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ABSTRACT: Force-induced stretching of polymers is important in a variety of contexts. We have used theory
and simulations to describe the response of homopolymers,Nvittonomers, to an external forcg)(in good

and poor solvents. In good solvents and for sufficiently IaXgee show, in accord with scaling predictions, that

the mean extension along thaxis [Z[~ f for smallf and[(ZC~ f 23 (the Pincus regime) for intermediate values

of f. The theoretical predictions féE(as a function of are in excellent agreement with simulations ffor= 100

and 1600. However, even witk = 1600, the expected Pincus regime is not observed due to the breakdown of
the assumptions in the blob picture for finkke We predict the Pincus scaling in a good solvent will be observed

for N = 1C°. The force-dependent structure factors for a polymer in a poor solvent show that there is a hierarchy
of structures, depending on the nature of the solvent. For a weakly hydrophobic polymer, various structures
(ideal conformations, self-avoiding chains, globules, and rods) emerge on distinct length séategaaied. A
strongly hydrophobic polymer remains globular as lond &sless than a critical valug. Abovef., an abrupt
first-order transition to a rodlike structure occurs. Our predictions can be tested using single molecule experiments.

I. Introduction With this assumption, one can anticipate three regimes in the
FEC.

(i) For smallf, we expect a linear increase in the extension
Pf the chain withf in the z-direction. At low forces®(X) ~ X,
and hencdZO R-(agf), with B = 1/kgT. (ii) In the strongly
stretched limit, which arises for intermediate forces, the value
of [Z[can be obtained by dividing the chain into a sequence of
aligned tensile blobs (along the force axis) whose siZ& is
(Bf)~L.12 The monomers contained within each blob behave as
an unperturbed self-avoiding walk. In this cage= (5f)~1 ~
Np”, with Ny the number of monomers in a blob. The linear
extension of the chain is then given B¥0~ Ep(N/Np) ~
N(Bf)—1 ~ N(Bf)23. We will refer to this intermediate scaling
regime as the Pincus regime. It should be stressed that this
argument is valid only iN > (£p/a)l” > 1, which may not be
satisfied for a stiff polymer or a flexible polymer with small
(see below). (iii) For extremely large forces (beyond the strong
stretching regime), we expect the excluded volume to become
irrelevant, as the bonds between monomers become fully aligned
with the z-axis, and no monomer interacts with any other
monomer. The FEC in this regime will be model-dependent,
with [ZT~r Na?gf/3 for an extensible chain and~ Nafor an
inextensible chain. We will refer to this force range as the
nonuniversal regime.

The Pincus scaling description of the stretching of homopoly-
mers is well-known. However, as far as we are aware, a

microscopic derivation of the FEC anticipated by Pincus has

[20= Re@(Re/<p) @ not been provided. More importantly, it is unclear how the FEC
of polymers with finiteN compares with the predictions of the
scaling theory. In other words, for finite values Nf(on the

Single molecule nanomanipulation methods have been used
to measure the response of biological macromolecules to
mechanical force. Such measurements give direct estimates o
the elasticity of DNAL RNA,? proteins3# and polysaccharidés.
Although tension-induced stretching of RRiZ& and proteing®
largely depends on the architecture of the folded conforma-
tions 10 sequence effectsmake it difficult to unambiguously
interpret the measured foreextension curves (FECs) in terms
of unfolding pathways. In this context, stretching of homopoly-
mers by force provides a potentially simpler case for which the
FECs can be calculated.

In a pioneering paper, Pincisonsidered the strong stretch-
ing of homopolymers in a good solvent. The strong stretching
limit corresponds to a large enough foréesuch thatNva <
[Z[= Na, wherev = 3/5 is the Flory exponenl is the number
of monomersa is the size of a monomer, afdl= 2y — Z[
is the mean tension-induced end-to-end distance (we have
assumed thdtis aligned with thez axis). Pincus showed that
the size of the stretched polymer should be determined by an
interplay between the Flory raditR = N'a and the tensile
screening length (or the blob siZ8)p = ks T/f. Whenf is small,
thenx = Re/€p < 1, while in the opposite limitx > 1. The
scaling assumption is that for arbitrafythe average end-to-
end distance can be written as
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theoretical predictions nor simulations display the Pincus regime A self-consistent equation (SCE) faris obtained by insisting

for N= 100 orN = 1600. We show that this is due to a finite- that[Z[J ~ [Z[, which leads to the condition

size effect, and show that the Pincus regime emerges only for
z 1C°. Only whenN is large is the concept of the tensile @)

blob (with & ~ aNy) satisfied, wherédN > N, > 1. We also

show using theory and simulations that the tension-induced Throughout this work, we compute averages with respect to

stretching of homopolymers in a poor solvent exhibits a first- H;, so the subscripts oml.Owill be dropped. The terms

order transition between an ensemble of collapsed states andnvolving A; and A, are easily calculated using

rodlike conformations. The nature of the transition is dependent

(Z(A; + A = [ZHIA, + Ayl

on how poor the solvent is, which is measured in terms of the 1 9Z0 12(/12 1)Na
relative attraction between the monomers. The theoretical [ZA;0— [ZIA,[F= E&(/lz — 1)W = At (8)

predictions for the poor solvent case are only in qualitative
agreement with the simulations. Simulations of a polymerina , .4

poor solvent show that tension-induced transitions occur via a

hierarchy of structures, depending on the solvent quality. Force-

dependent structure factors show that, for a weakly hydrophobic [ZA,[— [ZA,[=
polymer, the transition to the stretched state occurs through a
variety of structures, depending on the length scale (or the

2]; o|sfO dsa(ﬂf)@s[r(s) —r(s)]0(9)

magnitude of the wave vectan). For a strongly hydrophobic
chain, the globule-to-rod transition occurs by a first-order
transition wherf exceeds a critical value.

