�W �p.M; E/!�p�1.M; E/ extending the operator in (2-24) by

(2-29) d� D .�1/npCnC1.?˝ IdE /��1 d�.?˝ IdE /:

Here �W E!E� is the map defined by

(2-30) hu; viE D .u; �.v//

where . � ; � / is the dual pairing. We refer to [15, Section 2; 7, Section 8] for more
details of this construction. Now the usual Hodge Laplacian on �p.M; E/ is defined
by

(2-31) �p D .d C d
�/2;

where d and d� are as defined in (2-26) and (2-29).

By the definition in (2-29), �[p D�p when E is unitarily flat, and for a nonunitary
flat vector bundle E, the difference d�;[ � d� is a zeroth-order operator. Hence, in
general �[p ��p is a first-order differential operator on �p.M; E/. For a Hermitian
metric on E, we can consider a L2–completion of �p.M; E/, which is denoted by
L2.�p.M; E//.

Proposition 2.1 The spectrum of nonselfadjoint operator �[p on L2.�p.M; E//

is discrete and consists of generalized eigenvalues of finite multiplicities, which are
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contained in the set Br [�� for some r > 0 and � > 0, where Br D fz 2C W jzj< rg

and ƒ� D frei� 2C W j� j � �g.

Proof This follows from Theorems 8.4 and 9.3 of [31].

The above general construction applies to the case of the nonunitary vector bundle E�
over a hyperbolic 3–manifold M� , where �D �m is the representation of G given
in (2-11). In particular, we have the operator �[p acting on �p.M� ; E�/. Let us
denote by x�[p the lifting of �[p on the universal covering space �M� ŠG=K , and let
zE� D p

�E� for the natural projection pW �M� !M� . Then we have

(2-32) �p. �M� ; zE�/Š
�
C1.G/˝

Vpp��K ˝ zE�;
where k 2K acts by R.k/˝

VpAdp�.k/, and the vector bundle
Vp
T �M� is given

as a locally homogeneous vector bundle E� for the representation � D
VpAdp� of K .

With respect to (2-32), by Kuga’s lemma,

(2-33) x�[p D�R.�/˝ IdV� :

2.5 Wave kernel

Throughout this section, for simplicity we denote by L the operator �[p acting on
�p.M� ; E�/D C

1.M� ; E� ˝E�/, where E� and E� are defined as in Section 2.2
with � D

VpAdp� and �D �m . We follow [22] for the construction of the wave kernel
of L, which is a crucial ingredient in the derivation of the Selberg trace formula in our
setting.

First we assume that L has no zero generalized eigenvalue, that is, 0 … �.L/. Under
this condition, there exists an Agmon angle for L and we can define L1=2 following
[31, Section 10]. One can prove that the spectrum of L1=2 lies in the subset of C with
conditions Re.�/ > ı and jIm.�/j< a for some ı > 0 and a > 0.

Let P.C/ be the space of Paley–Wiener functions on C . Recall

P.C/D
[
R>0

PR.C/

with the inductive limit topology, where PR.C/ is the space of entire functions �
on C with the condition: for every N 2N there exist a CN > 0 such that

(2-34) j�.�/j � CN .1Cj�j/
�N eR jIm.�/j for � 2C:
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Given h 2 C10 ..�R;R//, let

'.�/D
1
p
2�

Z
R
h.r/e�ir� dr for � 2C

be the Fourier–Laplace transform of h. Then ' satisfies (2-34) for every N 2N , that
is, ' 2 PR.C/. Conversely, by the Paley–Wiener theorem (see Theorem 7.3.1 of [13]),
every � 2 PR.C/ is the Fourier–Laplace transform of a function in C1c ..�R;R//.

For an even Paley–Wiener function ' 2 P.C/, we define '.L1=2/ by

(2-35) '.L1=2/ WD
i

2�

Z
�

'.�/.L1=2�� Id/�1 d�:

Here � is a counterclockwise oriented smooth curve given by �1[�2[�3 , where

�1 D f� 2C j Im.�/D a; 1> Re.�/� ı1g;

�3 D f� 2C j Im.�/D�a; ı1 � Re.�/ <1g

for some ı > ı1 > 0, and �2 � f� 2C j ı1 � Re.�/ < ıg is a simple curve connecting
the finite boundary points of �1 and �3 .

For f 2 C1.M� ; E� ˝E�/, we can express '.L1=2/f in terms of the solution of
the wave equation

(2-36)
�
@2

@t2
CL

�
uD 0; u.0; x/D f .x/; ut .0; x/D 0:

By the construction in [33, Sections IV-1 and IV-2], there exists a unique solution
u.t; f / 2 C1.R �M� ; E� ˝E�/ of (2-36). Now, by Proposition 3.2 of [22], for
f 2 C1.M� ; E� ˝E�/,

(2-37) '.L1=2/f D
1
p
2�

Z
R
y'.t/u.t; f / dt;

where y' is the Fourier transform of 'jR , that is, y'.t/D .1=
p
2�/

R
R '.�/e

�i�t d�.

The above construction can be generalized when L has a zero generalized eigenvalue.
For this, following [22, Section 2], we put

(2-38) yLD L.Id�…0/˚…0;

where …0 denotes the orthogonal projection onto the generalized eigenspace V0 such
that there exists an integer N0 with LN0V0 D 0. Since …0 is a smoothing operator,
yL is a pseudodifferential operator with the same symbol as L. Moreover, �.yL/ also
lies in the same set Br [�� �C and 0 … �.yL/, and yL has an Agmon angle. Hence,
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we can define yL1=2 as in [31, Section 10]. Let V1 be the complementary subspace
of V0 which is invariant under L. We can also repeat the construction given in (2-35)
for yL1=21 WD yL1=2jV1 to define '.yL1=21 /. To deal with the remaining part of L, putting
N WD L…0 we define

(2-39) '.N 1=2/ WD
1
p
2�

Z
R
y'.t/U.t; N / dt;

where U.t; N / WD
Pd
kD0..�1/

kt2k=.2k/Š/N k with d D dim.V0/. Then, combining
these constructions, we define

(2-40) '.L1=2/ WD '.yL
1=2
1 /.Id�…0/C'.N 1=2/…0:

By Proposition 3.2 of [22], the expression as in (2-37) holds even when 0 2 �.L/.

Proposition 2.2 For an even Paley–Wiener function ' 2 P.C/ and the operator
L D �[p acting on �p.M� ; E�/, the operator '.L1=2/ is of trace class with the
smooth kernel

(2-41) K'.�g1K;�g2K/D
X
2�

H'.g
�1
1 g2/˝ �./;

where �g1K; �g2K 2M� Š �nG=K and H' W G ! End.V� / is a C1–function
which satisfies H'.k1gk2/D �.k1/ ıH'.g/ ı �.k2/ for k1; k2 2K .

Proof First, one can show that '.L1=2/ is of trace class with a smooth kernel K' by
a standard argument as in Lemma 2.4 of [22]. To derive the expression in (2-41), we
consider the liftings of u.t; x; f / and f satisfying (2-36) to �M� , which we denote by
zu.t; zx; f / and zf , respectively. Then, for the operator zL[ D x�[p over �M� , the lifted
solution zu.t; f / satisfies

(2-42)
�
@2

@t2
C zL[

�
zu.t; f /D 0; zu.0; f /D zf ; zut .0; f /D 0:

By the energy estimate given in [33, Chapter 2], for every  2�p. �M� ; zE�/, the wave
equation

(2-43)
�
@2

@t2
C zL[

�
u.t;  /D 0; u.0;  /D  ; ut .0;  /D 0

has a unique solution. Hence,

(2-44) zu.t; f /D u.t; zf /:
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Since �M� ŠG=K with G D SL.2;C/ and K D SU.2/ and

�p. �M� ; zE�/Š C
1.G=K; zE� ˝ zE�/ for � D

VpAdp� ;

we apply some harmonic analysis for .G;K/ to obtain a more explicit expression
of (2-44). First, recall that Œ�jK W ��� 1 for any � 2 yG and � 2 yK . For � 2 yG.�/D
f� 2 yG j Œ�jK W��D 1g, the � –isotypical subspace H�.�/ of � in H� can be identified
with V� . Define a � –spherical function ˆ�� on G by

(2-45) ˆ�� .g/D P��.g/P�

for g 2G, where P� denotes the orthogonal projection of H� onto the � –isotypical
subspace H�.�/. Moreover, we have the identification

(2-46) C1.G=K; zE� /Š C
1.GI �/;

where

(2-47) C1.GI �/D ff 2 C1.G; V� / j f .gk/D �.k
�1/f .g/; g 2G; k 2Kg:

Then, for f ��;v WDˆ
�
� .g
�1/.v/ 2 C1.GI �/ with v 2 V� , we define

(2-48) zLf ��;v D��.�/f
�
�;v:

Hence, the unique solution u.t; x; f ��;v/ with u.0/Df ��;v of the corresponding equation
with zL to (2-43) is given by

(2-49) u.t; x; f ��;v/D cos.t
p
��.�//f ��;v:

This immediately implies

(2-50) '.zL1=2/f ��;v D '.
p
��.�//f ��;v

D
1
p
2�

Z
R
y'.t/ cos.t

p
��.�//f ��;v dt

D
1
p
2�

Z
R
y'.t/u.t; x; f ��;v/ dt:

In the same way as Proposition 3.3 of [22], one can show that '.zL1=2/ has a smooth
kernel zK' 2 C1. �M� � �M� ;Hom. zE� ; zE� // such that for  2 C1. �M� ; zE� /,

(2-51)
1
p
2�

Z
R
y'.t/u.t; zx; / dt D

Z
�M�

zK'.zx; zy/ .zy/ d zy:
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Since '.zL1=2/ is a G–invariant integral operator, its kernel zK' satisfies

(2-52) zK'.gzx; g zy/D zK'.zx; zy/ for g 2G:

With respect to (2-46), the kernel zK' can be identified with a C1–function H' W G!
End.V� /, which satisfies

(2-53) H'.k1gk2/D �.k1/ ıH'.g/ ı �.k2/ for k1; k2 2K:

Then '.zL1=2/ acts by convolution:

(2-54) .'.zL1=2/f /.g1/D

Z
G

H'.g
�1
1 g2/f .g2/ dg2:

As in the proof of Proposition 1.21 of [6], combining (2-37), (2-44) and (2-51), the
following equality holds for f 2 C1.M� ; E� ˝E�/:

'.L1=2/f .zx/D

Z
�M�

. zK'.zx; zy/˝ IdV�/f .zy/ d zy:

For a fundamental domain F in �M� of the action of � and the induced bundle map
R W zEzy! zE zy ,Z

�M�

. zK'.zx; zy/˝ IdV�/f .zy/ d zy D
X
2�

Z
F

. zK'.zx; zy/˝ IdV�/f .zy/ d zy

D

X
2�

Z
F

. zK'.zx;  zy/˝ IdV�/f . zy/ d zy

D

Z
F

�X
2�

zK'.zx;  zy/ ı .R ˝ �.//

�
f .zy/ d zy:

With respect to (2-46), for zx D g1K and zy D g2K ,X
2�

zK'.zx;  zy/ ı .R ˝ �.//D
X
2�

H'.g
�1
1 g2/˝ �./:

From this, one can see that the kernel K' of '.L1=2/ has the form given in (2-41),
which also satisfies the claimed property by (2-53). This completes the proof.

