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We investigate the kinetics of loop formation in ideal flexible polymer chains (the Rouse model), and polymers
in good and poor solvents. We show for the Rouse model, using a modification of the theory of Szabo,
Schulten, and Schulten, that the time scale for cyclizatian is 7oN? (wheret, is a microscopic time scale

andN is the number of monomers), provided the coupling between the relaxation dynamics of the end-to-end
vector and the looping dynamics is taken into account. The resulting analytic expression fits the simulation
results accurately whes the capture radius for contact formation, exceledbe average distance between

two connected beads. Simulations also show that véhenb, 7. ~ N%, where 1.5< a, < 2 in the range 7

< N < 200 used in the simulations. By using a diffusion coefficient that is dependent on the lengthescales
and b (with a < b), which captures the two-stage mechanism by which looping occurs wherb, we

obtain an analytic expression faog that fits the simulation results well. The kinetics of contact formation
between the ends of the chain are profoundly effected when interactions between monomers are taken into
account. Remarkably, fad < 100, the values of. decrease by more than 2 orders of magnitude when the
solvent quality changes from good to poor. Fits of the simulation data.flara power law inN (z. ~ N%)

show thata, varies from about 2.4 in a good solvent to about 1.0 in poor solvents. The effective exponent
o, decreases as the strength of the attractive monemenomer interactions increases. Loop formation in
poor solvents, in which the polymer adopts dense, compact globular conformations, occurs by a reptation-
like mechanism of the ends of the chain. The time for contact formation between beads that are interior to the
chain in good solvents changes nonmonotonically as the loop length varies. In contrast, the variation in interior
loop closure time is monotonic in poor solvents. The implications of our results for contact formation in
polypeptide chains, RNA, and single-stranded DNA are briefly outlined.

1. Introduction that build on the pioneering treatments by Wilemski and
Fixmar? (WF) and Szabo, Schulten, and Schutté®SS). The

WF formalism determines the loop closure timeby solving

the diffusion equation in the presence of a sink term. The sink
function accounts for the possibility that contact between the
ends of a polymer chain occurs whenever they are in proximity.
folding 2% The ease of cyclization in DNA, which is a measure The time for forming a loop is related to a suitable time integral

of its intrinsic flexibility,!121is important in gene expression of the S|_nk—smk correlation function. _

and interactions of DNA with proteins and RNA. In addition, ~Inanimportant paper, SSS developed a much simpler theory
the formation of contacts between residues (nucleotides) neart® describe the dependence of the rate of end-to-end contact
the loof may be the key nucleating event in protein (RNA) formation in an ideal chain on the polymer lengihThe SSS
folding. For these reasons, a number of experiments have probed®PProximatiofi describes the kinetics of contact formation
the dependence of the rates of cyclization in proféitk?2and between the ends of the chain as a diffusion process in an
RNA23243s a function of loop length. The experimental reports, effective potential that is derived from the probability distribu-
especially on the rates of loop formation in polypeptides and tion P(Reg of finding the chain ends with the end-to-end

Contact formation (cyclization) between the ends of a long
polymer has been intensely studied both experimendtatynd
theoretically3~° More recently, the kinetics of loop formation
has become increasingly important, largely because of its
relevance to DNA loopint:11as well as protei#—1° and RNA

proteins, have prompted a number of theoretical stdd?e$ distanceRee More recently, such an approach has been adopted
to obtain the rates of folding of proteins from a free-energy
T Part of the “Attila Szabo Festschrift”. surface expressed in terms of an appropriately chosen reaction
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chain relaxation timeg. In the limitzo/zr > 1, one can envision =~ monomers 1 andN being within a capture radiua. In other

the motions of the ends as occurring in the effective free energy words, the space explored by the chain ends must overlap within
F(Reo because the polymer effectively explores the available the contact volume-a®. There are three relevant time scales
volume before the ends meet. By solving the diffusion equation that affect loop closure dynamics, namely ~ b%Do, the

for an ideal chain for which(Reg ~ 3ks TRZ/2R:, With Ree ~ fluctuation time scale of a single monomes, the relaxation
bv/N, where b is the monomer size, subject to absorbing time associated with the fluctuations of the end-to-end distance,

boundary conditions, SSS showed that the mean first passagetndr, the relaxation time of the entire chain. Clearty, < 7.

time for contact formation-zc) is tsss~ ToN¥2 whererg is a ~ 1r. Because loop formation can occur only if the ends can

microscopic time constant (see eq 7). approach each other, processes that occur on timegateist
The simplicity of the SSS result, which reduces contact Pe coupled to looping dynamics. We obtain the scalingof

formation kinetics to merely computir(Red, has resulted in ~ With N, found using the WF approximation, from the SSS

its widespread use to fit experimental data on polypeptide formalism using a diffusion constant evaluated on the time scale

chains!?1322The dependence af on N using the SSS theory  Tee

differs from the WF predictions. In addition, simulations also ~_ 2.1. Fluctuations in Ree The Langevin equation for a

show thatr. deviates from the SSS predictiéfr3! The slower Gaussian chain 1§

dependence ofssson N can be traced to the failure of the

assumption that all internal chain motions occur faster than the ar(st) — OH[r (s0)] +7(s1) 1)

process of interest. The interplay betwemnand tr, which ot or(st) S

determines the validity of the local equilibrium condition, can ) _ _ )

be expressed in terms of well-known exponents that characterizeVhere7(st) is a white noise force withz(s,)li= 0 and -

equilibration and relaxation properties of the polymer chain. (St)7(s.t)U= 6yksTo(t — t)d(s — s); y is the friction

Comparison of the conformational space explored by the chain coefficient, andDo = kgT/y is the microscopic diffusion

ends and the available volume prior to cyclizafallows us coefficient. By writing

to express the validity of the local equilibrium in termstof=

(d + 0)/z, whered is the spatial dimensiong is the des

Cloizeaux correlation hole exponent that accounts for the

behavior ofP(Reed for smallReg that is,P(Red ~ Rge, andzis

N—1
risty=rqo+2 % r.(t) cosfuzs/N)

n=

the dynamical scaling exponeni(~ RZ). Additional discus- the Gaussian HamiltonialHo becomes

sions along these lines are given in Appendix A. The SSS

assumption is only valid provided thét> 1.33 For the Rouse 3 . [r(sH)r 3 5 5o

chain in the freely draining limit(= 1/2,g=0,d=3,z= Ho = - f(‘) d 3 = z ) (2)
4) gives6 < 1, and hencer. will show deviation from the 2b S 2NB* 7

SSS predictions for alN.