Il. Polymers under Tension in a Good Solvent

Theory. Extensible PolymerThe Hamiltonian for a self-
avoiding polymer chain under tension is taken to be

3 /N N
Ho = Eﬁ’ dst(s) — pf [ ds 4s) + A, 2
wheref is aligned with thez-axis, f = 1/kgT, and
Vo N N
A,= 5" [ds ["ds o[r(s) — r(s)] A3)

with g the strength of the self-avoiding interaction, whege
> 0 in a good solvent. Here and belof{s) denotes differentia-
tion with respect tes. To compute the forceextension curves

with [B8[r(s) — r(s)]O= (3/2ra??s — S|)°*? exp(—|s —
S|A2a2B%f 2/6) (the details of the calculations are given in
Appendix A). Using egs +9, the self-consistent equation for
A becomes

2—1=

U“/_f du [ e—Nuﬂ;2 @26

28 u

g NS [oe N 2/6+/1 \/?(1 - N;qu)
[erf(/lqo \/E) - erf(lcp@)]} (20)

where we have defined the dimensionless excluded volume
parametew = (3/27)3¥2y/a® and the dimensionless forge=

apf, and where erf) is the error function. We have also
included a cutoffg, in the integral oveu (with u = |s — S|/

N), to account for the finite separation between the monomers,

_ 6v
5¢%VN

(FECs) and compare them to simulations, we use a self- which is neglected in the continuum representation of the
consistent variational method, originally proposed by Edwards Hamiltonian in eq 4. We expea ~ /N, since the discrete

and Singht* Following the convention in single molecule

monomers are separated by a distafice — ri| & Aa on an

experiments, we use FEC for the extension changes uponaverage in the reference Hamiltonig:. The cutoff is only

application of force. However, throughout the paper, we will
derive and plot the extensid#las a function of. A reference
Hamiltonian

3 [Nast(s) — pt [ds 19)

P = 2a%)?

(4)

is chosen, and the parameteis determined self-consistently.

imposed in theories that have a self-energy divergénéeand
is generally not required if there is no divergence, as is the case
here. However, we will see that this cutoff is essential in order
to reproduce the FECs obtained in simulations. Given a solution
A to the SCE, the linear end-to-end distance is givenziy=
Na2125f/3.

It is not difficult to show that, a§— 0, a solution to eq 7 is
A~ o O (®N)Y10 giving the expected linear regimeZli~

Because we are interested in calculating the FECs, the relevanaNé/5,25(gf). We immediately see that this gives the correct

quantity is the dependence @(f)[§ = Zy — 2= fg'ds Z(s)g
onf, wherell.[d indicates the Boltzmann-weighted average with
respect tgsHo. In Appendix A, we also consider the square of
the transverse fluctuations using the Edwar8s1gh method.
Because it is not possible to compute the exact avelZige
we calculate the difference betwegtid and[Z[j (wherell.[d

is the average with respect fitd;), assuming that\; + Az is
small, with

_3 1\ N, o2
A, = 2—a2(1 - /1—2) Jo dst(s) (5)
To first order inA; + A,, we obtain
2 — ZY = Z(A, + AHU — [ZLHIA, + A, (6)

scaling withN and » for low forces, with[ZO~ [R2{q(3f)/3.
We also note that, if we sét = 0, we exactly recover (in our
notation) the original, tension-free self-consistent equation for

a self-avoiding chainj? — 1 = v6N/7°va%/A2 developed by
Edwards and SingH:

For intermediatd, we can obtain the correct Pincus scaling
for largeN. If we assumeél ~ Ao, we find NAg2p? > 1 wheng
~ affr ~ N~35,~15 defining the transition forcé: into the
strongly stretched Pincus regime. Hoe fr, we can neglect
terms on the ordeN~! and expt-NA2¢?/6) for largeN and set

erf(lgv/N/6) ~ 1. This gives the approximate SCE
22— ”@ —~ er!( Ng)] +OINY)  (11)
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With 6 ~ /N, we see that we can neglect the error function in Z = Naaszﬁg/B

this regime as well ifaBfy ~ 1o 3¥2MVIN-920 < 1, If N is

sufficiently large to satisfy this requirement, the SCE becomes Z°0- 23 = Ne‘a, 73

2 — 1 ~ wenli%p + O(WNY4. We thus find the ap-

proximate solution in the Pincus regimex Ap O (v/¢)Y6. For XC= Nalo, %3 (17)

largeN and intermediate forces, we findJJ NV 23, as is

expected? Note that neglecting terms of ordeN-4 may be Equating the averages in eq 17 with those in eqs- 113

valid only for extremely largeN (on the order ofN ~ 1(P). explicitly gives the desired IGH in terms &fandf. The full

Thus, the onset of the nonlinear scaling regime depends on bothexpression for they's andg are quite lengthy for generdl

v andN, as was anticipated by Pincus. andf, and we omit them here. Note that, with an insertion of
For sufficiently largep, we can neglect terms of order? o(x — 1) into all integrals in eqs 1315 or, equivalently, in the

in eq 10 to find an extended or rodlike solutiarre Ag = 1. limit as k — o, we recover the freely jointed chain (FJC)

This root givesiZO~ Na?Bf/3, identical to the noninteracting  averages. In the FJC limit, the expressions for dfis andg
average for an extensible chain. This is not surprising; as the are quite simple, and we find
tension becomes large, the excluded volume interaction is not
relevant. We also note that, in this regime, the chain will become oZ= i( coth@p) — 1)
. . 1 2 @ @
greatly overextended. As was shown by Pincus, the extension
beyond the nonlinear regime is nonuniversal and depends on

the precise model used for the homopolyriter. oy = %(1 — ¢* csch(e))
Inextensible PolymemBecause the extensible polymer can @
overstretch for large forces, which may not occur for real o2
polymers that are linked by covalent bonds with high spring afg=¢ 71 (18)
constants, we develop a theory for an approximately inextensible a32

model. We were also motivated to consider the inextensible

model because the Monte Carlo simulationsNor 1600 (see These spring constants;(k — , f), were derived by Hatfield

Appendix B) were performed for a model in which the distance and Quake using a different meth#.

between successive beads is preciselyWe begin with the We note that this approximate FJC Hamiltonian gives the

discrete, noninteracting, springlike Hamiltonian simple Gaussian behavior for— 0, whereas in the limit of

— o0, We can easily show that the distributions give the expected

form of P(X) = 6(X), P(Y) = o(Y), andP(Z) = 6(Z — Na),

with X = xy — %o and similarly forY. We therefore expect the

IGH to be an excellent approximation for an inextensible chain

With Arp = rni1 — rn andAz, = Zy1 — z.. The average end-  in the limits of small and largé with possible deviations from

to-end distance and fluctuations in tkeand z directions are  the correct distribution for intermediateBecause of the more

easily computed using this Hamiltonian. Definidg= xy — complicated form of the Hamiltonian in eq 16, exact analytic