By Proposition 2.2, applying Lidskii’s theorem (see Theorem 8.4 of [10]), we have:
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Corollary 2.3 For an even Paley–Wiener function ' 2P.C/ and the operator LD�[p
acting on �p.M� ; E�/,

(2-55)
X

�2spec.L/

m.�/'.L1=2/D Tr.'.L1=2//

D

Z
M�

trK'.m;m/ dm

D

X
2�

tr �./
Z
�nG

h'.g
�1g/ d Pg;

where m.�/ is the multiplicity of the generalized eigenvalue � of L and h' D trH' .

2.6 Selberg trace formula

Proposition 2.4 For the operator �[p acting on �p.M� ; E�/,

(2-56) Tr.e�t.�
[
0�1//D dim.V�/Vol.M�/

1

4�2

Z
R
�2e�t�

2

d�

C

X
Œ�¤Œe�

`0 tr �./
D./

1
p
4�t

e�`
2
=4t

and

(2-57) Tr.e�t�
[
1/�Tr.e�t�

[
0/D dim.V�/Vol.M�/

1

2�2

Z
R
.�2C 1/e�t�

2

d�

C

X
Œ�¤Œe�

`0 tr �./
D./

.ei� C e�i� /
1
p
4�t

e�`
2
=4t ;

where D./ D e` j1 � e�.`Ci� /j2 is as defined in (2-10) and the sums on the
right-hand sides run over the set of conjugacy classes in � of nontrivial elements in � .

Remark 2.5 The corresponding formulas to (2-56) and (2-57) are well known for
the selfadjoint operators �p , which can be derived from Theorem 6.7 of [35] easily.
After this paper was completed, it is also known to the author that the equalities (2-56)
and (2-57) can be derived from Theorem 5.5 of [32] and Theorem 6.2 of [8].

Proof Since the proofs are essentially the same, we provide only the proof of the
equality (2-57), which consists of two parts.

Firstly, we proceed as in the original way of Selberg from the equality (2-55) to analyze
the orbital integral terms on right-hand side of (2-55). For more details about this we
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refer to [28, Section 4]. To state the resulting formula, let ‚k;� denote the character of
the induced representation .�k;�;Hk;�/, where

(2-58) �k;� D IndGMAN .�k˝ e
i�
˝ 1/:

Then, for an even Paley–Wiener function ' 2 P.C/, we have

(2-59)
X

�2spec.�[1/

m.�/'.�1=2/�
X

�2spec.�[0/

m.�/'.�1=2/

D dim.V�/Vol.M�/
1

2�2

Z
R
‚2;�.h'/.�

2
C 1/ d�

C

X
Œ�¤Œe�

`0 tr �./
D./

.ei� C e�i� /
1

2�

Z
R
‚2;�.h'/e

�i`� d�:

Although we do not spell out the details of the derivation of this equality, let us make
some remarks. Since we consider the difference of the traces for �[1 and �[0 on the
spectral side of (2-59), the terms involving ‚0;�.h'/ cancel out each other on the
geometric side of (2-59). Note that for the first term on the right-hand side of (2-59),
we used

(2-60) Vol.M�/D � Vol.�nG/;

which can be derived in the same way as equation (4.31) of [11]. Let us recall the
equality given in (2.12) of [23],

(2-61) �k;�.�/D��
2
C
1
4
k2� 1:

Then, combining this and (2-50),

(2-62) ‚˙2;�.h'/D '.
p
��˙2;�.�//D '.�/:

Here we used that ' is even for the second equality. Hence, we have that ‚2;�.h'/D
‚�2;�.h'/, which was also used to simplify the right-hand side of (2-59).

Secondly, we want to have the equality (2-59) for the test function 't .�/ D e�t�
2

,
which is not given by a Fourier–Laplace transform of a compactly supported function.
We follow the proof of Theorem 1.27 in [6] for this. Since our case is very specific,
that is, G D SL.2;C/ and 't D e�t�

2

, it can be given in an explicit way as follows.
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Recall that

(2-63) L't .s/D
1
p
2�

Z 1
�1

e�t�
2

eis� d�D
1
p
2t
e�s

2=4t ;

and let �RW R! R be a smooth function such that �R.s/ D 1 for jsj � R� ı and
�R.s/D 0 for jsj<R�1Cı , where 0< ı < 1

2
is a constant independent of t . We put

L't;R.s/D L't .s/��R.s/ L't .s/:

Now the equality (2-59) is valid for a test function whose inverse Fourier–Laplace
transform is L't;R . Then, by (2-62), the resulting equality can be split into terms
with 't .s/ and terms with ft;R , where

ft;R.�/D
1
p
2�

Z
R
�R.s/ L't .s/e

�is� ds D
1
p
2�

Z
R
�R.s/

1
p
2t
e�s

2=4te�is� ds:

By integration by parts, for any N 2N we have

(2-64) ft;R.�/D
1
p
4�t

.i�/�N
Z
AR

e�i�s@Ns .�R.s/e
�s2=4t / ds

D
1
p
4�t

.i�/�N
Z
AR

e�i�s
�
e�s

2=4t
NX
kD0

��
�
s

2t

�k
�
.N�k/
R .s/

��
ds;

where AR WD .�1;�RC 1�t ŒR� 1;1/. In order to obtain the equality (2-57), it
is enough to show that terms with ft;R vanish as R!1. By (2-64), it is easy to
see that the integrals on the right-hand side of (2-59) with ‚2;�.h'/D '.�/ replaced
by ft;R.�/ vanish as R!1. To deal with the corresponding left-hand side of (2-59),
let us observe that there exists N 2N such that

(2-65)
X

�2spec.�[
i
/

m.�/��N <1

for i D 0; 1. This follows from the Weyl law for the operator �[i , which can be proved
as in Lemma 2.2 of [22]. Using (2-64), (2-65) and Proposition 2.1, it is easy to see that
the terms X

�2spec.�[1/

m.�/ft;R.�
1=2/�

X
�2spec.�[0/

m.�/ft;R.�
1=2/

on the left-hand side of (2-59) also vanish as R ! 1. This completes the proof
of (2-57).
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3 Zeta functions

For a discrete subgroup � � SL.2;C/, the critical exponent ı.�/ is defined by

(3-1) ı.�/D inf
�
u 2R

ˇ̌̌ X
2�

e�u` <1

�
:

It is known that ı.�/ < 2 for a cofinite torsion-free subgroup � (see Theorem 3.14.1
of [14]). By Theorem 6 of [1, page 192], from this fact one can see that, for s 2C ,

(3-2)
Y

Œ�¤Œe�

.1� e�s` / <1 if Re.s/ > 2;

where the product runs over the set of conjugacy classes in � of the nontrivial elements
in � . First we put

(3-3) R.�k; s/D
Y
Œ�p

.1� e.k=2/i� e�sl / for Re.s/ > 2:

Here and from now on, the product notation with Œ�p always means that the product
runs over the set of conjugacy classes in � of the primitive loxodromic elements in � .
It is well known that R.�k; s/ has a meromorphic extension to C (see [6]).

For an SL.N;C/–representation .�; V�/ of � , we assume that all the eigenvalues
�i ./ for i D 1; : : : ; N of �./ for  2 � satisfy

(3-4) j�i ./j � e
c�l

for a constant c�>0 which does not depend on  . Then the Ruelle zeta function R�.s/
attached to � is defined by

(3-5) R�.s/D
Y
Œ�p

det.IdV� ��./e
�sl / for Re.s/� 0:

We are interested in the case �D �j� , where �D �m is a representation of G. Now
we have:

Proposition 3.1 For the restriction to � of the representation �m of G, the Ruelle
zeta function attached to �m has the expression

(3-6) R�m.s/D

mY
lD0

R
�
�m�2l ; s�

1
2
mC l

�
for Re.s/ > 2C 1

2
m;

and R�m.s/ has a meromorphic extension to C .
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Proof The equality (3-6) follows from (2-8) and (2-12) easily. Then, the meromorphic
extension of R�m.s/ to C follows from that of R.�k; s/.

Let us remark that Proposition 3.1 also follows from the equality (3.14) of [23].