The purpose of this paper is twofold. (i) The theory based
on the WF formalism and simulations show the closure time 322D
Twr ~ [REJID: ~ N2 (v & 3/5 for self-avoiding walk anat fot) = —— 21 (1) + 7,(1) A3)
= 1/2 for the Rouse chain), whei®; is a diffusion constant. Nb?
We show that the WF result for Rouse chaimgg, can be . .
obtained within the SSS framework provided an effective @n be solved mdependeptly. The solutllons naturally reveal the
diffusion constant that accounts for the relaxation dynamics of t|r2ne2 scale for global motions of the chairk = N°b?/3Do* ~
the ends of the chains is used instead of the monomer diffusionN07/Do. We note thatr is much larger than the relevant time
coefficient Do. Thus, the simplicity of the SSS approach can Scale for internal motions of the monomers:~ b?/Do for large
be preserved while recovering the expected scaling Aesfolt N. Equation 3 can be solved dllrectly, and the fluctuations in
the dependence af, on N. (i) The use of the Rouse model ~the end-to-end distandR.. are given by
may be appropriate for polymers or polypeptide chains &ear N2 o
conditions. In both good and poor solvents, interactions between 2 IRA] Ll P T
monomers determine the statics and dynamics of the polymer [BR.LOC= 16N’ sz( )(1 € ) @)
chains. The chain will swell in good solvenis¥ 3/5), whereas

in poor solvents, polymers and polypeptide chains adopt \yiih I]SRie(t)Dz Redt) — Red0)]2 The details of the

compact globular conformations. In these situations, interactions .5|culation leading to eq 4 are given in Appendix B. If we define
between the monomers or the amino acid residues affect an effective diffusion constant using

The monomermonomer interaction energy scadg;, leading
to the chain adopting a swollen or globular conformation, EcBRze(t)D

influences both’ and the chain relaxation dynamics and hence D(t) = — = (5)
affectst.. Because analytic theory in this situation is difficult, 6t
we provide simulation results fat as a function ot ; and for
10 < N =< 100.

The equation of motion for each mode

nodd n4r[4

thenD(0) = 2Dy, as is expected for the short time liit® On
time scales on the order of, we find D(zr) ~ Do/N, which is
identical to the diffusion constant for the center of mass of the
chain®* This is the expected result for the diffusion constant
for global chain motion.

The Rouse chain consists bf beads, with two successive 2.2. The Effective Diffusion Constant.The theory of Szabo,
beads connected by a harmonic potential that keeps them at arSchulten, and SchultéSSS) determines the loop closure time
average separatiob (the Kuhn length). Contact formation by replacing the difficult polymer problem, having many degrees
between the chain ends can occur only if fluctuations result in of freedom, with a single particle diffusing in a potential of

2. Derivation of rwr for the Rouse Model Using the SSS
Approximation
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mean force. With this approximatiomns, which can be related  chain and not simply the lowest one. Noting thaitg ~ N™*
to the probability that the contact is not formed (see Appendix < 1 for largeN, we can convert the sum in eq 4 into an integral
C for more details), becomes

»  sinf(bx//3Dgt
1 b 1 ND o 1 @Rgemz—*/é N2 . dxg(l— ey (10
To=" [, dr ([ drP(r)* + (6) 7 0 v

NJa D(r)P(r) /T kN P(a)
where loop closure occurs wheRed = a, the closure (or ~ 8b % (11)
capture) radius, with rate, P(r) is the equilibrium end-to-end T
distribution of the chain, and In particular, fort ~ red2 = NE/12D,

Nb
N= dr P(r) 8D 16D
S ~—2 24 O(N (12)

D ~
. . . . . . ¢ JNn 3N
In this paper, we will consider only a chemically irreversible
process, with the binding rate constaniof- «. Inthe case of e expect these coefficients to be accurate to a constant on

the noninteracting Gaussian chal(r) ~ r’exp(-3r/2Nb?). the order of unity. The effective diffusion constabg. takes
If D(r) ~ Do is a constant, it is simple to shdwhat, for large  the higher-order modes of the chain into account and should
N, the loop closure time is capture the essential physics of the loop closure. In other words,
2.3 on the time scal@ee resulting inDee ~ N~(2), the monomers
Togs™ 1 \/EM (7 at the chain ends are within a volume o83, so that contact
3V 6 Dy formation is possible.

SubstitutingDee into eq 7 gives

The scaling ofrssswith N given in eq 7 disagrees with other
theoried” and numerous simulatioffs3! that predictr, ~ N2 NE
for Nb2 > a? anda > b. It has been noté833that the SSS T ™ WIN Twr (13)
theory may be a lower bound on the loop closure time for a 0
freely draining Gaussian chain, and that an effective diffusion
coefficient that is smaller thaDy is required to fit the
simulated® and experiment&t data usingrsss Physically, the
use of a smaller diffusion constant is needed because contac
formation requires fluctuations that brifiged Within the capture
radiusa, a mechanism in whichee plays a crucial role.