%o, We find work is difficult in the inextensible case. We can, however,

generate a self-consistent equation using eq 7 to determine the

zO 1 P 102 1 FEC of a self-avoiding inextensible chain in a manner similar

Na d e coshx) — P (13) to the extensible case. Using the reference Hamiltonian

xz(s) + f(s) zz(s))

k
H{r}] =2—22(|Arn| —a)’ —pfy Az, (12)
a n n

Z°0— 1z
2_ — AZ‘[A
Na

2
%ﬂ)mdx )gefk(x—l)Z/zsinh@X) _ (%5 _ é(%) (14) and defining

[XZD 1([23 (15) ACH = ( ) fo

where 1= [Zdx xe ¢~ 172 sinh(px), and we have use@20= we can, to first order inA{°" + A, develop the self-

NZ?0+ N(N — 1)Z.2 in eq 14. We approximate the ~consistent equationZ(A{®" + A0 = ZIA{®" + Afj
Hamiltonian in eq 12 with a continuous chain using an Similar to eq 7. The form of the inextensible SCE is similar to

B ds 19 (19)

29 + VZ(S) 22(S)

1 0‘3

) (20)

inextensible Gaussian Hamiltonian (IGE° that of eq 10, with
«/_ — U — NA2052y2
H (9] = f < () + YA(9) + 222(5) _ 2-1=_Y j; NCag/ U6 (o)
a,’ (k) as (k) Poy’ay

N
Bake) [, ds 4s) (16) with y = afg the dimensionless effective tension. It is possible,
albeit complicated, to show that the solution to eq 21, With
where a; and o3 are the effective spring constants in the > 1, will be divided into approximately the same scaling regions

longitudinal and transverse directions, respectively, @rgdan as we found in the extensible case. The solutions to the
effective tension. The spring constaris and as, and the inextensible SCE, determined using eq 21, are similar to the
effective tensiorg, are functions ok and ¢. Using the IGH, extensible roots from eq 10, with significant differences in the

we find two models occurring only forp = 1. Again, the expected
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Pincus scaling ofZO~ f 23 emerges only for very largal. 2.57
Thus, for both the extensible chain and the IGH with excluded B ) '
volume interactions, the linear behavior and the Pincus regime [ * gl_naulatlon

are obtained. The behavior of the FEC in the limit of very large 2
force is clearly model dependent, as predicted by Pik€liae -
theoretical predictions for the IGH with excluded volume
interactions are validated by explicit comparison to Monte Carlo % 1.5¢ B
simulations (see below). N [T TTTTTTT
Simulations. Extensible Polymerln order to determine v '
whether the theory accurately predicts the effect of excluded
volume on a self-avoiding polymer under tension, we have
performed Langevin simulations withl = 100 at various
stretching forces. To calculate the equilibrium FEC of a self-

it
0.4

02fF
1) P TP I P B |

0.5}

e A : 2 15 -1 -05 0 05][1
avoiding polymer, we performed low friction Langevin dynam- log,,(aBf)
ics simulations using the Hamiltonian P R TP T SR SR R
0 1 2 3 5 6 7
3 N—1 an:(p
pH=— (|Ari|2 - az) + Figure 1. [ZOas a function ofp for varying ¢. The dots are the
2315 simulation results wittN = 100. The linear regime corresponds to the

N-2 N a 12 dimensionless excluded volume parametet 58.6. The best visual
€ - Bf(zy — 2) (22) fit (solid line) is obtained withd = 1.61/N. Also shown are the fits
Z! .:ZZ Ir.—r| with 6 = 0 (dotted line). The inset compares the theoretical predictions
== P (solid line) and the simulations results (dots) for the effective scaling
exponenty.

with a =1, ¢ = 100, andN = 100. We sekgT = 1/ =1 in

the simulations. The first term in eq 22 describes the chain Such fits implicitly assume that there exists a well-defined
connectivity in the extensible form that, in the continuum limit, scaling regime, wher&O~ Y with y constant. In order to
becomes SIQZdes 2(s). We model the excluded volume determine the various scaling regimes of the FEC without
interactions between the monomers using& repulsion term imposing such an assumption, we will define the force-
(the second term in eq 22). Because of the largalue, the dependent effective scaling expongrguch that

summation does not include neighboring monomeen@i +

1) to avoid excessive repulsive forces. The last term in eq 22 __dlog(ZD)

denotes the potential due to tension acting on the ends of the - Tg(qo) (24)
polymer. Thus, this model can be viewed as the discrete

representation of the Hamiltonian in eq 2. In Figure 1, we show the best fit of the theory compared to the

The Langevin equations for each monomer are integrated in simulations for the polymer wittiN = 100 in a good solvent
the low friction limit, which has been shown to accelerate the (v, > 0). With the choice ofv ~ 58.6 andd = 1.6/N, the

sampling rate of the conformational space of the poly#&he theoretical predictions agree well with the simulation data. We
equations of motion are note that this givesy ~ 1788, significantly larger than the
hard-core second virial coefficient of = 47a33. It is known
mr, = —¢t, — oH + fi (23) from the Edward_erSingh c_alcula_tip?‘f‘ (with f = 0) that if higher _
or; order terms are included in deriving the self-consistent equation

(eq 7), they merely renormalizg without altering the scaling
wheremis the mass of the monoméijs the friction coefficient behavior. A similar behavior is expected when 0. As a result
of a monomer;—-oH/dr; is the conformation force arising from  of the renormalization of, we find that the extracted value of
eq 22, and’j is a random force that satisfies the fluctuaton  » from simulations is larger than the naive value calculated from
dissipation theorentI'(t)-I(t") C= 6CksT/h 6(t — t')d;;, where the second virial coefficient.
the integration timeh) is discretized. The natural time i = We see in Figure 1 that the theoretical predictions depend
(me&ep)V2. We chose: = 0.05r. "t andh = 0.002r.. To begin very strongly on the choice of cutoff, with tkle= 0 theoretical
the simulations, we generate 200 initial random polymer FEC showing very poor agreement with the simulated data for
conformations and thermally equilibrate those structures for 5 aff = 0.1. This is somewhat surprising, as a cutoff in the
x 10° h with f = 0. Subsequently, a constant force is applied continuum limit approximation generally is used only to avoid
in the z-direction to one end of each polymer, with the other self-energy divergences in the thedfyl” which are not present
end held in a fixed position. The force exerted is increased ashere. We also note that neither the theory nor the simulation
fj=10"3t0dkgT/awith j = 1, 2, ..., 39. The integgiis increased predicts a Pincus-like scaling gf~ 2/3 because the notion of
every 5x 10 h. For each force step, we neglect the firsk 2 the unperturbed tensile blob is not applicableNo+= 100 (see
10° steps to ensure that the chain has equilibratéchat collect below).