For an SL.N;C/–representation .�; V�/ of � satisfying (3-4), the Selberg zeta function
Z�.�k; s/ attached to � is defined by

Z�.�k; s/D
Y
Œ�p

Y
p�0
q�0

det.IdV� ��./e
.k=2/i� e�p.lCi� /e�q.l�i� /e�sl /

for Re.s/� 0:

For the trivial �, we denote it by Z.�k; s/, and the convergence of Z.�k; s/ for
Re.s/ > 2 follows from (3-2) by a similar computation to (4-8). It is also well known
that Z.�k; s/ has a meromorphic extension to C (see [6; 11]). For �D �m , the Selberg
zeta function Z�m.�k; s/ has the following expression by (2-8) and (2-12):

(3-7) Z�m.�k; s/D

mY
lD0

Z
�
�m�2lCk; s�

1
2
mC l

�
for Re.s/ > 2C 1

2
m;

which has a meromorphic extension to C .

In the following two propositions, we will derive two expressions for R�m.s/ in terms
of the Selberg zeta functions. These two formulas and their relationship are the starting
point for the proofs of main results of this paper.

Proposition 3.2 Over C ,

(3-8) R�m.s/D
Z
�
�m; s�

1
2
m
�
Z
�
��m; sC

1
2
mC 2

�
Z
�
�mC2; s�

1
2
mC 1

�
Z
�
��.mC2/; sC

1
2
mC 1

� :
Proof Since the Selberg zeta function Z.�k; s/ attached to �k has a meromorphic
extension over C , it is sufficient to show the equality (3-8) over a domain where both
sides converge absolutely. Over such a domain, we have

(3-9) Z
�
�m; s�

1
2
m
�
D

Y
Œ�p

Y
p�0
q�0

.1� e.m=2/i� e�p.lCi� /e�q.l�i� /e�.s�m=2/l /

D

Y
Œ�p

Y
p�0
q�0

.1� e.m=2/.`Ci� /e�p.lCi� /e�q.l�i� /e�sl /:
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Similarly, we have

(3-10) Z
�
�mC2; s�

1
2
mC 1

�
D

Y
Œ�p

Y
p�0
q�0

.1� e.m=2C1/i� e�p.lCi� /e�q.l�i� /e�.s�m=2C1/l /

D

Y
Œ�p

Y
p�0
q�1

.1� e.m=2/.`Ci� /e�p.lCi� /e�q.l�i� /e�sl /:

By (3-9) and (3-10),

(3-11)
Z
�
�m; s�

1
2
m
�

Z
�
�mC2; s�

1
2
mC 1

� DY
Œ�p

Y
p�0

.1� e.m=2/.`Ci� /e�p.lCi� /e�sl /:

In the same way,

(3-12)
Z
�
��m; sC

1
2
mC2

�
Z
�
��.mC2/; sC

1
2
mC1

� DY
Œ�p

Y
p�1

.1�e�.m=2/.`Ci� /e�p.lCi� /e�sl /�1:

By (3-11) and (3-12),

(3-13)
Z
�
�m; s�

1
2
m
�
Z
�
��m; sC

1
2
mC 2

�
Z
�
�mC2; s�

1
2
mC 1

�
Z
�
��.mC2/; sC

1
2
mC 1

�
D

Y
Œ�p

mY
kD0

.1� e.m=2�k/.`Ci� /e�sl /

D

mY
kD0

R
�
�m�2k; s�

1
2
mC k

�
:

Combining this and Proposition 3.1 completes the proof.

Proposition 3.3 Over C ,

(3-14) R�m.s/D
Z�m.�0; s/Z�m.�0; sC 2/

Z�m.�2; sC 1/Z�m.��2; sC 1/
:

Proof By (3-7), we have

(3-15)
Z�m.�0; s/

Z�m.��2; sC 1/
D

Z
�
�m; s�

1
2
m
�

Z
�
��.mC2/; sC

1
2
mC 1

� ;
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and

(3-16)
Z�m.�0; sC 2/

Z�m.�2; sC 1/
D
Z
�
��m; sC

1
2
mC 2

�
Z
�
�mC2; s�

1
2
mC 1

� :
Combining (3-15), (3-16) and (3-8) completes the proof.

Now let us introduce one of the main ingredients of this paper. This is defined by the
infinite products of the Ruelle zeta functions attached to ��m for even or odd integers
m 2N :

Fn.s/D

1Y
kDn

R.��2k; sC k/ for Re.s/ > 2�n; n 2N;(3-17)

Gn.s/D

1Y
kDn

R
�
��.2kC1/; sC kC

1
2

�
for Re.s/ > 3

2
�n; n 2N [f0g:(3-18)

The convergence of Fn.s/ and Gn.s/ over each half-plane follows from (3-2). Note
that a spin structure is involved in the construction of Gn.s/. The relation of Fn.s/
and Gn.s/ with other zeta functions is given as follows:

Proposition 3.4 The functions Fn.s/ and Gn.s/ have meromorphic extensions to C

and they satisfy the following relations with Selberg zeta functions:

Fn.s/D
Z.��2n; sCn/

Z.��2.n�1/; sCnC 1/
;(3-19)

Gn.s/D
Z
�
��.2nC1/; sCnC

1
2

�
Z
�
��.2n�1/; sCnC

3
2

� :(3-20)

Proof The equality of (3-19) over the absolute convergence domain Re.s/ > 2� n
implies the meromorphic extension of Fn.s/ to C . Hence it suffices to show the
equality over the convergence domain. Over the absolute convergence domain, we have

(3-21) Fn.s/D

1Y
kDn

Y
Œ�p

.1� e�k.`Ci� /e�s` /

D

Y
Œ�p

Y
p�0
q�0

1� e�.pCn/.`Ci� /e�q.`�i� /e�s`

1� e�.pCn/.`Ci� /e�.qC1/.`�i� /e�s`

D
Z.��2n; sCn/

Z.��2.n�1/; sCnC 1/
:
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As above, the meromorphic extension of Gn.s/ can be proved by the equality, over the
absolute convergence domain Re.s/ > 3

2
�n,

(3-22) Gn.s/D

1Y
kDn

Y
Œ�p

.1� e�.kC1=2/.`Ci� /e�s` /

D

Y
Œ�p

Y
p�0
q�0

1� e�.pCnC1=2/.`Ci� /e�q.`�i� /e�s`

1� e�.pCnC1=2/.`Ci� /e�.qC1/.`�i� /e�s`

D
Z
�
��.2nC1/; sCnC

1
2

�
Z
�
��.2n�1/; sCnC

3
2

� :
This concludes the proof.

By Propositions 3.2 and 3.4, we have:

Corollary 3.5 For s 2C and n 2N ,

Fn.s/
2R�2.n�1/.s/D

Z.�2.n�1/; s�nC 1/Z.��2n; sCn/

Z.��2.n�1/; sCnC 1/Z.�2n; s�nC 2/
;(3-23)

Gn.s/
2R�2n�1.s/D

Z
�
�2n�1; s�nC

1
2

�
Z
�
��.2nC1/; sCnC

1
2

�
Z
�
�2nC1; s�nC

3
2

�
Z
�
��.2n�1/; sCnC

3
2

� :(3-24)

The following theorem can be considered as a primitive form of Theorems 5.2 and 5.3:

Theorem 3.6 The function Fn.s/2R�2.n�1/.s/ is regular at s D 0 and

(3-25) Fn.s/
4R�2.n�1/.s/

2
jsD0

D exp
�
�
2

�

�
2n2� 2nC 1

3

�
Vol.M�/� 2�i

�
�.D.�2n//� �.D.�2.n�1///

��
:

The function Gn.s/2R�2n�1.s/ is regular at s D 0 and

(3-26) Gn.s/
4R�2n�1.s/

2
jsD0

D exp
�
�
2

�

�
2n2� 1

6

�
Vol.M�/� 2�i

�
�.D.�2nC1//� �.D.�2n�1//

��
:

Remark 3.7 By the proof of Proposition 3.4, in particular, the first equality in (3-21),
Fn.s/ has a finite value at s D 0 for n � 3. Similarly, by the first equality in (3-22),
Gn.s/ has a finite value at s D 0 for n � 2. Hence, from these facts and equalities
(3-25) and (3-26), one can see that R�m.s/ is regular and has a finite nonzero value
at s D 0 for m� 3.
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Proof We prove only the case Fn.s/ since the proof for Gn.s/ is the same. We start
by rewriting (3-23) as

(3-27) Fn.s/
2R�2.n�1/.s/D

Z.�2.n�1/; s�nC 1/

Z.��2.n�1/;�sCnC 1/

Z.��2.n�1/;�sCnC 1/

Z.��2.n�1/; sCnC 1/

�
Z.��2n;�sCn/

Z.�2n; s�nC 2/

Z.��2n; sCn/

Z.��2n;�sCn/
:

By Theorem 3.18 of [6],

(3-28) Z.�k; 1C s/D e
i��.D.�k// exp

�
Vol.M�/

�

�
1
3
s3� 1

4
k2s

��
Z.��k; 1� s/:

By (3-27) and (3-28),

(3-29) Fn.s/
2R�2.n�1/.s/jsD0

D exp
�
�
1

�

�
2n2� 2nC 1

3

�
Vol.M�/� i�

�
�.D.�2n//� �.D.�2.n�1///

��
�

�
Z.��2.n�1/;�sCnC 1/

Z.��2.n�1/; sCnC 1/

Z.��2n; sCn/

Z.��2n;�sCn/

�ˇ̌̌̌
sD0

:

The last part evaluated at s D 0 on the right-hand side of (3-29) need not be 1 since
each factor given by the Selberg zeta function may have a zero or a pole at s D 0.
Hence, the concerning part is 1 or �1 in general. We remove this ambiguity by taking
the square to obtain (3-25).

Theorem 3.8 The following equalities hold :

F1.s/
2R�0.s/jsD0 D� exp

�
�
1

3�

�
Vol.M�/C i3�

2�.D.�2//
��
;(3-30)

G0.s/
4
jsD0 D exp

�
1

3�

�
Vol.M�/� i12�

2�.D.�1//
��
:(3-31)

Remark 3.9 For the equality (3-31), the Ruelle zeta function does not appear on the
left-hand side. This is because the corresponding term is formally R��1.0/, which can
be understood to be 1, putting mD�1 on the right-hand side of (3-8).