As noted by Dof the relevant time scale for loop closure is
not simply the global relaxation time. The fluctuationsRge
are given not only by the longest relaxation time but also from
important contributions that arise from higher modes. This gives
rise to the differences between the Harmonic Spring and Rouse
models®2°In the Harmonic Spring model, the chain is replaced
with only one spring which connects the two ends of the chain. c
The spring constant is chosen to reproduce the end-to-endfr
distribution function. The higher-order modes give rise to excess dynamics simulations. We model the connectivity of the chain
fluctuations inRZ[Jon a scale of~0.4/Nb = R, and their using the Hamiltonian
inclusion is necessary to fully capture the physics of loop

in the limit of largeN. Thus, within the SSS approximation,
theN? dependence af. may be obtained, provided the effective
diffusion constantDee is used. The importance of using a
biffusion constant that takes relaxation dynamicsRet into
account has also been stressed by Portthdine closure time

in eq 13 depends on the capture radiustas which disagrees
with the a-independent prediction of D&iln addition, eq 13
does not account for the possibility af ~ N%, with 1.5 < o

< 2, as observed with simulations by Pastor ealhen the
capture radius ia < b. Both of these discrepancies are discussed
in the next section by using insights garnered from simulations.
2.3. Simulations of Loop Closure Time for Freely Jointed
hains. In order to measur.dt) andz. for a noninteracting
eely jointed chain, we have performed extensive Brownian

closure. In the approximation of a particle diffusing in an kg N [rivq — 1il\2
effective potential (as in the SSS theory), this time scale is pH=— - (14)
simple to determine. If we consider only tlhecomponent of 2 & bo

Ree We can treat it as a particle diffusing in a potentighk(Ry) . _ .
= 3RY/2NB?2 — O(1), with diffusion constanD = 2Dy. In this with bo = 0-382”2 and a spring constantkaf= 100. We note
case. we find that [{ri+1 — ri)?32~ 0.39 nm for this Hamiltonian, which we

take as the Kuhn length when fitting the data. For largh,

the differences between the FJC and Rouse models are not
relevant, and hence, the scaling @f with N for these two
models should be identical. The microscopic diffusion coef-
and [R3{t)0= 3Rt giving the natural end-to-end relax- ficient was taken aB, = 0.77 nn#/ns. The equations of motion

PR = % NEA(1 — &V ®)

ation timezee = NI¥/6D,. Because we have evaluatad using in the overdamped limit were integrated using the Brownian
diffusion in an effective potential, the dependencegfon N dynamics algorithni® with a time step ofAt = 1074 ns. The
should be viewed as a mean field approximation. end-to-end distributiorP(r) is easily computed for the model

We can determine the effective diffusion constant on the time in eq 14, giving the expression for large
scaletee Which includes the relaxation dRedt) at the mean

- . . . . . —13oP/k2
field level. We define the effective diffusion constant as P(r) = 2r f dq gsin(@r) e «
) 0 bya(1 + ky
D _ | |-_CBRe(-:(t)D 9 N—-1
e~ 1M o ©) [bq cosbyg) + k. sinbed)] | (15)

with @Rge(t)lilin eq 4, which includes all of the modes of the which must be numerically integrated.
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Figure 2. Sketch of the two-stage mechanism for loop closure for
Rouse chains whema < b. Although unphysical, this case is of
. theoretical interest. In the first stage, fluctuationsRig result in the
ends approachingRed = b. The search of the monomers within a
volume ofb® (>a%), which is rate limiting, leads to a contact in the
1 second stage.
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of Doi's® predicted scaling of. ~ N2a°. This departure from

102 b . the predictions of eq 13 suggests that the one-dimensional mean
field approximation, which gives rise to tteedependence of

7., breaks down. Even our modified theory, which attempts to
include fluctuations irRec 0N a mean field level leading ¢
cannot accurately represent the polymer as a diffusive process
with a single degree of freedom for larte In this regime, the
many degrees of freedom of the polymer must be explicitly
taken into account, making the WF the®rpore appropriate.

a < b: The conditiona < b is nonphysical for a freely jointed
chain with excluded volume and certainly not relevant for
realistic flexible chains, in which an excluded volume interaction
between monomers would prevent the approach of the chain
ends to distances less than(Note that for wormlike chains,
with the statistical segmeri, > b, the equivalent closure
conditiona < I, is physically realistic. The effect of chain
stiffness, which has been treated elsewliéris, beyond the
scope of this article.) In this case (Figure 1B), we find~
N%, with 1.5 < a, < 2, in agreement with the simulation results

N of Pastor et af® In deriving Dee We assumed, as did Ddthat
Figure 1. Dependence of. on N for various values of. The symbols the relaxation of the end-to-end vector is rate limiting. Once
correspond to different values of the capture radius. (A) The values of IRed ~ R ~ 0.4 «/Nb, we expect the faster internal motions of

alb are 1.00 {), 1.23 (x), 1.84 (*), 2.76 (), 3.68 (v), and 5.52 ¢). o . .
The lines are obtained Using eq 6 with— e. The diffusion constant the chain will search the conformational space rapidly, so that

in eq 6 is obtained using = R%(red2)/3red] with BR2()Cgiven  Tc 1S dominated by the slower, global motions of the chain (i.e.,
in eq 10. (B) The values /b are 0.10 {), 0.25 (x), 0.50 (*), and it is diffusion limited). This assumption breaks dowrsif< b
1.00 (A). The lines are the theoretical predictions using eq 17. The because the endpoints must search longer for each other using
poor fit using eq 13 witha = 0.1b (solid line) shows that the two-  the rapid internal motions on a time scalebdMy. In the limit
stage mec_hanism has to be iIf1C|UdEd t_o_obtain accu_rate valmgs of of small a, the memory of the relaxation of the ends of the
The effective exponent,, obtained by fittingzc ~ N%, is shown in chain is completely lost. Our derivation 8% using a mean
parentheses. field approach, cannot accurately describe the finer details when
the endpoints search for each other over very small length scales,
and hence, our theory must be modified in this regime.