the statistics of polymer conformations every* 16tegration In order to asses the conditions under which the Pincus regime

time steps for the remaining time steps. can be obtained, we plot the theoretical effective scaling
In order to compare our theory to simulations, we need two exponenty(¢) for increasingN in Figure 2a. While there is no

fitting parametersyy and o (see eq 10). We determing by clear Pincus regime foN = 100, the expected 2/3 scaling

fitting the simulated FEC in the linear, low force regime and emerges for largeMN. Variation in v (i.e., changing the
obtaino by a global fit of the theoretical predictions of the FEC interaction strength of the excluded volume) only effects the
to the results of the simulation. The scaling laws for the depth of the trough (see Figure 2a) in the final transition to the
extension as a function of force cannot be accurately determinedoverstretchedy = 1 regime (data not shown), so adjusting
by simply fitting a linea#'~23 or log—log?* plot of the FEC. cannot yield the expected Pincus scaling for smalleFigure



Macromolecules, Vol. 40, No. 20, 2007

(a) ' I ". T T

]

0.8

0.6

T —

04

.,.
log, (<Z>/L)
-

i

0.2

O

(b) 0.02— 77— Coe

apAf

0.01-

P ——

I N -
455.56

ol 1
65 7 75 8
log,,N i

0.005

|
6.5
log, ,N
Figure 2. (a) Effective scaling exponegtfor N = 10? (—), N = 10*
(), N=1CF (- -),N=1CF (—+—), andN = 10 (— - - =), all
with » = 58.6 andd = 1.61/N obtained theoretically. The inset shows
the log-log plot of the extension vs force for the same parameters. (b)
Width of the Pincus regimérf as a function oiN for ¢ = 0.05. The
inset shows the initial Pincus transition forgeas a function ofN.
Also shown is the predicted~3 scaling.

2 also shows that a very large~ 1P is required in order to
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Figure 3. (a) Force-extension curve for an inextensible chain with

= 1600. Shown are the simulation data (dots), along with the best fit
for the IGH (solid line) and extensible Hamiltonian (dashed line), with

v = 15.7 andd = 1.61/N. (b) Effective scaling exponent for the
inextensible FJC. The solid line shows the theoretical exponents for
the IGH, and the dashed lines correspond to the extensible Hamiltonian.
Also shown is the noninteracting FIC exponent (dotted line).

hard-core excluded volume model, with a configuration rejected
if a triplet of monomers lie within a circle of radius (see
Appendix B for details). Our variational Hamiltonian in eq 19

see the 2/3 scaling over a large force range. For small valuesis generated using the spring constant 10%in eq 12. In Figure

of N, the inequalityN > (£p/a)” > 1 required to observe the
Pincus scaling is not satisfied. The widif over which the

3, we compare the FEC and effective scaling exponent (eq 24)
for the simulations and the inextensible theory, in eq 21. The

strong stretching is observed can be computed using the self-FEC obtained using Monte Carlo simulations is in very good

consistent theory. If we define the Pincus regime suchdyat
dp < € (with y defined in eq 24) for some toleranegwe can

agreement with the theoretical predictions (Figure 3a). We find
v~ 15.7 gives a good fit for the simulation data for low forces,

numerically determine the dependence of the width of the Pincus and againy = 1.61/N gives a good global fit to the simulated

regime with respect tdl. The width of the Pincus regimef,
is shown in Figure 2b along with a fikf ~ 0.018 — 160(N~1
for e = 0.05. In the inset, we show the transition force into the
Pincus regimefr, along with the expected scaling Nf 35, We
can extrapolate that the minimum number of monomiskg,,
for a self-avoiding polymer to show that the Pincus regime
emerges only wheNmin ~ 9 x 10* for ¢ = 0.05. Larger values
of N are required for the Pincus scaling to continue over an
observable interval of. This finite size effect is remarkable
because wheri = 0 the Flory exponenty{ ~ 0.6) can be
accurately obtained with < 10025 BecauseNm, is too large
for accurate simulations, it is not possible to explicitly demon-
strate the nonlinear scalimg silico. In principle, single molecule
AFM or optical tweezer experiments can be used to confirm
the predictions.

Inextensible Polymetn order to test our inextensible theory,
we determine the best fit to a Monte Carlo simulation of a thick
chairt*22with N = 1600. The thick chain is an inextensible,

data.

In Figure 3b, we see that there is a deflectioryir 2/3 at
@ ~ 0.1, corresponding to a Pincus-like regime observed in
the simulations, and predicted by the theory based on eq 21.
Such a deflection near = 2/3 is predicted by the theory for
both the extensible and inextensible Hamiltonians, and a similar
deflection can be more clearly seen in Figure 2aNor 10%
This deflection shows that the Pincus regime is beginning to
emerge, but the width of the reginz& is vanishingly small.
We also see the expected return to the noninteracting FJC
behavior for largd. The fit is, however, quite poor fajsf ~
1-4, where the effective scaling exponent differs greatly from
the simulation data. Figure 3a shows that the poor fit for
intermediatef originates with a slight overestimation i#Cvs
f nearapf ~ 1, followed by an underestimation iZnearagf
~ 3. This over- and underestimation produces a FEC that is
not monotonically increasing witl, which is a completely
nonphysical result. The small differences between the theoretical
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8

Figure 4. (a) Contributions to the effective scaling expongrshown arey (dots) as well as the alignment exponengsolid line) and overstretching
exponentu (dashed line). (b) The ensemble of structuresit= 0 (red), 0.5 (green), and 8.0 (blue) are given to demonstrate the three-step
mechanism of the extensible chain stretching, i.e., (i) alignment, (ii) disruption of tensile blob, and (iii) overstretching. (c) The densipy@rsnon

in a blob as a function of force. The inset shows a-tmy plot of the monomer density inside the blob, showing three distinct scaling regimes.
Scaling relationom vs f is obtained by fitting the data above red line in the inset.