Proof The equality (3-29) for nD 1 is written as

(3-32) F1.s/
2R�0.s/jsD0 D exp

�
�
1

3�
Vol.M�/� i��.D.�2//

�
�

�
Z.�0;�sC 2/

Z.�0; sC 2/

Z.��2; sC 1/

Z.��2;�sC 1/

�ˇ̌̌̌
sD0

;
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noting �.D.�0//D 0. By (3-28),

(3-33) Z.�0;˙s/D exp
�

Vol.M�/

�
�
1

3
.1˙ s/3

�
Z.�0; 2� s/:

By Theorem 4.6 of [11], the Selberg zeta function Z.�0; s/ has a simple zero at s D 0,
which corresponds to the zero eigenvalue of the selfadjoint Hodge Laplacian acting
on �0.M�/. Combining these, we have

(3-34)
Z.�0;�sC 2/

Z.�0; sC 2/

ˇ̌̌̌
sD0

D
Z.�0; s/

Z.�0;�s/

ˇ̌̌̌
sD0

D�1:

Again, by (3-28),

(3-35) Z.��2; 1C s/D e
�i��.D.�2// exp

�
Vol.M�/

�

�
1
3
s3� s

��
Z.�2; 1� s/;

noting that �.D.�2//D��.D.��2//. Hence,

(3-36)
Z.��2; sC 1/

Z.��2;�sC 1/

ˇ̌̌̌
sD0

D
Z.�2;�sC 1/

Z.��2;�sC 1/

ˇ̌̌̌
sD0

e�i��.D.�2// D 1:

The last equality follows from the main theorem of [19, page 2]. By (3-32), (3-34) and
(3-36), we conclude that the equality (3-30) holds.

To prove the statement for G0.s/, let us introduce the zeta functions

(3-37) Ze.s/DZ.�1; s/Z.��1; s/; Zo.s/D
Z.�1; s/

Z.��1; s/
:

By (3-28) and �.D.�1//D��.D.��1//, we have

Ze.1C s/D exp
�
2

�
Vol.M�/

�
1
3
s3� 1

4
s
��
Ze.1� s/;

Zo.1C s/Zo.1� s/D exp
�
2�i�.D.�1//

�
:

(3-38)

By (3-20), we have

(3-39) G0.s/
2
D
Z
�
��1; sC

1
2

�2
Z
�
�1; sC

3
2

�2
D

�
Z
�
��1; sC

1
2

�
Z
�
�1; sC

1
2

� �Z���1; sC 3
2

�
Z
�
�1; sC

3
2

� ���Z��1; sC 1
2

�
Z
�
��1; sC

1
2

�
Z
�
�1; sC

3
2

�
Z
�
��1; sC

3
2

��
DZo

�
sC 1

2

��1
Zo
�
sC 3

2

��1
Ze
�
sC 1

2

�
Ze
�
sC 3

2

��1
DZo

�
sC 1

2

��1
Zo
�
sC 3

2

��1 Ze�sC 1
2

�
Ze
�
�sC 1

2

�Ze��sC 1
2

�
Ze
�
sC 3

2

� :
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Using this and the equalities in (3-38), we have

(3-40) G0.s/
2
D

Ze
�
sC 1

2

�
Ze
�
�sC 1

2

� exp
�
�
2

�
Vol.M�/

�
1
3

�
sC 1

2

�3
�
1
4

�
sC 1

2

���
� exp

�
�2�i�.D.�1//

�
:

Hence, the function G0.s/ is regular at s D 0. As before, to remove the ambiguity
from the first part at s D 0 on the right-hand side of (3-40), we take its square and
obtain the expression of G0.s/4 at s D 0 given in (3-31).

4 Determinant and torsion

4.1 Determinant and Selberg zeta function

We start with:

Lemma 4.1 For the operator �[p acting on �p.M� ; E�/ with p D 0; 1, we have the
asymptotics, as t ! 0,

(4-1) Tr.e�t�
[
p /�

1

4�2
dim.V�/Vol.M�/.a1.p/t

�3=2
C a2.p/t

�1=2/CO.t1=2/;

where a1.0/D 1
2

p
� , a2.0/D�12

p
� , a1.1/D 3

2

p
� and a2.1/D 3

2

p
� .

Proof The small-time asymptotics of Tr.e�t.�
[
0�1// and Tr.e��

[
1/�Tr.e�t�

[
0/ follow

from those of the right-hand sides of (2-56) and (2-57), respectively. The second part
of the right-hand side, which consists of the sum over the hyperbolic elements, has size
O.e�c=t / for a constant c > 0, hence the main contribution is given by the first part
from the identity element in � . Hence, we have the asymptotics

(4-2) Tr.e�t.�
[
0�1//�

1

4�2
dim.V�/Vol.M�/.a1.0/t

�3=2
C a2.0/t

�1=2/

CO.t1=2/;

Tr.e��
[
1/�Tr.e�t�

[
0/�

1

4�2
dim.V�/Vol.M�/.a1.1/t

�3=2
C a2.1/t

�1=2/

CO.t1=2/;

where a1.0/ D 1
2

p
� , a2.0/ D 0, a1.1/ D

p
� , a2.1/ D 2

p
� . From these, the

equality (4-1) follows easily.

Now we choose a complex number s in ƒ� nBr for some � > 0 and r > 0 such that
the spectrum of �[p C s

2 for p D 0; 1 lies on the right half-plane with its real part
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bigger than some ı > 0. Under this assumption, for a fixed s , we consider

(4-3) �p.z; s/D
1

�.z/

Z 1
0

tz�1e�ts
2

Tr.e�t�
[
p / dt:

Note that this integral converges absolutely and uniformly on compact subsets of the
half-plane Re.z/> 3

2
. Using Lemma 4.1, one can show that �p.z; s/ has a meromorphic

extension to C with respect to z , and it is regular at z D 0. For p D 0; 1, we define

(4-4) det.�[pC s
2/D exp

�
�
d

dz

ˇ̌̌
zD0

�p.z; s/
�
:

In a similar way, we define det.�[0� 1C s
2/.

Lemma 4.2 As s!1 in the region ƒ� nBr ,

(4-5)
log det.�[0�1Cs

2/D
1

2�
dim.V�/Vol.M�/

�
�
1
3
s3
�
CO.s�1/;

log det.�[1Cs
2/�log det.�[0Cs

2/D
1

�
dim.V�/Vol.M�/

�
s�1

3
s3
�
CO.s�1/:

Here we take the principal branch for the logarithm.

Proof The asymptotics as s ! 1 follows from (4-2) and
R1
0 tz�1e�ts

2

dt D

s�2z�.z/.

By Lemma 4.1, we have

(4-6) 1

2s

d

ds
log det.�[pC s

2/�
1

2s0

d

ds

ˇ̌̌
sDs0

log det.�[pC s
2/

D lim
z!0

�
�
1

2s

d

ds
.�.z/�p.z; s//C

1

2s0

d

ds

ˇ̌̌
sDs0

.�.z/�p.z; s//
�

D

Z 1
0

.e�ts
2

� e�ts
2
0 /Tr.e�t�

[
p / dt:

Now, we deal with the geometric side of (2-57) as we did for the spectral side, that is,
we multiply e�ts

2

to the geometric side of (2-57) and take the integral
R1
0 � dt . First,

to deal with the terms from hyperbolic elements, from (2-10) we recall

(4-7) D./�1 D e�` .1� e�.`Ci� //�1.1� e�.`�i� //�1

D e�`
X
p�0
q�0

e�p.lCi� /e�q.l�i� /:

Then we obtain the following equalities:
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(4-8)
X
Œ�¤Œe�

`0 tr �./
D./

ei�
Z 1
0

1
p
4�t

e�`
2
=4t�ts

2

dt

D
1

2s

X
Œ�¤Œe�

`0 tr �./
D./

ei� e�s`

D
1

2s

X
Œ�¤Œe�

`0 tr �./ei�
X
p�0
q�0

e�p.lCi� /e�q.l�i� /e�.sC1/`

D
1

2s

X
Œ�p

X
p�0
q�0

1X
mD1

`
m
.tr �./ei� e�p.lCi� /e�q.l�i� /e�.sC1/` /m

D�
1

2s

X
Œ�p

X
p�0
q�0

` log det.IdV� � �./e
i� e�p.lCi� /e�q.l�i� /e�.sC1/` /

D
1

2s

d

ds
logZ�.�2; sC 1/:

Here the sums in the third and fourth lines run over the set of conjugacy classes in �
of primitive hyperbolic elements in � . For the first equality above, we used

(4-9)
Z 1
0

1
p
4�t

e�`
2=4t�ts2 dt D

1

2s
e�s`:

Repeating the same procedure for the identity contribution of the geometric side
of (2-57),

(4-10)
1

2�2
dim.V�/Vol.M�/

Z 1
0

e�ts
2

Z 1
0

.�2C 1/e�t�
2

d�dt

D
1

2�2
dim.V�/Vol.M�/

Z 1
0

e�ts
2p
�
�
1
2
t�3=2C t�1=2

�
dt

D
1

2s

1

�
dim.V�/Vol.M�/.�s

2
C 1/:

Combining (2-57), (4-6), (4-8) and (4-10),

(4-11) 1

s

d

ds
log

det.�[1C s
2/

det.�[0C s2/
�
1

s0

d

ds

ˇ̌̌
sDs0

log
det.�[1C s

2/

det.�[0C s2/

D
1

s

d

ds
log.Z�.�2; sC 1/Z�.��2; sC 1//

�
1

s0

d

ds

ˇ̌̌
sDs0

log.Z�.�2; sC 1/Z�.��2; sC 1//

C
1

s

1

�
dim.V�/Vol.M�/.�s

2
C 1/�

1

s0

1

�
dim.V�/Vol.M�/.�s

2
0 C 1/;
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which implies

(4-12) log det.�[1C s
2/� log det.�[0C s

2/

D logZ�.�2; sC 1/C logZ�.��2; sC 1/

C
1

�
dim.V�/Vol.M�/

�
s� 1

3
s3
�
C c2s

2
C c0

for some constants c2 and c0 . In a similar way, using (2-56), we obtain

(4-13) log det.�[0� 1C s
2/

D logZ�.�0; sC 1/C
1

2�
dim.V�/Vol.M�/

�
�
1
3
s3
�
C d2s

2
C d0

for some constants d2 and d0 . By Lemma 4.2 and the fact that logZ�.�k; s/ decays
exponentially as s!1, the constants c2 , c0 , d2 and d0 are trivial. Hence, we have:

Proposition 4.3 For s 2C ,

(4-14) det.�[0� 1C s
2/DZ�.�0; sC 1/ exp

�
�
1

6�
dim.V�/Vol.M�/s

3
�
;

and

(4-15)
det.�[1C s

2/

det.�[0C s2/
DZ�.�2; sC 1/Z�.��2; sC 1/

� exp
�
1

�
dim.V�/Vol.M�/

�
s� 1

3
s3
��
:

Proof Although the left-hand sides of (4-14) and (4-15) are defined a priori for s with
some conditions, these can be extended over C by the meromorphicity of Z�.�k; s/.