We view the loop closure for small (<b) as a two-step
process (Figure 2), with the first being a reductionfad ~
b. The first stage is well-modeled by our modified SSS theory
(see Figure 1A) using the effective diffusion coefficient in eq
12. The second stage involves a search for the two ends within
a radius ofb, so that contact can occur wheneyRed = a <
b. The large-scale relaxations of the chain are not relevant in
this regime. We therefore introduce a scale-dependent diffusion
coefficient
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In our simulations, we computed the mean first passage time
directly. We generated the initial conditions by Monte Carlo
equilibration. Starting from each equilibrated initial configura-
tion, the equations of motion were integrated uifld < a
for the first time, with the first passage time computed for
multiple values ofN and a. The loop closure time. was
identified with the mean first passage time, obtained by
averaging over 400 independent trajectories. For comparison
with the analytic theory, we calculated the modified SSS first
passage time, witR(r) given in eq 15 an®ee given in eq 12.
The results are shown in Figure 1. We find that the behavior of
7. depends strongly on the ratagb.

a= h: ForN < 100 anda = b, we find that the modified D.dX) %{
SSS theory using the effective diffusion constBatin eq 12
gives an excellent fit to the data as a function of bNtanda
(Figure 1A). Thus, modeling the loop closure process as a one-

8Dy/vVNz X > b

2D,  x<b (16)

Substitution of eq 16 into eq 6 witR(r) given by eq 15 yields,

dimensional diffusive process in a potential of mean force is fora < b,

appropriate as long as a diffusion coefficient that takes the 22 3202

dynamics of the chain ends into account is used. 7(a) ~ N'b'z + N0 (b — a) v (17)
ForN z 100 anda = b, we notice significant deviations in 246D, 6v6 Dya

the data from the theoretical curves. The data points appear to
converge as is varied for largeN, suggesting the emergence In Figure 1B, we compare the predictions of eq 17 for the
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closure time to the simulated data o b. The fit is excellent,
showing that the simple scale-dependent diffusion coefficient

(eq 16), which captures the two-stage mechanism of cyclization

whena < b, accurately describes the physics of loop closure
for small a. By equating the two terms in eq 17, we predict
that theN®2 scaling will begin to emerge whel < 16b%(a/b
— 1)%a%z. This upper bound orN is consistent with the
predictions of Chen et &/

An alternate, but equivalent, description of the process of
loop formation for smalk can also be given. After the endpoints
are within a sphere of radius, chain fluctuations will drive

them in and out of the sphere many times before contact is
established. This allows us to describe the search process using

an effective rate constarts, schematically shown in Figure
2. For smalla, the loop closure (a search within radiby
becomes effectively rate-limited as opposed to diffusion-
limited®> contact formation. The search will be successful, in
the SSS formalism, on a time scale of

1 fb dr
2D, a P(r)

Tp—a ™~ (18)

(f" dr P(r)y?
with

: =fabdr P(r)

Again, we have takerD = 2D, for r < b, because loop

formation in this regime is dominated by the fast fluctuations

of the monomers, which occurs on the time scaleXD,. For

a~ b, 7,5 & (@ — b)%6Do, whereasp -, ~ b¥6aDy asa —

0. Thet,-5 can be used to define the effective rate constant

keff O (b — a)/tp—a. This can be substituted into eq 6, and gives

the approximate loop closure time as—~ 0

3/2.3

1 0 N*b

KoV P(D)

7(8) — 7(b) ~ (19)

reproducing the same scaling for smalas that in eq 17.

The two-stage mechanism for the cyclization kineticsdfitr
< 1 is reminiscent of the two-state kinetic mechanism used to
analyze experimental data. The parametgris analogous to
the reaction-limited raté® If the search rate within the capture
region given bykes is small, then we expect the exponent<
2. Indeed, the experiments of Buscaglia et al. suggestothat
changes from 2 (diffusion-limited) to 1.65 (reaction-limited).
Our simulation results show the same behawipr= 2 for a/b
> 1, which corresponds to a diffusion-limited process, and
~ 1.65 fora/b = 0.1, in which the search withia/b < 1
becomes rate limiting.

3. Loop Closure for Polymers in Good and Poor Solvents
The kinetics of loop closure can change dramatically when

J. Phys. Chem. &
| L IFiga — il — b)2 20)
og|l—|——
Ro

models the chain connectivity, with= 22.2T andb = 0.38

nm. The choiceRy = 2b/3 (diverging at|ri+1 — ri| = b/3 or

5b/3) allowed for a larger time step than that when u%irigy

= b/2, and increased the efficiency of conformational sampling.

The interactions between monomers are modeled using the
N-2 N

Lennard-Jones potential
12 6
=€ Z Z - 2
iI=1j=i IJ IJ

with rj = r; — rj. The Lennard-Jones interaction between the
covalently bonded beads and ri+; is neglected to avoid
excessive repulsive forces. The second virial coefficient, defining
the solvent quality, is given approximately by

N

Hegne= —

(21)

vyley) = [ dr[1 — exp—pH_(1))]

with 8 = 1/kgT. In a good solvent, > 0, while in a poor solvent

v2 < 0. A plot of v, as a function ofe ; given in Figure 3A
shows that, > 0 whenfe ; < 0.3 andwv, < 0 if fey > 0.3.

In what follows, we will refer tofe.; = 0.4 as weakly
hydrophobic andBe ; = 1.0 as strongly hydrophobic. The
classification of the solvent quality based on eq 22 is ap-
proximate. The precise determination of #Bepoint (v, ~ 0)
requires the computation af, for the entire chain. For our
purposes, this approximate demarcation between ¢gépdnd
poor solvents based on eq 22 suffices.

To fully understand the effect of solvent quality on the
cyclization time, we performed Brownian dynamics simulations
for BeLy; = i/10, with 1 < i < 10. In our simulationsN was
varied from 7 to 300 for each value af;, with a fixed capture
radius ofa = 2b = 0.76 nm. The loop closure time was
identified with the mean first passage time. The dynamics for
each trajectory was followed until the two ends were within
the capture radiua. Averaging the first passage times over 400
independent trajectories yielded the mean first passage time.
The chains were initially equilibrated using parallel tempering
(replica exchange) Monte Caffto ensure proper equilibration,
with each replica pertaining to one value«f. In Figure 3B,
we show the scaling of the radius of gyratlcERZD as a
function of N. We find [RZ/ 1~ N for the good soIvent and

eeD~ N for the © solvent e, ; = 0.3). In poor solventsfeL;
> 0.3), the largeN scaling of (R2/1~ N2? is not observed for
the values ofN used in our simulations. Similar deviations from
the expected scaling dﬂgeﬂwith N have been observed by
Rissanou et & for short chains in a poor solvent. Simulations
using much longer chaindN(z 5000) may be required to
observe the expected scaling exponent of 2/3.