and simulated FECs are greatly exaggerated by the effectivealignment along thef axis. For large forces we expect

scaling exponent in the intermediate force range. overextension to dominate, when the chain is fully aligned and
The reason for the discrepancy between theory and simulationthe monomers on a length scdje are stretched. In order to

for intermediate forces is that, in the approximate representationsee these physical mechanisms of the extension in the simula-

for the (nearly) inextensible chain, extensions frofm,| = a tions of finite, extensible polymers witd = 100, we compute
are allowed (see Appendix B). As a result, the chain can stretchthe effective force-induced alignment exponengiven by[Z/
somewhat, with mean monomer spacing exceedirgor this IR|O~ f, and the effective overextension expongngiven

reason, less force is required to extend the chain at intermediateby [IL/NC~ f#. If the polymer is perfectly aligned along the
forces, producing an overestimate of the FEC. The minor z-axis, we expect that the exponent— 0. The variations of
disagreement between the theory and simulations in the FEC isthe effective exponenis andu for N = 100 asf changes are
amplified when the effective exponent= 9 log((Z0)/a log(g) shown in Figure 4a. We see that the polymer aligns with the
is computed (Figure 3b). We see, however, that both the z-axis at relatively small forces, with full alignmenb (— 0)
extensible and inextensible polymer models in a good solvent occurring forasf ~ 0.1. Overextension does not begin until
accurately predict the Pincus-like regime observedaféfr ~ apf ~ 3 (in the nonuniversal regime, see Figure 4a), giving a
1072—-10"L. At high forces, the response to the force depends wide range of forces in which stretching of the monomers inside
on the precise model used to account for chain connectivity. of the blobs contributes to the behavior @] Representative
As a result, the predictions for the extensible and inextensible snapshots of the chain configuration in the three regimes are
polymer models are vastly different whegf > 1. shown in Figure 4b.

Reexamination of the Blob Concept for FiniteN. In order The absence of a clear signature of the Pincus regime, even
to better understand the unexpected scaling behavior of thefor N = 1600, is intimately related to the breakdown of the
FEC's for finite N, a more detailed study of the physical inequality N > (&¢/a)Y” > 1. For large enougiN, when the
processes of extension is required. There are three mechanismeonlinear regime in the FEC is observed (Figure 2a), the size
by which the average extension of an extensible chain can of the blob&p ~ kgT/f is expected to scale & ~ aN,’, where
increase as a function of force. The first is orientation of the N, (presumed to be much greater than unity) is the number of
polymer along the force axis. We expect that, for smathe monomers inside of the blob. The monomer dengity,inside
force will cause alignment with treaxis, with little perturbation the blob will scale as
of the chain conformation. In the second mechanism, the
extension of the polymer is determined by an interplay between Py~ NJES ~ E 73 ~ (kg T)> Y (25)

&p (a length scale below whichis not relevant) andl (which

effectively determines the number of aligned blobs along the In good solventsy = 3/5, and hencen, is given bypp, ~ 43
force direction). We expect this mechanism of extension will = f™. If the effective value form with finite N exceedam =
occur for intermediate forces and, for sufficiently lafgecause 4/3, as could be the case when the force locally stretches the
the emergence of the Pincus regime. As these blobs arechain segments insid&, we will find [ZC~ f X with x = 2/3 in
stretched [ZOwill increase without significantly affecting the  the intermediate force regime.
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In order to provide insights into the effective blob response where we have defined = (3/27)3ws/al. The inextensible self-
to f for the self-avoiding extensible polymer of the finite size consistent equation is similar and has a similar root structure,
(N = 100), we have calculated the dependence of the monomerand we will therefore omit such a calculation here. Again,
density inside the blob oh To obtain the scaling behavior we have included a cutoff in the integrals, as was done for the
between monomer density and the force from the simulations, two-body case. However, the three-body integral in eq 25 is

we perform the following steps: (1) Make a sphere of radlius
= &pl2, with &p (= kgT/f), centered on théh monomer and
count the number of monomerhl4) within the sphere whose
volume isb®. The density of monomers within the sphere center
at theith monomer isom(i) ~ Ny/b®. (2) Move to the (+ 1)th
monomer and compute the density again. (3) WhenN, the
average density is computed usilgg,(f)O= 1/NziN:1pm(i). (4)

clearly divergent ford = 0, unlike the two-body term. This
divergence must be removed for the self-consistent equation to
converge in the limit oN — o, by renormalizingv. Forf = 0,

we can evaluate the three-body integral exactly and find that,
with & ~ A/N and asN — oo, it diverges as- 16/3v/5. TheN

— oo divergence is therefore removed if we renormalize=
WW/N. It is not difficult to show that the self-consistent

Repeat this procedure for the ensemble of structures obtainedequation has a solutioh~ Ag = (4W/|v])Y3N-6 for f = 0 and

at each force.

Although this method of computing the monomer density
from the polymer structures is very crude, the scaling exponent
betweenpn, andf should not be affected by the details of the
calculation. The results are shown in Figure 4c. We find that
om ~ f1€in the intermediate force regime (data above the red
baseline in the inset of Figure 4c). From eq 25, a density scaling
of f 16 implies &p ~ Np?71 = N6 which indicates that there
is no force range in which ideal blobs can be observed for small
N. In other words, the separation in length sdsle> N, > 1
is not satisfied. The observed scaling exponeniNiis greater
than that for a simple self-avoiding walk, which suggests that

the monomers inside of the blob do not behave as unperturbedW

SAW’s. Thus, the fundamental premise used in the blob
argument used to derive the Pincus regime breaks down for
small N. The tensile force is felt by the monomers within the
blobs, which swell due to the stretching of monomers inside
&p. The density of monomers inside the blob scales differently
than the expected for large values WNf and provides the
microscopic reason why, in the finite-sized self-avoiding chain,
ZO~ f*with x < 2/3. AsN increases, the intermediate force
regime can be large enough so tpat~ f 43, which is needed

to see the Pincus scaling@~ f 23,

Ill. Homopolymer in a Poor Solvent

Theory. In a poor solvent, the second virial coefficiemp)
becomes negative. The strength of the attractive interactions
between the monomers exceed that between the monomers an
the solvent. As a result, the polymer adopts collapsed, globular
conformations at temperatures below the Fl@ryemperature.