By (3-14), (4-14) and (4-15),

(4-16) R�.s/D
Z�.�0; s/Z�.�0; sC 2/

Z�.�2; sC 1/Z�.��2; sC 1/

D
det.�[0� 1C .s� 1/

2/ det.�[0� 1C .sC 1/
2/ det.�[0C s

2/

det.�[1C s2/
� exp

�
2s

�
dim.V�/Vol.M�/

�
:

This equality implies the following functional equation of R�.s/:

Theorem 4.4 For s 2C ,

(4-17) R�.s/DR�.�s/ exp
�
4s

�
dim.V�/Vol.M�/

�
:
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Recalling (2-60), equation (4-17) is compatible with Theorem 1.1 of [11], which holds
for unitary representations � . Note that the Ruelle zeta function in this paper is the
inverse of the one of [11]. A similar formula to (4-17) was also given in (3.11) of [23].

4.2 Reidemeister torsion

For a k–dimensional vector space over C , let vD .v1; : : : ; vk/ and wD .w1; : : : ; wk/
be two bases for V . Let Œw=v� denote the determinant of the matrix T D .tij / repre-
senting the change of base from v to w , that is, wi D

P
tij vj . Suppose

(4-18) C W Cn
@
�! Cn�1

@
�! � � �

@
�! C1

@
�! C0

is a chain complex of finite complex modules. Let Zq denote the kernel of @ in Cq ,
Bq � Cq the image of CqC1 under @, and Hq.C /DZq=Bq the qth homology group
of C. Choose a base bq for Bq for each q , and let zbq�1 be an independent set in Cq
such that @zbq�1 D bq�1 , and zhq an independent set in Zq representing a base hq
of Hq.C /. Then .bq; zhq; zbq�1/ is a base for Cq . For a given preferred base cq for Cq ,
note that Œbq; zhq; zbq�1=cq� depends only on bq , hq and bq�1 , hence we denote it by
Œbq; hq; bq�1=cq�. The torsion �.C / of the chain complex C is the nonzero complex
number defined by

(4-19) T .C /D
nY
qD0

Œbq; hq; bq�1=cq�
.�1/q :

Note that T .C / depends only on the choice of the bases cq and hq , and not on the
choice of the base bq .

Let K be a finite cell complex and zK the simply connected covering space of K with
the fundamental group �1 of K acting as deck transformations on zK . Since zK is just
the set of translates of a fundamental domain under �1 , the complex cochain groups
C q. zK/ become modules over the complex group algebra C.�1/ with a preferred
base consisting of the dual element of cells of K . Relative to this preferred base, the
boundary operator on the right C.�1/–module C q. zK/ is a matrix with coefficients
in C.�1/. For a representation � of �1.K/ into SL.N;C/, define the chain complex
C.K; �/ by

(4-20) C q.K; �/D C q. zK/˝C.�1/CN ;

where CN is considered as a left C.�1/–module via the action of � . The boundary
map of C.K; �/ is defined to be the dual map of the boundary map of the cell complex.
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We choose a preferred base ei˝xj , where ei runs through the preferred base of C q. zK/
and xj runs through a base for CN. Now the Reidemeister torsion T .K; �/ attached
to the representation � is defined by

(4-21) T .K; �/D T .C.K; �//:

A different choice of the preferred base ei can give at most a sign change of T .K; �/
since � is a representation into SL.N;C/. A different choice of the base x0j for CN can
also give a change by the factor Œx0=x��.C/ , where �.C / denotes the Euler characteristic
of C. Hence, if �.C / D 0, the Reidemeister torsion T .C.K; �// is well defined as
an invariant with a value in C�=f˙1g depending only on the choice of the base hq
for Hq.C /. By [20], it is known that T .C.K; �// is a combinatorial invariant of .K; �/.
Hence, if M is a compact oriented manifold, any smooth triangulation of M gives the
same Reidemeister torsion. We denote it by T .M; �/.

When the cohomology groups H�.M; �/ WD H�.C.K; �// are trivial for a smooth
triangulation K of M, the square of Reidemeister torsion T 2.M; �/ is a well-defined
complex number.

To state Theorem 10.1 of [7], now we introduce the analytic torsion defined by the
nonselfadjoint operators �[p in the context of Section 2.4. Recall that the operator
�[p acts on C1.M; E�/, where M is a closed Riemannian manifold of dimension n
and E is a flat vector bundle defined by a representation �W �1.M/! SL.N;C/. In
general, the nonselfadjoint operator �[p acting on �p.M; E�/ may have a generalized
eigenvalue with nonpositive real part. Hence, the definitions (4-3) and (4-4) do not
work simply if we put s D 0 at (4-3) and (4-4). For this, we recall the construction in
[7, Section 8]. Let r > 0 be a real number that is not the real part of any generalized
eigenvalue of �[p . Let …p;r denote the spectral projection on the span of the generalized
eigenvectors with generalized eigenvalues with real part less than r . Noting that
Lemma 4.1 still holds for the heat operator of �[p;r WD .Id�…p;r/�

[
p since …p;r is a

smoothing operator, we define

(4-22) det�[p;r D exp
�
�
d

dz

ˇ̌̌
zD0

�p;r.z/
�
;

where

(4-23) �p;r.z/D
1

�.z/

Z 1
0

tz�1 Tr.e�t�
[
p;r / dt:

Let us denote the zero generalized eigenspace of �[p by �p0 .M; E�/. The cohomol-
ogy of the complex .��0.M; E�/; d/ is the same as the cohomology H�.M; E�/ of
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.��.M; E�/; d/. We define its torsion as in (4-19) by

(4-24) T0.M; �/D T .��0.M; E�/; d/:

When H�.M; E�/ is nontrivial, we need to specify a basis of H�.M; E�/ in the above
definition (4-24). But, since the case we want to consider satisfies the acyclic condition,
we assume the acyclic condition from now on. Let us remark that the multiplicity of
the zero generalized eigenvalue of �[p can be nontrivial under the acyclic condition in
general. Now the analytic torsion Ta.M; �/ is defined by

(4-25) Ta.M; �/

D T0.M; �/2 �

nY
pD1

.det�[p;r/
p.�1/pC1

�

nY
pD1

� Y
�p;j2S.p;r/

�p;j

�p.�1/pC1
:

Here S.p; r/ denotes the set of all the nonzero generalized eigenvalues with real part
less than r counted with multiplicities. By Theorem 8.3 of [7], the above definition of
Ta.M; �/ in (4-25) does not depend on the choice of r . When the cohomology groups
H�.M; E�/ are trivial, the following equality holds between two complex-valued
invariants:

(4-26) T 2.M; �/D Ta.M; �/

by Theorem 10.1 of [7].

5 The case of compact hyperbolic 3–manifolds

By Remark 3.7, R�m.s/ is regular and has a finite nonzero value at s D 0 for m� 3.
By this fact and (4-16), we have

(5-1) R�m.0/D lim
s!0

det.�[0C s
2� 2s/ det.�[0C s

2C 2s/ det.�[0C s
2/

det.�[1C s2/
:

For pD0; 1, we take a sufficiently small r >0 such that the real parts of the generalized
eigenvalues of �[p with positive real parts are bigger than r . Then, it is easy to check
that

(5-2) lim
s!0

s�2hp det.�[pC s
2/D lim

s!0
det.�[p;r C s

2/ � s�2hp
Y

�p;j2S.p;r/

.�p;j C s
2/

D det�[p;r �
Y

�p;j2S.p;r/

�p;j ;
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where hp denotes the multiplicities of the zero generalized eigenvalue of �[p . Similar
equalities hold for the other factors det.�[0C s

2˙ 2s/ on the right-hand side of (5-1).
By (5-1), we have 2h0 D h1 . Using this and by (4-25), (5-1) and (5-2),

(5-3) R�m.0/D lim
s!0

s�4h0 det.�[0Cs
2�2s/ det.�[0Cs

2C2s/ det.�[0Cs
2/

s�2h1 det.�[1Cs2/

D .�4/h0

�
det�[0;r �

Q
�0;j2S.0;r/

�0;j
�3

det�[1;r �
Q
�1;j2S.1;r/

�1;j

D .�4/h0

�
det�[1;r �

Q
�1;j2S.1;r/

�1;j
��

det�[3;r �
Q
�3;j2S.3;r/

�3;j
�3�

det�[2;r �
Q
�2;j2S.2;r/

�2;j
�2

D .�4/h0
Ta.M� ; �

m/

T0.M� ; �m/2
:

For the third equality of (5-3), we used

(5-4) .?˝ IdE�m /�
[
p D�

[
3�p.?˝ IdE�m / over �p.M� ; E�m/;

which follows from (2-27).