(22)

interactions between monomers are taken into account. In good Brownian dynamics simulations witDy = 0.77 nni/ns

solvents, in which excluded volume interactions between the
monomers dominate, it is suspected that only the scaling
exponent in the dependence ©fon N changes compared to
Rouse chains. However, relatively little is known about the
kinetics of loop closure in poor solvents in which enthalpic
effects, which drive collapse of the chain, dominate over chain
entropy. Because analytic work is difficult when monomer

(=ksT/6mtb, wWith = 1.5 cP) were performed to determine
7. The loop closure time for the chains in varying solvent
conditions is shown in Figure 4A and B. The solvent quality
drastically changes the loop closure time. The valueg 6br
the good solventfe ; = 0.1) are nearly 3 orders of magnitude
larger than those in the case of the strong hydrophgBbg &
1.0) for N = 80 (Figure 4A). ForN in the range of 2630,

monomer interactions become relevant, we resort to simulationswhich are typically used in experiments on tertiary contact

to provide insights into the loop closure dynamics.
3.1. Simulation of Cyclization Times.The Hamiltonian used
in our simulations iH = Hrene + Hig, Where

formation in polypeptide chains, the valuewfis about 20 ns
in good solvents, whereas in poor solventds only about 0.3
ns. The results are vividly illustrated in Figure 4B, which shows
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Figure 3. (A) Second virial coefficient as a function ef; from eq
22. The classification of solvent quality based on the values afe
shown. (B) The variation ot'leDWith N for different values ofeL,.

The value offle.; increases from 0.1 to 1.0 (in the direction of the
arrow).

7c as a function ok for variousN values. The differences in
7c are less pronounced Bkdecreases (Figure 4B). The absolute
value ofz. for N ~ 20 is an order of magnitude less than that
obtained forr. in polypeptides® There could be two interrelated
reasons for this discrepancy. The value @, an effective
diffusion constant in the SSS theory, extracted from experi-
mental data and simulat&{Reg is about an order of magnitude
less than theéDg in our paper. Second, Buscaglia efalsed
the WLC model with excluded volume interactions, whereas
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Figure 4. (A) Loop closure time as a function df for varying solvent
quality. The values ofie.; increase from 0.1 to 1.0 from top to bottom,
as in Figure 3A. (B). as a function ok, ;, which is a measure of the
solvent quality. The values & are shown with various symbols. (C)
Variation of the scaling exponent of ~ N* as a function of_,.

thorg®2235 we can fit the initial slopes of the curves to

our model does not take into account the effect of bending determine an effective exponeat (Figure 4C), that isz. ~

rigidity. Indeed, we had shown in an earlier stétithat chain
stiffness increases. Despite these reservations, our values of
7. can be made to agree better with experiments uging 5

cP? and a slightly larger value df Because it is not our purpose
to quantitatively analyze cyclization kinetics in polypeptide
chains, we did not perform such a comparison.

We also find that the solvent quality significantly changes
the scaling ofr ~ N%, as shown in Figure 4C. For the range
of N considered in our simulations; does not appear to vary
as a simple power law iN (much IikelRéD see Figure 3B) for
PeLs > 0.3. The values of. in poor solvents shows increasing
curvature as\ increases. However, if we insist that a simple
power law describes the data then for the smaller rangg of
from 7 to 32 (consistent with the methods of other au-

7oN%. In the absence of sound analytical theory, the extracted
values ofa, should be viewed as an effective exponent. We
anticipate that, much like the scaling laws faR20) the final
largeN scaling exponent for; will only emerge foﬁ% N = 5000,
which is too large for accurate simulations. However, with the
assumption of a simple power law behavior for smsjlwe

find that the scaling exponent precipitously drops fram~

2.4 in the good solvent to 1.0 in the poor solvent. Our estimate
of a, in good solvents is in agreement with the prediction of
Debnath and Cherayi(a, ~ 2.3—2.4) or Thirumala#® (o, ~

2.4) and is fairly close to the value obtained in previous
simulations?! (o, &~ 2.2). The difference in the scaling exponent
between the present and previous s#idyay be related to the
choice of the Hamiltonian in the simulations. Podtelezhnikov
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and Vologodskii! used a harmonic repulsion between mono-
mers to represent the impenetrability of the chain and &bk

< 1 in their simulations. Scaling arguments predigt= 2.2
for a sufficiently long chain in good solvent (see appendix A),
suggesting that our value of, ~ 2.4 may be due to finite size
effects.

In contrast to the good solvent case, our estimate.,0fn
poor solvents is significantly lower than the predictions of
Debnath and Cherayilwho suggested., ~ 1.6—1.7 based on
a modification of the WF formalisri.However, fluorescence
experiments on multiple repeats of the possibly weakly hydro-
phobic glycine and serine residues ig@have found, ~ N-36
for short chain® andz, ~ N%for longer chaind®in qualitative
agreement with our simulation results. Bending stiffd&¥sand
hydrodynamic interactions may make direct comparison between
these experiments and our results difficult. The qualitative

agreement between simulations and experiments on polypeptide
chains suggests that interactions between monomers are mort

important than hydrodynamic interactions, which are screened.
3.2. Mechanisms of Loop Closure in Poor SolventsThe

dramatically smaller loop closure times in poor solvents than

those in good solvents (especially fdr> 20; see Figure 4B)

requires an explanation. In poor solvents, the chain adopts a

globular conformation with the monomer densityot ~ O(1),
wherep ~ N/R. We expect the motions of the monomers to
be suppressed in the dense, compact globule. For Nyrgdaen
entanglement effects may dominate, it could be argued that in
order for the initially spatially separated chain enfi.{/a >

1) to meet, contacts between the monomer ends with their
neighbors must be broken. Such unfavorable events might
require overcoming enthalpic barriers Q x €3, whereQ is

the average number of contacts for a bead in the interior of the
globule), which would increase.. Alternatively, if the ends
search for each other using a diffusive, reptation-like mechanism
without having to dramatically alter the global shape of the
collapsed globuler. might decrease as; increases (i.e., as
the globule becomes more compact). It is then of interest to
ask whether looping events are preceded by global conforma-
tional changes, with a large-scale expansion of the polymer that
allows the endpoints to search the volume more freely, or if
the endpoints search for each other in a highly compact, but
more restrictive, ensemble of conformations.