In poor solvents, the Edwards model is modified to include an

effective three-body interaction, to ensure that the averages of

physical observables converge. The extensible Hamiltonian in
a poor solvent igHp = SHo + A3z, whereHg is defined in eq
2 and

Ay=

WgsﬁNdS LNdS j;NdS' O[r(s) — r(s)] o[r(s) —r(s")] (26)

The self-consistent equation for the extension in this case
becomesZ(A; + Ay + Az)= [Z[A; + A, + Az[] similar to
eq 7. We have already determined the and A, terms and
need only comput&ZA;[— [ZIA3= ad/dg[AsLl The SCE for
an extensible polymer in a poor solvent can be written as

P2—-1= Y gy LY gt W /. Tdu, [y, x
JE Ju 26J0 1 Jo 2
(1= u = u)(u +u) N2 2(uy )6
u 3/2 u 3/2 e (27)
1 2

large N, giving the expected scalingR2(] ~ N?3 for a
homopolymer in a poor solvent. However, the final term of eq
27 cannot be evaluated exactly for nonzerso we must resort
to numerical work in order to determine the roots for larger
forces.

We find that eq 27 has three unique roots beyond a critical
forcef., which correspond to collapsed), extendedAg), and
saddle point4y) structures. Numerically, we find 8 Ac < 4,
andig ~ 1 for f > f.. Our interpretation of. as corresponding
to a collapsed state is only qualitative because an extensible
homopolymer (used as the reference Hamiltonian in the calcula-
tions) in a poor solvent does not have a unique “collapsed” state.
ith the interpretation that. and g are the roots signifying
the two local minima of the free energy for the collapsed and
extended states, we can interpret the saddle point soligias
a local maximum in the free energy, i.e., the barrier (or saddle
point) between the two states. Again, this interpretation is
qualitative only because there is no well-defined “barrier”
between the collapsed and extended states. In Figure 5a we show
the extensioiZIL = @A?%3 for the three solutions to the self-
consistent eq 25 for = — 5 andw = 1 (arbitrarily chosen)
and witho = 1.61/N. We seeaff. ~ 3.5 is the critical force at
which the extended and saddle point solutions emerge. The
critical force f. depends on the particular values wfand w,
and we expect it will be an increasing function|offw. In this
triple-root regime, the polymer will be in bistable equilibrium
&etween the collapsed ensemble and extended state, suggesting

e development of a pearl-necklace structure for intermediate
f. The collapsed and saddle point solutions coalesce for a finite
f = fg (Figure 5a inset). Fof > fg, Ac and A, vanish, leaving
the extended roote the only solution to eq 27. This shows, as
expected, that the intermonomer interactions become irrelevant
for sufficiently high force, andZO~ Na(aff)/3 asf — oo.
Schematic pictures of the free energy as a function of the
extensionZO(Figure 5b-e) for varying force illustrate our
qualitative interpretation of the solutions to the self-consistent
equation (27).

A similar multiroot structure has been previously predicted
for a polymer in a poor solvent with electrostatic interac-
tions17:26.27 These references note the emergence of multiple
roots beyond a critical value of the backbone charge density
(in this respect, equivalent to the tension) and qualitatively
identify the meaning of the multiple roots as we have. However,
because the Edward&ingh method cannot predict the barrier
height or the depth of the minima, we cannot quantitatively
predict [Z[0for a polymer in a poor solvent, nor do we expect
the variational method to accurately predict the order of the
transition. The qualitative picture, namely the tension-induced
globule to rod transition which should occur wher f, is
confirmed using explicit simulations of force-induced stretching
of a homopolymer in a poor solvent. The simulations (see below)
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Figure 5. (a) ExtensionZIL = (aBf)A%3 for the three roots of the self-consistent equation in a poor solvent for-5 andw = 1, with 6 =
1.61/N: Ac (solid line), A, (dashed line), ande (dotted line). The three values farare shown in the inset. (b) Fér< f, the polymer is globular.
(c) In the force rangé < f < fg, the chain conformations are a combination of globular and extended statesf ()fAtthe globular configuration
is marginally stable. (e) Fdr> fg, the chain is in the fully extended state.

also provide a microscopic picture of the structural transitions ing vin(r) into repulsive {re(r)) and attractive fa(r)) parts of
that occur asws, in eq 27, increases. the potential, one can write, ~ dr {1 — e Pued)(1 —

Simulations. The simulation procedure used to study the Jvad(r))} = vo(l — Te/T), Whereyy = fdr (1 — e Fued).28
stretching of a homopolymer in a poor solvent is identical to Therefore
the one described for the good solvent case, except for the

Hamiltonian used. The Hamiltonian in a poor solvent is v,
TerxT(1—— (29)
N-1 Vg
pH=—3% (Ar*—a)+ _ _
232 We find v, = —1.9° (Te ~ 1.7T, weakly hydrophobic

N-2 N

2,2

|

a

Iri =l

12 a 6
)—ﬂ( H—m@—m@&
Iri — 1yl

condition) for e = 0.5 and »; —15.22% (Te ~ 6.4T,
hydrophobic condition) foe = 1.5. These estimates fap as
a function ofe are approximate. For our purposes, approximate
estimates are sufficient to illustrate the response of weakly

wheree = 0.5 and 1.5 are used for different solvent conditions hydrophobic and strongly hydrophobic chains to force.

and where the other parameters are the same as in the good In Figure 6, we show the average linear extension for weakly
solvent case. The nature of the polymer is characterized by thehydrophobic (a) and strongly hydrophobic (b) polymers as a
second virial coefficient, = fdr {1 — eV} whereVu(r)

is the second term of eq 28. Wherr 0.3, v, approaches zero
and corresponds to the theta conditidn< Te). By decompos-

function of force. The weakly hydrophobic polymer does show
a transition between two linear scaling regimes, with the low
force behavior ofZ[r [R2[q(f)/3 and the high force behavior
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(a)

r

<Z=/L

Figure 6. (a) Extension as a function of force for a weakly hydrophobic polyraén €q 28 is 0.5). (b) Same as (a), except the chain is strongly
hydrophobic ¢ = 1.5). The insets show the effective scaling exporye(@q 24). The transition to the extended state in (a) appears continuous. For
the strongly hydrophobic polymer, the globuterod like transition is sharp. The transition force depends on the energetic details of the globule.
The heterogeneity of the transition is manifested as the broad variations of transition force. The ensemble of structures found at the globule-to-ro
transition force {; = 1.8kgT/a) are shown in (c).