For the representation �mW �! SL.Sm.C2//� SL.CmC1/, the cohomology groups
H�.M� ; E�m/ are trivial by Theorem 6.7 in [5]. Hence, the square of the Reidemeister
torsion T 2.M� ; �

m/ is a well-defined complex-valued invariant. By (4-26), we have
T 2.M� ; �

m/D Ta.M� ; �
m/. Combining this and (5-3),

(5-5) .�4/h0
T .M� ; �

m/2

T0.M� ; �m/2
DR�m.0/:

Actually, we can improve the equality (5-5) by the following proposition:

Proposition 5.1 For the terms h0 and T0.M� ; �
m/ appearing in (5-5), we have

(5-6)
h0 D 1 and jT0.M� ; �

m/j D 2 if m is even;

h0 D 0 and T0.M� ; �
m/D 1 if m is odd:

Proof First, we recall that there exists a canonical Hermitian metric over each fiber
of E�m constructed in Lemma 3.1 in [15], which is called an admissible metric. Using
the hyperbolic metric over M� and this admissible metric over E�m , one can define
the Laplacians �p acting on �p.M� ; E�m/ for p D 0; 1; 2; 3, which are selfadjoint
nonnegative operators. Then the space of zero eigensections of �p is the same as
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Hp.M� ; E�m/ by Theorem 6.1 in [15], which vanishes by Theorem 6.7 in [5]. By
Theorem 1.5 of [23], we have

(5-7) jR�m.0/j D Ta.M� ; �
m/;

where Ta.M� ; �
m/ denotes the analytic torsion defined by the selfadjoint Laplacians

�p for p D 0; 1; 2; 3. This was also proved in [36]. The proof in [23] is along the
same lines as in the previous sections for the selfadjoint Laplacian �p . By [4; 21], we
also have

(5-8) Ta.M� ; �
m/D jT .M� ; �

m/j2:

Combining (5-7) and (5-8), we have

(5-9) jR�m.0/j D jT .M� ; �
m/j2:

Secondly, the multiplicity h0 is the same as the degree of the zero of Z�m.�0; s/ at sD0
by (4-14). This is also the same as the degree of the zero of

Qm
lD0Z

�
�m�2l ; s�

1
2
mCl

�
at s D 0 by (3-7). When m is even, there is the factor Z.�0; s/, which has a simple
zero at s D 0. Other factors consist of Z

�
�k; s�

1
2
k
�

for k Dm� 2l with 0� l �m
and l ¤ 1

2
m. By the construction of [23, Section 6], there exists a second-order elliptic

differential operator �.�k/ acting on C1.M� ; E.�k//. Here E.�k/ is a locally
homogeneous vector bundle over M� defined by

(5-10) E.�k/ WDE�jkj ˝E
�
�jkj�2

˝E�jkj�4 ˝ � � �

using (2-16) and (2-18), where E��jkj�2 denotes the dual bundle of E�jkj�2 and the
tensor product ends with (the dual of) E�1 or E�0 on the right-hand side of (5-10).
Hence the vector bundle E.�k/ is naturally equipped with a Z2–grading. By the
equality below (6.17) in [23],

(5-11) Z
�
�k; s�

1
2
k
�
Z
�
��k; s�

1
2
k
�
D detgr.�.�k/C s.s� k� 2// exp.Pk.s//

for a polynomial Pk.s/. Here detgr denotes the ratio of the usual regularized determi-
nants of the restrictions of the operator �.�k/ to the subspaces of C1.M� ; E.�k//

defined by the grading of the vector bundle E.�k/. Since this operator has trivial
kernel by Lemma 7.2 in [23], one can conclude that Z

�
�k; s�

1
2
k
�
Z
�
��k; s�

1
2
k
�

has
no zero at s D 0 by (5-11). Since

ˇ̌
Z
�
�k; s�

1
2
k
�ˇ̌2
DZ

�
�k; s�

1
2
k
�
Z
�
��k; s�

1
2
k
�

for real s , the same is true for Z
�
�k; s �

1
2
k
�

for k D m� 2l with 0 � l � m and
l ¤ 1

2
m. Hence, h0 D 1 if m is even and h0 D 0 if m is odd.
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Finally, comparing (5-5) with (5-9), one obtains jT0.M� ; �
m/j D 2 when m is even.

When m is odd, h1 D 2h0 D 0. This also imply the multiplicities of zero generalized
eigenvalues of �[p vanish for p D 2; 3 by (5-4). Hence, we have T0.M� ; �

m/ D 1

when m is odd.

From now on we split the proof into when m is even or odd.

When mD 2.n� 1/ with n� 3, by (3-25), (5-5) and Proposition 5.1,

(5-12)
�
1

2

T0.M� ; �
2.n�1//

T .M� ; �2.n�1//

�4
D exp

�
2�i

�
�.D.�2n//� �.D.�2.n�1///

��
� exp

�
2

�

�
2n2� 2nC 1

3

�
Vol.M�/

�
�Fn.M�/

4:

Here the Zograf infinite product Fn.M�/ is defined by

(5-13) Fn.M�/ WD Fn.0/D

1Y
kDn

R.��2k; k/D

1Y
kDn

Y
Œ�p

.1� e�k.`Ci� //:

Recall that s D 0 lies in the convergence domain of Fn.s/ for n� 3 (see (3-17)). By
(2-23) and (5-12), we have:

Theorem 5.2 For a closed hyperbolic 3–manifold M� defined by a cocompact
torsion-free discrete subgroup � � SL.2;C/, for n� 3,

(5-14)
�
1

2

T0.M� ; �
2.n�1//

T .M� ; �2.n�1//

�12
D exp.6�i�2.n�1// exp

�
2

�
.6n2� 6nC 1/V .M�/

�
Fn.M�/

12;

where

(5-15) �2.n�1/ D �.D.�2n//� �.D.�2.n�1///� .6n
2
� 6nC 1/�.D.�2//:

Let us remark that �0D 0 with nD 1 by the definition as expected from (3-30). Hence,
�2.n�1/ can be understood as an anomaly for nonzero mD 2.n� 1/.

When mD 2n� 1 with n� 2, by (3-26), (5-5) and Proposition 5.1,

(5-16) T .M� ; �
2n�1/�4 D exp

�
2�i

�
�.D.�2nC1//� �.D.�2n�1//

��
� exp

�
2

�

�
2n2� 1

6

�
Vol.M�/

�
�Gn.M�/

4:
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Here the Zograf infinite product Gn.M�/ is defined by

(5-17) Gn.M�/ WDGn.0/D

1Y
kDn

R
�
��.2kC1/; kC

1
2

�
D

1Y
kDn

Y
Œ�p

.1� e�.kC1=2/.`Ci� //:

Recall that s D 0 lies in the convergence domain of Gn.s/ for n� 2. Let us remark
that the equality (5-16) is compatible with (3-31) if we put nD 0 formally and note
�.D.�1//D��.D.��1// (see Remark 3.9). Rewriting (5-16) as above, we obtain:

Theorem 5.3 For a closed hyperbolic 3–manifold M� defined by a cocompact
torsion-free discrete subgroup � � SL.2;C/, for n� 2,

(5-18) T .M� ; �
2n�1/�12Dexp.6�i�2n�1/�exp

�
2

�

�
6n2�1

2

�
V .M�/

�
�Gn.M�/

12;

where �2n�1 WD �.D.�2nC1//� �.D.�2n�1//�
�
6n2� 1

2

�
�.D.�2//.

Part II Noncompact case

The purpose of Part II is to prove Theorems 1.1 and 8.1 for hyperbolic 3–manifolds
with cusps. For this, we apply the prior results to a sequence of compact hyperbolic
3–manifolds obtained by Dehn surgeries from a given hyperbolic 3–manifold with
cusps.

6 Basic materials, II

6.1 Deformation space of hyperbolic structures

Suppose that M0 is a complete hyperbolic 3–manifold of finite volume with h cusps.
Then M0 has an ideal triangulation

M0 D�.z
0
1/[ � � � [�.z

0
n/:

Here �.z0i / is an ideal tetrahedron described (up to isometry) by the complex number z0i
in the upper half-plane such that the Euclidean triangle cut out of any vertex of �.z0i / by
a horosphere section is similar to the triangle with vertexes 0, 1 and z0i . If we deform
.z01 ; : : : ; z

0
n/ to .z1; : : : ; zn/ slightly with Im zi > 0 for i D 1; : : : ; n, then we obtain a
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complex �.z1/[ � � �[�.zn/ with the same gluing pattern as M0 . The necessary and
sufficient condition for �.z1/[� � �[�.zn/ to give a smooth (not necessarily complete)
hyperbolic manifold is that at each edge e of �.z1/[� � �[�.zn/ the tetrahedron �.zi /
abutting e close up as one goes around e , and thus the product of the corresponding
moduli of �.zi / at e be exp.2�i/ (the product is taken in the universal cover of C� ).
The consistency condition at e is written as

nY
iD1

z
ri
i .1� zi /

r 0
i D˙1

for some integers ri and r 0i depending on e . Once we have chosen the numbers zi
satisfying the consistency conditions, �.z1/ [ � � � [ �.zn/ acquires a smooth hy-
perbolic structure, in general incomplete. The deformation space D.M0/ of the
hyperbolic structures on the underlying topological manifold of M0 is the variety of
z D .z1; : : : ; zn/ 2Cn which satisfies the consistency conditions.