In order to understand the mechanism of looping in poor
solvents, we analyze in detail the end-to-end distaiRegt)|
and the radius of gyratiofRg(t)| for two trajectories (withBeL;
=1 andN = 100). One of the trajectories has a fast looping
time (t" ~ 0.003 ns), while the looping time in the other is
considerably slowerS ~ 4.75 ns). Additionally, we compute
the time-dependent variations of the coordination num®éy,
for each endpoint. We define two monomerandj to be in
“contact” if |ri — rj| = 1.23 (beyond which the interaction
energyE,; = — €.4/2) and definegQ;(t) andQn(t) to be the total
number of monomers in contact with monomers 1 awhd
respectively. We do not include nearest neighbors on the
backbone when computing the coordination number, and the
geometrical constraints give Q(t) < 11 for either endpoint.
With this definition, an endpoint on the surface of the globule
will have Q = 5. These quantities are shown in Figures 5 and 6.
The trajectory withzF (Figure 5) shows little variation in
either|Rg| or |Red. We find |[Red & |Rg|, suggesting that the
endpoints remain confined within the dense globular structure
throughout the looping process. This is also reflected in the
coordination numbers for both of the endpoints, with bQth
(t) and Qn(t) in the range of 5< Q(t) < 10 throughout the
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Figure 5. Mechanism of loop closure for a trajectory with a short
(~0.003 ns) first passage time. The values\odnd e ; are 100 and

1.0, respectively. (A) Plots ofRed and |Rgy| (scaled by the capture
radiusa) as a function of time. The structures of the globules near the
initial stage and upon contact formation between the ends are shown.
The end-to-end distance is in red. (B) The time-dependent changes in
the coordination numbers for the fir€d{(t)) and last Qn(t)) monomers
during the contact formation.

simulation. The endpoints in this trajectory, with the small loop
closure timer(f, always have a significant number of contacts
and traverse the interior of the globule when searching for each
other. Similarly, we also found that the trajectory with a long
first passage timerf (Figure 6) shows little variation ifRg
throughout the run. The end-to-end distance, however, shows
large fluctuations over time, an@R2[¥? = 2R Y2 until
closure. This suggests that, while the chain is in an overall
globular conformation (small, constaRy), the endpoints are
mainly found on the exterior of the globule. This conclusion is
again supported by the coordination number, v@(t) < 5 for
significant portions of the simulation. While the endpoints are
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Figure 6. Same as Figure 5, except the data are for a trajectory with a first passage time for contact formation that is about 4.7 ns. (A) Although
the values ofRg| are approximately constanRed fluctuates greatly. (B) Substantial variationsQa(t) andQn(t) are observed during the looping
dynamics, in which both ends spend a great deal of time on the surface of the globule.

less restricted by nearby contacts and able to fluctuate more,have a low coordination numbe®(< 5). These results suggest
they spend a much longer time searching for each other. Thus,that motions within the globule are far less restricted than one
it appears that the process of loop formation in poor solvents, might have thought, and loop formation will occur faster when

where enthalpic effects might be expected to dominaté&lfer the endpoints are within the globule than it would if the
100, occurs by a diffusive, reptation-like process. Entanglement endpoints were on the surface. The longer values afe found
effects are not significant in our simulations. if the initial separation of the endpoints is large, which is more

We note that trajectories in which the first passage time for likely if they are on the surface than if they are buried in the
looping is rapid (withed < 7. for trajectoryi) have at least one interior. The absence of any change [Rq(t)| in both the
endpoint with a high coordination numbép & 5) throughout trajectories, which represent the extreme limits in the first
the simulation. In contrast, for most slow-looping runs (with passage time for looping, clearly shows that contact formation
7 > 1¢), we observe long stretches of time where both endpoints in the globular phase is not an activated process. Thus, we
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Figure 7. (A) Distribution of end-to-end distances for a weakBg(; = 0.4) and stronglyfeL; = 1.0) hydrophobic chain. (B) Diffusion constant

Dedt) in units of Do for varying solvent quality. The diffusion constant is defined udngt) = Ileﬁ;t)IlBt. The values ok, are shown in the
inset.

surmise that looping in poor solvents occurs by a diffusive, dependent on the solvent quality for short chains. In Figure 7A,
reptation-like mechanism, provided entanglement effects are we plot the end-to-end distribution function for weak|§e(;
negligible. _ o S = 0.4) and strongly feL; = 1) hydrophobic polymer chains.

3.3. Separating the Equilibrium Distribution P(Reg) and The strongly hydrophobic chain is highly compact, with a
Diffusive Processes in Looping DynamicsThe results in the  sharply peaked distribution. The average end-to-end distance
previous section suggest a very general mechanism of loopis significantly lower than is the weakly hydrophobic case. While
closure for interacting chains. The process of contact formation the gistribution function is clearly strongly dependent on the
for a given trajectory depends on the initial separaftag and interactions, the diffusion coefficienD(t) is only weakly
the dynamlcs of the apprpach of the ends. Thus,hqu'q be dependent on the solvent quality (Figure 7B). The values of
determined by the distribution oP(Red (an equilibrium _ 2

P 7. , D(t) = ORZJI6t are only reduced by a factor of about 2

property) and an effective diffusion coefficied(t) (a dynamic between theeL, = 0.1 (good solvent, with a globally swollen
property). We have shown for the Rouse model that such aconfi uration) and théet, = 1.0 ( oor’solvent with a aloball
deconvolution into equilibrium and dynamical parts, which is | bgl f npew = 1.9p di Y | 9 y
in the spirit of the SSS approximation, is accurate in obtaining 9l0Pular configuration) on intermediate time scales. We note,
7. for a wide range oN and a/b. It turns out that a similar in fact, that the good solvent aifdl solvent cases have virtually

approach is applicable to interacting chains as well. identical diffusion coefficients throughout the simulations