10_4 Lo \ L . m \ | 10'5 3|| TRETT 2. |..li‘|| IIIIED .I.‘ 104 4' -1 _3""
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Figure 7. (a) I(q) for a homopolymer in good solvent under varying tension/ (&) for weakly hydrophobic homopolymer under tension, and (c)
I(g) for strongly hydrophobic homopolymer under tension. The arrows in (a), (b), and (c) indicate incffeasings. The tension-induced structural
changes of a homopolymer are illustrated in three solvent conditions (good, near theta, and poor solvent conditions).

returning to the noninteracting(= Na23f/3. The transition is length scales. For example, for the various structures we expect
very smooth and does not show the expected first-order I(g) ~ g%, with x = 2 (Gaussian chaink = 1 (rod),x = 4
transition due to the weak nature of the interactions, as shown(globules), andx = 5/3 (polymer in a good solventy. We

in the inset. The strongly hydrophobic chain does show a first- calculated the scattering intensity by integrating the distance
order transition aroundff. ~ 1.8, but with broad dispersion.  distribution function obtained from the ensemble of structures
Variation in the critical unbinding force is substantial from

molecule to molecule due to the microscopic heterogeneity of 3 igr ® 9 sinqgr
the globular structures. The observed plateau in Figure 6b is I(af) = fd rP(r, et = ML dr r°P(r.f) qrq
most likely due to full alignment of the globule along thexis,

as was the case for the self-avoiding polymer (Figure 4a), and with q = |q|. In our simulations performed under varying tension
seen in the theoretical predictions (Figure 5). There is a large yalues, we obtained:2P(r,f) directly from the ensemble of
range of forces over which the FEC does not resemble either stryctures by collecting the histograms between the interval of
the globular or fully extended states, showing the bistable (v r + dr) with dr = 0.2a.

equilibrium between the two. An inspection of the scattering intensitfg) of a homopoly-
mer in different solvent conditions, shown in Figure 7, along
with snapshots of representative structures, succinctly sum-
The analysis using scattering experiments is useful for marizes the shapes adopted by the polymer as a result of the
investigating the overall polymer configurations because the tension-induced structural transitions. (i) In good solvents
scattering intensity as a function of momentum trandfg) & (Figure 7a), the entire chain df = 100 is characterized by the
[1/N2y;<jexplqg-rij)D) provides structural information on all  tensile blob in the absence of force (or for small force), with
length scales. In contrast, the FEC only provides information 1(q) ~ g~ for g ~ 0.1—1. As f increases, the tensile blobs
about the extension of the chain. By comparing with the well- continuously change to the rod state, which is indicatet{d)y
known scaling relations of(qg) with respect toq for various ~ gL (ii) For the weakly hydrophobic condition (Figure 7b),
shapes, one can obtain the structures of the polymer over alli.e., slightly above the theta temperature, the chain displays a

(30)

IV. The Scattering Function under Force
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hierarchy of structures on distinct length scales. Whisrsmall, mopolymer N ~ 100) is on the order of about 30 pN, which
both signatures of Gaussian coid) ~ g2 and globule are easily accessible in current experiments.

structure [(q) ~ g4) are found on small length scalgs?! <

1, while the chain is characterized by the polymer in a good  Acknowledgment. This work was supported in part by a
solvent forq~! 2 1. Asf increases, the globule-to-rod transition ~grant from the National Science Foundation through Grant CHE
of the self-avoiding chain takes place continuously. (i) For 05-14056.

the strongly hydrophobic condition (Figure 7c), the whole chain ) . .

is collapsed to a compact globuld) ~ q~4). The globular ~ Appendix A. Self-Consistent Equation for4

structure is maintained so that &itj)’'s are practically identical In this appendix, we provide the details for the calculations
forg ! 2 1 as long a$ < f.. Whenf becomes greater thdg of [Z[{ and[d[r(s) — r(s)]d that appear in eqs 8 and 9.

a sharp transition occurs, reflecting the globulg)~ q=4) to

rod (I(g9) ~ %) transition. The first-order nature of force- f@r (S)Ze—ﬁH1
induced stretching has been previously described using scalingfzq A —_0 Iog[f@r (s)e_ﬁHl]
arguments?° f (e a(pf)

V. Conclusions 3 ' N
log[ f Ir (s)e ¥ }'Z)f; AN

We have developed a general theory for describing the - A(Bf)
response of homopolymers to an external force for arbitrary pon (N N e
values of N, the number of monomers. By using both an f@z(s)e%/(za’”ﬁ ds(2e)~eAPHI3FHNA6)S fﬁ

extensible and inextensible model for the polymer in a good
solvent, we show that the theoretical results are in accord with 1. 2.0

the predictions of the Pincus scaling laws. The mean chain =§Na/1 St (31)
extension depends linearly on the force for snfiahd scales

as [ZO~ 283 for intermediatef and sufficiently largeN.

Simulations of an extensible chain with= 100 and the thick Br(s —r&)4= ffffdr(N) dr(s) dr(s) dr(0) x
chain model withN = 1600 were performed to validate the _ _ _ _
theory. The theoretical predictions for the foreextension Sr(N) = rs)IN s)a[rr(?)s)|gr£sgggg))_ r(0)0)
curves are in excellent agreement with the simulation results.
Surprisingly, the expected Pincus scaling is not observed in
simulations, even foN = 1600. The theory predicts that the
width Af for observing the Pincus regime fot ~ O(10%) is

=G(0|s — 9) (32)

- where the propagatdg(...) is decomposed into transverse and
vanishingly small. Only wheiN exceeds~ 10° can the strong longitudinal components3(RIN) = Go(RIN)Gy(ZIN:f), each

stretchlng limit (20~ f . ) be una}mb]gu'ously observed. The ¢\ uhich can be exactly obtained for the reference Hamiltonian.
failure to observe the Pincus scaling is linked to the breakdown We find

of the notion that the monomers inside the well-defined tensile

blobs are unperturbed by the force. Fr~ O(10%), the N won (N
monomers inside each blob feel the effect of force, which f@rm(s)é(ﬁ) dst (s) — RD)ef3/(2a“j; w9
essentially violates the required inequally> (Ep/@)l” > 1. Gy(RIN) = -