Choose a pair of simple closed curves .mi ; li / on each torus section Ti of the i th

cusp which forms a basis of H1.Ti ;Z/. For each z D .z1; : : : ; zn/ 2 D.M0/,
let �z W �1.M0/ ! PSL.2;C/ be a holonomy representation of the corresponding
(in)complete hyperbolic manifold �.z1/[ � � � [�.zn/. We may consider .mi ; li / as
elements of �1.M0/. If �z.mi / and �z.li / are not parabolic, they have two fixed
points in C[f1g, which we can put at 0 and 1, so, as Möbius transformations on
C[f1g,

�z.mi /W w! aiw; �z.li /W w! biw

for some ai ; bi 2 C� . Set ui D log ai and vi D log bi . If �z.mi / and �z.li / are
parabolic, we set ui D vi D 0. By [34; 26], we have:

Theorem 6.1 (Thurston [34]; Neumann and Zagier [26]) The deformation space
D.M0/ of hyperbolic structures on the underlying topological manifold of M0 can
be holomorphically parametrized by .u1; : : : ; uh/ 2 Ch in a neighborhood V of the
origin 0D .0; : : : ; 0/ in D.M0/. For i D 1; : : : ; h, there are holomorphic functions
�i .u/ over V such that vi D �i .u/ui and �i .0/ is in the upper half-plane and is the
modulus of the Euclidean structure on the torus section Ti associated to the i th cusp
of M0 (with respect to mi ; li ).

We denote by Mu the (in)complete hyperbolic 3–manifold corresponding to the point
uD .u1; : : : ; uh/ 2 D.M0/.
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By the second statement in Theorem 6.1, if u is near the origin and ui ¤ 0, then vi is
not a real multiple of ui . Hence there is a unique solution .pi ; qi / 2R2[f1g to

(6-1) piui C qivi D 2�i:

We take .pi ; qi /D1 if ui D 0. This .pi ; qi / is called the generalized Dehn surgery
coefficient by Thurston [34]. If each .pi ; qi / is a pair of coprime integers, Mu can be
completed to a closed hyperbolic manifold, denoted by Mp;q , where pD .p1; : : : ; ph/
and q D .q1; : : : ; qh/, by .pi ; qi /–hyperbolic Dehn surgery to each end of Mu .

6.2 Invariants over D.M0/

For u 2 D.M0/, the construction of the complex 3–form C in Section 2.3 can be
repeated to have a complex 3–form C on the frame bundle F.Mu/. We refer to
[37, Section 3] for more details about this construction. Now let su be the section
defined by an orthonormal framing Fu on a subset of Mu such that s�uC vanishes
over h ends of Mu . It is called the simple framing by Yoshida [37]. Since su satisfies
this vanishing condition over the ends, there is an obstruction for su to be defined over
whole Mu , which is given by a link L inside of Mu . Hence, su is a section from
Mu nL to F.Mu/. Let �u be an orthonormal framing over a tubular neighborhood
of L such that its first component is tangent to L and has the same direction as the
first component of Fu near L. For u 2 D.M0/, the following complex function is
defined by Yoshida [37]:

(6-2) f .u/D

Z
su.MunL/

C �
1

2�

Z
su.L/

.�1� i�23/;

where suWMu nL! F.Mu/ and suW L! F.Mu/ are the sections defined by Fu
and �u , respectively. By construction, the complex function f .u/ for u 2 D.M0/

extends the complex volume of M0 by V .M0/D �
2f .0/.

The following theorem was conjectured by Neumann and Zagier [26] and was proved
by Yoshida [37]:

Theorem 6.2 (Yoshida [37]) Over a neighborhood V of the origin in D.M0/, the
complex function exp.2�f / is holomorphic. If u 2 V represents the hyperbolic
manifold Mu which can be completed to a closed hyperbolic manifold Mp;q by
.pi ; qi /–hyperbolic Dehn surgery to each end of Mu , then

Ref .u/D
1

�2
Vol.Mp;q/C

1

2�

hX
iD1

length.gi /;
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Imf .u/D 2CS.Mp;q/C
1

2�

hX
iD1

torsion.gi / mod Z;

where length.gi / and torsion.gi / denote the length and the torsion of the closed
geodesic gi adjoined to the i th end of Mu , respectively.

For the Zograf infinite products for complete hyperbolic manifolds with cusps M0 ,
one can define these as in (5-13) and (5-17). Note that Fn.s/ and Gn.s/ as given
in (3-17) and (3-18), respectively, are regular at s D 0 under the given conditions on n
for M0 . This is because the statement in (3-2) is still true for a cofinite torsion-free
subgroup � � SL.2;C/.

Moreover, one can consider the corresponding objects for Mu for u in a small open
neighborhood V of the origin in D.M0/ since the convergence condition is an open
condition for u. Hence, for u 2 V we define

(6-3)

Fn.Mu/ WD
Y
Œ�p

1Y
mDn

.1� qm / for n� 3;

Gn.Mu/ WD
Y
Œ�p

1Y
mDn

.1� qmC1=2 / for n� 2:

Here the first product is taken over the set of conjugacy classes of the primitive
loxodromic elements  defined by �u which are deformations of the loxodromic
elements defined by �0 , and q is defined to be an eigenvalue of �u./ with modulus
less than 1 for u in an open neighborhood V . Let us remark that there are loxodromic
elements defined by �u which are not deformations of loxodromic elements defined
by �0 . Note that Fn.Mu/ and Gn.Mu/ are holomorphic functions over V since such
elements are not included in the definition (6-3).

6.3 Spin structure

A spin structure on M0 naturally induces a spin structure on Mu for u 2 D.M0/.
But, a spin structure on M0 can be extended to a spin structure on Mp;q with p D
.p1; : : : ; ph/ and q D .q1; : : : ; qh/ obtained by .pi ; qi /–hyperbolic Dehn surgery to
each end of Mu only under a condition. By Proposition 5.2 in [18], a necessary and
sufficient condition for this is that

(6-4) "pimi "
qi
li
D�1 for i D 1; : : : ; h:
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Here "mi and "li denote the sign of the trace of an SL.2;C/–lifting of �u.mi /
and �u.li /, respectively. A spin structure on M0 is called compactly approximable
if there are infinitely many p D .p1; : : : ; ph/ and q D .q1; : : : ; qh/ satisfying the
conditions (6-1) and (6-4). In other words, a spin structure on M0 is compactly
approximable if there is a sequence fMp;qg of infinitely many spin closed hyperbolic
manifolds such that the spin structure on Mp;q is induced from that of M0 .

When k D 2n, the representation �2nu does not depend on the choice of a spin
structure on Mu since the representation �2nu factors through PSL.2;C/. But, the
homology groups H�.Mu; �

2n
u / need not vanish in general. The Reidemeister torsion

T .Mu; �
2n
u / is an invariant of .Mu; �

2n
u / valued in C�=f˙1g depending on the choice

of basis of H�.Mu; �
2n
u /. By Proposition 5.10 in [18], a collection fcig of cycles

in H1.Ti ;Z/ induces a basis of H�.Mu; �
2n
u /. Hence, the Reidemeister torsion

T .Mu; �
2n
u / can be considered as an invariant of .Mu; �

2n
u ; fcig/, which we denote

by T .Mu; �
2n
u ; fcig/.

When k D 2n � 1, by Corollary 5.3 in [18], a spin structure on M0 is compactly
approximable if and only if it is acyclic, that is, H�.M0; �

2n�1
0 /D 0 for all n 2N ,

where �2n�10 is defined by the chosen spin structure. Moreover, by the upper semi-
continuous property of the dimension of H�.Mu; �

2n�1
u / (see [18, Section 5]), there

exists an open neighborhood V of the origin in D.M0/ such that H�.Mu; �
2n�1
u /D 0

for u 2 V . Hence, the Reidemeister torsion T .Mu; �
2n�1
u / is a well-defined invariant

valued in C�=f˙1g for u 2 V if a spin structure over M0 is acyclic.

7 The case of hyperbolic 3–manifolds with cusps and �2.n�1/

For a given hyperbolic 3–manifold with cusps M0 , we take a sequence fMp;qg of
infinitely many compact hyperbolic 3–manifolds, which are obtained by .pi ; qi /–
hyperbolic Dehn surgery to each end of Mu for points u near the origin in D.M0/

satisfying (6-1).

Now, for a closed hyperbolic manifold Mp;q , by Proposition 5.1 and Theorem 5.2, we
have

(7-1) jT .Mp;q; �
2.n�1//j�1 D

ˇ̌̌
exp

�
1

�

�
n2�nC 1

6

�
V .Mp;q/

�
Fn.Mp;q/

ˇ̌̌
:

Here �2.n�1/ is the representation of �1.Mp;q/ to SL.S2.n�1/.C2// which is defined
in the same way as �2.n�1/u for the corresponding point u 2 D.M0/.
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By the Mayer–Vietoris argument for the Reidemeister torsion as in Lemma 3.12 of [18],
or in [27, Section 3], we have

(7-2) T .Mp;q; �
2.n�1//DT .Mu; �

2.n�1/; fpimiCqi lig/

hY
iD1

n�1Y
mD1

.qmi�1/.q
�m
i
�1/;

where qi D exp.�.li C i�i //. Here i for i D 1; : : : ; h denotes the primitive
loxodromic element corresponding to the added closed geodesic gi to the i th end
of Mu . Let us remark the equality (7-2) holds up to sign since the definition of
Reidemeister torsion has ˙1 ambiguity.