The decomposition of looping mechanisms into a convolution (Figure 7B). This suggests that the increaserdr{Figure 4)
of equilibrium and dynamical parts explains the large differences between the Rouse chains and the good solvent chains is
in 7. as the solvent quality changes. We find, in fact, that the Primarily due to the broadening of the distributiB(Reg), that
equilibrium behavior of the endpoints dominates the process is, the significant increase in the average end-to-end distance
of loop formation, with the kinetic processes being only weakly in the good solvent casa?geDN N27, with v = 3/5.
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Because of the weak dependence of the diffusion coefficient (A) T ' T " T " '
on the solvent quality, the loop closure time is dominated 1.50+
primarily by the end-to-end distribution function. In other words,
the equilibrium distribution functiofP(Ree), to a large extent, 1.95
determinest.. To further illustrate these arguments, we find
that if we takeD ~ 2Dg in eq 6 and numerically integrate the
distribution function found in the simulations fodf = 100, 1.00
1(Ber; = 1.0) and t(Be; = 0.4) differ by 2 orders of &
magnitude, almost completely accounting for the large differ- 0.754
ences seen in Figure 4B between the two cases. Moreover, if )
the numerically computed values bft) for longt (t > 0.5 ns 1
in Figure 7, for example) are used fBee in eq 6, we obtain 0504 =
values of 7. that are in reasonably good agreement with i/

| bbbt |

[E

simulations. The use dDe. ensures that the dynamics of the |
entire chain is explicitly taken into account. These observations 0.25 ' - :
rationalize the use oP(Reg With a suitable choice 0Dge in 0.4 0.6 0.8 1.0
obtaining accurate results for flexible as well as stiff ch&ff$. N
BecauseP(Re9 can, in principle, be inferred from FRET
experiment$!42 the theory outlined here can be used to (B) o
quantitatively predict loop formation times. In addition, FRET 2.5+ : 7
experiments can also be used to assess the utility of polymer ] \ /=80
models in describing fluctuations in single-stranded nucleic acids :
and polypeptide chains. 2.0 E

3.4. Kinetics of Interior Loop Formation. We computed (W :
the kinetics of contact between beads that are in the chain™~5 '
interior as a function of solvent quality (Figure 8A) usiNg= P 1.6+ ; 4
32. The mean time for making a contact is computed using the & i \

same procedure as that used for cyclization kinetics. For .
simplicity, we only consider interior points that are centered 1.0 '"“‘w/\/“_. _____ 4
around the midpoint of the chain. The ratipwhich measures
the change in the time for interior loop formation relative to 1 solvents
cyclization kinetics, depends gfe; andI/N, wherel is the 0.5 . ; . . _
separation between the beads (Figure 8A). The nonmonotonic 0.0 0.2 0.4 0.6 0.8 1.0
dependence af onl in good solvents further shows thatlés
decreases to about 016~ 1. The maximum im atl/N ~ 0.9 ﬂé‘
decreases g8\ increases. In the poorest solvents considered
(BeLs = 0.8), we observe that only decreases monotonically Figure 8 (A) The ratior; = _nhrC as a function of interior length
with decreasing/N. Interestingly, in poor solvents; can be lHere’T' is the contact formation time for beads that are separated by

; L . L . . monomers;; is nonmonotonic for weakly hydrophobic chains but
g‘ﬁggtesssbggngﬁ'&;g;'?: 'zhmepl(l:?ia itg?rgtlglriso?etﬁfr: g)ef‘;tea:ri'stpqigcreases monotonically within the poorest solvents. The observed

axima occur neaN = 0.9. (B) For loop length = 80, the ratio

ends. This prediction can be verified in polypeptide chains in 7,_gy/7. as a function offe; for(a)chain wit?] twc?linkers (each of 20
the presence of inert crowding agents that should decrease théeads) that are attached to beads 20 and 100. In good solvents, the
solvent quality. Just as in cyclization kinetics, interior loop interior loop closure kinetics is about 2.5 times slower than the end-
formation also depends on the interplay between internal chainitg'\?i?td ol?e%"”tg.:fhi Sr?meblofp 'e:%t]h' Itn poor solvents, however, there
diffusion that gets slower as the solvent quality decreases and ually no ditlerence between the two.

equilibrium distribution (which gets narrower) of the distance the Rouse chain); reduces to about half @eein good and

between the ComaCtmg bea(.js. i . © solvents, whereas the two are very similar in poor solvents.
We also performed simulations for= 80 by firstcomputing  The changes in the diffusion coefficient together with the

the time for cyclizationz:". In another set of simulations, two  equilibrium distance distribution explains the behavior in Figure
flexible linkers, each containing 20 beads, were attached to thegp.

ends of theN = 80 chain. For the resulting longer chain, we
calculatedr for | = 80 as a function ofe_ ;. Such a calculation

is relevant in the context of single-molecule experiments in
which the properties of a biomolecule (RNA) is inferred by A theoretical description of contact formation between the
attaching linkers with varying polymer characteristics. It is chain endpoints is difficult because of the many-body nature
important to choose the linker characteristics that minimally of the dynamics of a polymer. Even for the simple case of
affect the dynamic properties of the molecule of interest. The cyclization kinetics in Rouse chains, accurate resultsfare
ratio u:go/rfo depends orpe; and changes from 2.6 (good difficult to obtain for all values ofN, a, andb. The present
solvents) to 2.0 under th® condition and becomes unity in  work confirms that, for largé\ anda/b > 1, the looping time
poor solvents (Figure 8B). Analysis of the dependence of the must scale abP, a result that was obtained some time ago using
diffusion coefficients of interior-to-interior vectdd; (i = 20 the WF formalisn?> Here, we have derived, ~ N? (for N >
andj = 100) and end-to-end vector (of the original chain without 1 anda = b) by including the full internal chain dynamics within
linkers) Dee 0N solvent conditions indicates that on the time the simple and elegant SSS thebiye have shown that, fa
scales relevant to the loop closure time (analogous.gdor < 100 and especially in the (unphysical) lirafb < 1, the loop