Applying tension to a polymer in a poor solvent produces a Son D(s)e*3’(2""212)fO dst(s)

much richer set of structures because of the presence of an

additional attractive monomemonomer energy scale. In the 2, N N
absence of force, a polymer in a poor solvent forms a globule f@r o(9) fd—kze'k‘(j; dym(s)_RD)e_al(zazlz)L a9
atT < Te. For this case, the theoretical analysis predicts that — (27)

the globule-to-stretched (i.e., rodlike conformation) transition G _3/(2272) f”dgz(s)

should occur abruptly via a first-order transition wHexceeds f Irsje 0

a critical force. While the simulation results are in accord with

the theoretical predictions, they show several structural trans- .
formations, depending on the quality of the solvent. The - f ?)
hierarchy of structures is reflected in the force-dependent struc-

ture factor. For weakly hydrophobic polymers §& Tg) for 2

2
d’k o(~NEI216)(k~3RoINI~(3RAI2NE?)
(27)?

small forces, the scattering functid(g) shows signatures of
Gaussian and globular structures at small length scales (large
g), whereas over large length scales the polymer behaves as a
self-avoiding chain. At large forces, the transition to a rodlike Wwhere the Fourier representation of théunction used and then
conformation occurs. These structural transitions occur continu-the path integral is evaluated. The propaga@i(Ro|N) is
ously asf increases for a weakly hydrophobic chain. Strongly obtained after performing the integral in Fourier space. The
hydrophobic chainsT( < Te) adopt globular structures for small  longitudinal component is also similarly calculated for the
forces. The conformation remains globular as long asf; ~ Hamiltonian with linear force term
keTo/Rg. The globular nature of the conformation is reflected
in thel(q) ~ g 4 scaling. Iff > f., there is an abrupt transition ~ Gy(ZIN; f) =
to the rodlike state, which is reflected in thg) ~ g~ scaling. ) N oz [N N

The predictions made here can be, in principle, validated with f < Z(S)a(ﬁ ds 7s) — Z)e e )/; dsg(SHﬂf‘/‘; =
single molecule AFM or optical tweezers experiments. Our N N
simulations show that the forces required to stretch the ho- f @Z(S)efs/(za%‘/; UHH fﬁ ds49)

ex
27NaA? 2NaA?
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3 _Naz/lzﬁf)z
e 4] e

( 3 )1/2
27aNaA? eXp[

Thus, we find
©B[r(s) —r(s)I4=G(0ls — ) =

3 32 S — 5a2128%2
(2n|s’—s|a2,12) exy{—' S|2 : ] (35)

In obtaining eq 7, we used the extensioas the observable
to determine the optimal value #f Alternatively, one can also
obtain the SCE fok using the transverse fluctuation of polymer
Ro? = X2 4+ Y2 whereX andY are the projections of the end-
to-end distance vectdR, i.e., R(A1 + Ap)0— RAOA; +
A,= 0. Computations involvingR? are significantly simpler
than those involving the end-to-end distance ve&®érbecause
the propagators in the andy directions are decoupled from
the force-dependent propagator in #direction. Using the same
methods as before with our original variational Hamiltonian in
eq 4, we find

2Na2 (A2 — 1)

R A0~ RPN, = 3

(36)

R A, R IA,C=
a’A%v,

3
Using eqs 36 and 37, we obtain the SCE for

[Vds [T'ds G(Os — S)(S — 9) (37)

—u - 22,
eNu&rplB

Ju

which is identical to the equation obtained using the linear end-
to-end distance) as the generating observable in eq 10. Thus,
the computation of the FEC is not dependent on whether

Rc? is used in determining the self-consistent equation.

Appendix B. The Thick Chain Model

In order to verify the theoretical predictions for the polymer
described by the (nearly) inextensible Gaussian Hamiltonian
(IGH) with excluded volume interactions, we have simulated
the FEC using the thick chain (TC) model for a self-avoiding
polymer. In the TC model, the polymer is viewed as a chain
with a finite uniform thicknessD and is represented as a
succession of beads with position vectogs..., rn. All of the
bond vectorsAr, = rpy1 — rp (n = 0, ..., N) have the same
modulusa. Therefore, unlike the IGH wherdAr |0~ ain eq
16, the bond length restrictigihr,| = a is strictly enforced in
the TC model. The interaction potential of the TC under tension
is given by

2—-1

_Z}\/Nll
—isfdu

; (38)

I = Z V(R —f(ry— o) (39)
1],

where the first term enforces the self-avoidance and the secon
term represents the external force. In particular

0, Rx>D

00, Rijk <D (40)

V(Ry) = {
where Ry is radius of the circle going through the triplet of
beadsi( j, k). Physically, the first term in the Hamiltonian (eq
39) ensures the self-avoidance of the chain by rejecting both
local self-intersection (the local radius of curvature must be no
smaller tharD) and interpenetration of any two portions of the
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chain at some finite arc length. Intuitively, it allows only
configurations satisfying the thickness constraints, that the radii
of circles going through all the triplets of beadg (k) be greater
thanD.

In order to characterize the stretching response of a thick chain
with D/a = 1 and N = 1600, we performed Monte Carlo
simulations using the following scheme. Starting from an
arbitrary initial chain conformation that satisfies the thickness
constraints, the exploration of the available configuration space
was performed by distorting conformations by means of pivot
and crankshaft moves. The new structures were accepted or
rejected according to the standard Metropolis criterion. (The
infinite strength of the three-body penalties of eq 39 was
enforced by always rejecting configurations violating the
circumradius constraints.) The relative elongation of the chain
was calculated for increasing values of the applied stretching
force. For each run, after equilibration, we measure the auto-
correlation time and sampled a sufficient number of independent
conformations to achieve a relative error of at most3ia the
average chain elongation. For moderate to high forces, this
typically entailed the collection of ¥dndependent structures,
whereas a 10-fold increase of sampling was required for small
forces due to the broad distribution of the end-to-end separation
along the force direction. For small forces, conformational
fluctuations can be even larger than the mean extension, which
makes achieving converged results f@fimore difficult.

Note Added after ASAP Publication. This article was
published ASAP on August 21, 2007. A text change has been
made in the first paragraph of Section Il. The correct version
was published on August 28, 2007.
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