For the complex volume of Mp;q , by Theorem 6.2, we have

(7-3) exp
�
2

�
V .Mp;q/

�
D exp.2�f .u//

hY
iD1

qi :

For the Zograf infinite product Fn.Mp;q/, we separate the terms of i for i D 1; : : : ; h
from other terms by

(7-4) Fn.Mp;q/D

hY
iD1

1Y
mDn

.1� qmi /
2

Y
Œ�p¤Œi �

1Y
mDn

.1� qm /:

Note that the primitive conjugacy classes corresponding i and �1i contribute by the
same factor so that we get .1� qmi /

2 . To deal with the second factor on the right-hand
side of (7-4), we consider

(7-5) log
� Y
Œ�p¤Œi �

1Y
mDn

.1� qm /

�
D

Z
jzj>1

1X
mDn

.1� z�n/ d�.Mp;q/.z/:

Here the measure �.Mp;q/ on the complex plane is defined by

(7-6) �.Mp;q/D
X

Œ�p¤Œi �

ıq�1 ;

where the sum is taken over the set of conjugacy classes of the primitive loxodromic
elements  which are not the i for i D 1; : : : ; h in the image of the holonomy
representation of �1.Mp;q/. One can define the corresponding measure �.M0/,
which is defined as in (7-6), where the sum is taken over the same set used in the
definition of Fn.M0/. By Theorems 6.5 and 6.6 of [18], the measure �.Mp;q/ weakly
converges to �.M0/ as uD .u1; : : : ; uh/ goes to the origin of D.M0/ satisfying the
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condition (6-1). From now on, the limit as u! 0 should be understood in this sense.
Hence, we have

(7-7) lim
u!0

� Y
Œ�p¤Œi �

1Y
mDn

.1� qm /

�
D Fn.M0/:

Combining the equalities (7-1), (7-2), (7-3) and (7-4), we have

(7-8)
ˇ̌̌̌
T .Mu; �

2.n�1/
u ; fpimi C qi lig/

hY
iD1

q1=12i

1Y
mD1

.1� qmi /
2

ˇ̌̌̌�1
D
ˇ̌
exp

��
n2�nC 1

6

�
�f .u/

�
.Fn.M0/C "1.u//

ˇ̌
;

where "1.u/ 2C is such that limu!0 "1.u/D 0.

Let us recall the equality given in [26, Section 4],

li C i�i D�.riui C sivi / mod 2�i;

where ri and si are integers such that pisi � qiri D 1. By this and (6-1),

(7-9) z�i .u/ WD
ri C si�i .u/

pi C qi�i .u/
D�

1

2�i
.li C i�i / mod Z;

where �i .u/ is as given in Theorem 6.1. From (7-9), we can see that:

(7-10) The action of
�
p q
r s

�
on
�mi
li

�
induces the action of

�
s r
q p

�
on
�
�
1

�
:

Note that there exists an open neighborhood V of the origin of D.M0/ such that
z�i .u/ lies in the upper half-plane for u 2 V . Hence we can consider the Dedekind eta
function of z�i .u/ for u 2 V . Recall that the Dedekind eta function �.�/ for � in the
upper half-plane is defined by

�.�/D e2�i�=24
1Y
mD1

.1� exp.2�im�//;

which satisfies the transformation law

(7-11) log �
�
s�Cr

q�Cp

�
D log �.�/C 1

4
log.�.q� Cp/2/C 1

12
�iI;

where I is an integer depending on
�
s r
q p

�
2 SL.2;Z/.

By the definition of the Reidemeister torsion, we have the equality

(7-12) T .Mu; �
2.n�1/
u ; fpimi C qi lig/D T .Mu; �

2.n�1/
u ; fmig/A2.n�1/.u/

�1;
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where A2.n�1/.u/ denotes the determinant of the basis-changing matrix from the one
determined by fmig to the one determined by fpimiCqi lig as explained in Section 6.3.
Hence, using (7-12), the equality (7-8) can be rewritten in terms of the Dedekind eta
function �.z�i .u// as

(7-13)
ˇ̌̌̌
T .Mu; �

2.n�1/
u ; fmig/A2.n�1/.u/

�1
hY
iD1

�.z�i .u//
2

ˇ̌̌̌�1
D
ˇ̌
exp

��
n2�nC 1

6

�
�f .u/

�
.Fn.M0/C "1.u//

ˇ̌
:

As in the proof of Lemma 5.13 of [18], one can check that

(7-14) lim
u!0

�
A2.n�1/.u/

�1
hY
iD1

.qi�i .u/Cpi /

�
D 1:

This and the equality (7-11) imply

(7-15) lim
u!0

ˇ̌̌̌
A2.n�1/.u/

�1
hY
iD1

�.z�i .u//
2

ˇ̌̌̌
D

ˇ̌̌̌ hY
iD1

�.�i .0//
2

ˇ̌̌̌
:

Hence, we have

(7-16)
ˇ̌̌̌
T .Mu; �

2.n�1/
u ; fmig/

� hY
iD1

�.�i .0//
2
C "2.u/

�ˇ̌̌̌�1
D
ˇ̌
exp

��
n2�nC 1

6

�
�f .u/

�
.Fn.M0/C "1.u//

ˇ̌
;

where "2.u/ 2 C such that limu!0 "2.u/D 0. Taking u! 0 along the discrete set
corresponding to the sequence fMp;qg, we obtain the corresponding equality for M0 .
This completes the proof of Theorem 1.1.

8 The case of hyperbolic 3–manifolds with cusps and �2.n�1/

In this section we prove:

Theorem 8.1 Let M0 be a complete hyperbolic 3–manifold of finite volume with h
cusps. For an acyclic spin structure on M0 , for n� 2,

(8-1)
ˇ̌̌̌
T .M0; �

2n�1/

hY
iD1

.�01.0; �i /�.�i /
�1/

ˇ̌̌̌�1
D

ˇ̌̌
exp

�
1

�

�
n2� 1

12

�
V .M0/

�
Gn.M0/

ˇ̌̌
:
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Here �01.z; �/ is a theta function defined by

(8-2) �01.z; �/D
X
n2Z

exp
�
�in2� C 2�in

�
zC 1

2

��
for z 2C and � in the upper half-plane.

Proof Although we prove this theorem essentially in the same way as the proof
of Theorem 1.1, we need to explain how the acyclic spin structure is involved in
the following proof. If the given spin structure on M0 is acyclic, it is compactly
approximable, as explained in Section 6.3. Then, for a basis .mi ; li / of H1.Ti ;Z/ for
i D 1; : : : ; h, there are infinitely many points near the origin of D.M0/ with coprime
pairs .pi ; qi / for i D 1; : : : ; h satisfying (6-1) and (6-4). In particular, if necessary
properly changing the basis .mi ; li / to have "mi D �1 for i D 1; : : : ; h, we may
assume that

(8-3) pi D 4ki C 1; qi D 4li for ki ; li 2 Z:

For the closed hyperbolic manifold Mp;q with the induced spin structure, by Proposition
5.1 and Theorem 5.3 we have

(8-4) jT .Mp;q; �
2n�1/j�1 D

ˇ̌̌
exp

�
1

�

�
n2� 1

12

�
V .Mp;q/

�
Gn.Mp;q/

ˇ̌̌
:

By the Mayer–Vietoris argument for the Reidemeister torsion as in Lemma 3.7 of [18],
we have

(8-5) T .Mp;q; �
2n�1/D T .Mu; �

2n�1/

hY
iD1

n�1Y
mD0

.qmC1=2i
� 1/.q�.mC1=2/i

� 1/;

where q
jC1=2
i D exp

�
�
�
j C 1

2

�
.li C i�i /

�
is defined with respect to the induced spin

structure on Mp;q .

For the Zograf infinite product Gn.Mp;q/, by Theorems 6.5 and 6.6 in [18] as before,

(8-6) Gn.Mp;q/D

hY
iD1

1Y
mDn

.1� qmC1=2i
/2.Gn.M0/C "3.u//;

where "3.u/ 2 C such that limu!0 "3.u/ D 0. Here note that the primitive conju-
gacy classes corresponding to i and �1i contribute by the same factor, so we get
.1� q

mC1=2
i /2 .
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Combining equalities (7-3), (8-4), (8-5) and (8-6),

(8-7)
ˇ̌̌̌
T .Mu; �

2n�1
u /

hY
iD1

q�1=24i

1Y
mD0

.1� qmC1=2i
/2
ˇ̌̌̌�1

D
ˇ̌
exp

��
n2� 1

12

�
�f .u/

�
.Gn.M0/C "3.u//

ˇ̌
:

From the formula given on page 69 in [24], let us recall that the theta function �01.z; �/
has a product expression at z D 0,

(8-8) �01.0; �/D

1Y
mD1

.1� exp.2�im�//
1Y
mD0

�
1� exp.�i.2mC 1/�/

�2
:

By Proposition 9.2 in [24], it also satisfies the transformation law

(8-9) �01.0; �/
2
D .q� Cp/�01.0; �/

2

for  2�.4/. Here �.4/�SL.2;Z/ denotes the principal congruence group of level 4,
and the action � is given by s�Cr

q�Cp
for an element  D

�
s r
q p

�
in �.4/, recalling (7-10).

Now, properly changing ki and li in (8-3) if needed, one may assume

(8-10) i D

�
si ri
qi pi

�
2 �.4/:

Then, for these i for i D 1; : : : ; h, we have the equality

(8-11) jqi j
1Y
mD0

j1� qmC1=2i
j
�48

D jexp.2�iz�i .u//j
1Y
mD0

j1� exp.�i.2mC 1/z�i .u//j�48

D j�.z�i .u//j
24
j�01.0; z�i .u//j

�24
D j�.�i .u//j

24
j�01.0; �i .u//j

�24:

By (8-7) and (8-11), we have

(8-12)
ˇ̌̌̌
T .Mu; �

2n�1
u /

hY
iD1

�
�01.0; �i .u//�.�i .u//

�1
�ˇ̌̌̌�1

D
ˇ̌
exp

��
n2� 1

12

�
�f .u/

�
.Gn.M0/C "3.u//

ˇ̌
:

Taking u! 0 along the discrete set corresponding to the sequence fMp;qg, we obtain
the corresponding equality for M0 with acyclic spin structure. This completes the
proof for the case of hyperbolic 3–manifolds with cusps and �2n�1 .
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By the same reasoning as before, Theorems 5.3 and 8.1 lead the author to make the
following conjecture:

Conjecture 8.2 There exists an open neighborhood V of the origin in D.M0/ where,
for n� 2,

T .Mu; �
2n�1
u /�24

hY
iD1

�
�01.0; �i .u//�.�i .u//

�1
��24

D cM0;n exp.2.12n2� 1/�f .u//Gn.Mu/
24;

where cM0;n is a constant depending only on M0 and n with jcM0;nj D 1.

Let us remark that we need to take the 24th power of the equality (8-1) to have well-
defined complex functions over V � D.M0/.
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