4., Conclusions
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closure time i ~ toN%, with 1.5 < a; < 2. In this limit, our dynamics difficult to describe theoretically. A clear picture of
simulations show that loop closure occurs in two stages with the physics is obtained only when one considers all possible
vastly differing time scales. By incorporating these processes ranges of the parameters entering the loop closure time equation.
into a scale-dependent diffusion coefficient, we obtain an To this end, we have explored wide ranges of conceivable
expression for; that accurately fits the simulation data. The parameters, namely, the chain lendthcapture radiug, and
resulting expression for; for a < b (eq 17) contains both the  conditions of the solvents expressed in termsepf By
N32 and N2 limits, as was suggested by Pastor effal. combining analytic theory and simulations, we have shown that,

The values ofz. for all N change dramatically when for a givenN, the looping dynamics in all solvent conditions is
interactions between monomers are taken into account. In goodprimarily determined by the initial separation of the endpoints.
solvents,tc ~ 7oN% (a; ~ 2.4) in the range oN used in the The many-body nature of the diffusive process is embodied in
simulations. Our exponent; is in reasonable agreement with  D(t), which does not vary significantly éschanges for a fixed
earlier theoretical estimatés$® Polypeptide chains in high  N. Finally, the dramatic change in. asl increases suggests
denaturant concentrations may be modeled as flexible chainsthat it may be also necessary to include hydrodynamic interac-
in good solvents. From this perspective, the simple scaling law tions, which may decrease further, to more accurately obtain
can be used to fit the experimental data on loop formation in the loop closure times.
the presence of denaturants using physical values.ddnly
whenN is relatively small N ~ 4) will chain stiffness play a Acknowledgment. This work was supported, in part, by a
role in controlling loop closure times. Indeed, experiments show grant from the National Science Foundation through Grant
thatz. increases for shol (see Figure 3 in ref 15) and deviates Number NSF CHE 05-14056.
from the power law behavior given in eq 7 for &l| which is
surely dl_Je to t_he importance 01_‘ bending rigidity. _ 5. Appendix A

The simulation results for. in poor solvents show rich
behavior that reflects the extent to which the quality of the  Friedman and O’Shaughne43(FO) generalized the concept
solvent is poor. The poorness of the solvent can be expressedf the exploration of space suggested by de Gefirtesthe

in terms of cyclization reaction of polymer chains. The arguments given
by de Gennes and FO succinctly reveal the conditions under
€L~ €.4(0) which local equilibrium is appropriate in terms of properties of
A= BTN (23) the polymer chains.

First, de Gennes introduced the notion of compact and
noncompact exploration of space associated with a bimolecular
reaction involving polymers. Tertiary contact formation is a
particular example of such a process. Consider the relative
position between two reactants on a lattice with the lattice
spacinga. The two reactants explore the available conforma-
tional space until their relative distance becomes less than the
reaction radius. One can define two quantities relevant to the
volume spanned prior to the reaction. One comes from the actual
number of jumps on the lattice definedj&3, which is directly
proportional tot. If the jump is performed in a@-dimensional
lattice, the actual volume explored would &%(t). The other
guantity comes from the root-mean-square distance(t)f~
tU is the root-mean-square distance for one-dimensitt), is
the net volume explored. The comparison between these two
volumes defines the compactness in the exploration of the space.
(i) The cased(t) > adj(t) corresponds to noncompact exploration
of the spaceuyd > 1). (i) The regimexd(t) < adj(t) represents
compact exploration of the spaced(< 1). Depending on the
dimensionality, the exploration of space by the reactive pair in
Mhe bimolecular reaction is categorized either into noncompact
(d = 3) or into compactd = 1) exploration. In the case of
noncompact exploration, the bimolecular reaction takes place
infrequently, so that the local equilibrium in solution is easily
reached. The reaction rate is simply proportional to the
probability that the reactive pair is within the reaction radius,
so thatk ~ pe(r < ro), which eventually leads tk = 470D,
the well-known steady-state diffusion-controlled rate coefficient.

where the® solvent interaction strengtfie s(®) ~ 0.3 is
determined from, ~ 0 (Figure 3). Loop closure times decrease
dramatically ad increases. For examplg,decreases by a factor

of about 100 forN = 80 asA increases from 0 to 2.3. In this
range ofN, a power law fit ofr; with N (7 ~ N%) shows that

the exponenty, depends ofl. Analysis of the trajectories that
monitor loop closure shows that contact between each end of
the chains is established by mutual, reptation-like motion within
the dense, compact globular phase.

The large variations of. asA changes suggest that there
should be significant dependence of the loop formation rates
on the sequence in polypeptide chains. In particular, our results
suggest that as the number of hydrophobic residues increase
7. should decrease. Similarly, as the number of charged or polar
residues increase, the effective persistence lenghafd
interactions can be altered, which in turn could increase
Larger variations irr., due to its dependence ¢nandN, can
be achieved most easily in single-stranded RNA and DNA.
These arguments neglect sequence effects, which are also likel
to be important. The results in Figure 4B may also be
reminiscent of “hydrophobic collapse” in proteins, especially
as/l becomes large. For largeand longN, it is likely that 7.
correlates well with time scales for collapse. This scenario is
already reflected ifP(Red (see Figure 7A). It may be possible
to discern the predictions in Figure 4B by varying the solvent
quality for polypeptides. A combination of denaturants (makes
the solvent qual@ty good) an.d PEG (makes it poor) can be usedIt can be shown thdt ~ tu4-1in the case of compact exploration.
to measuredr. in polypeptide chains. We expect that the A
measured; should be qualitatively similar to the findings in In the context of polymer cyclization, the compactness of
Figure 4B. the exploration of space can be a_ssessed using the exr_ﬁ)nent

= (d + g)/z, whereg is the correlation hole exponent ands

The physics of loop closure for small and intermediate chain - .
PRy P the dynamic exponent, such that- t1z Since>46

lengths N < 300) is rather complicated due to contributions
from various time and length scales (global relaxation and
internal motions of the chains). The contributions from these lim peq(r) L (L)g
sources are often comparable, making the process of looping r—0 RIR
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whereR = Ree The cyclization rate can be approximatedkoy 225 —_—y
~ (d/dt) fdrpeqr), and it follows thatk ~ (d/dt)(r/R)%"9. The s . .
relationsr ~ t12 and R ~ 7 lead tok ~ (L/7)(t/r)(¢9/-1 2.00 Simulation data
wherer is the characteristic relaxation time. C.M. avarage
(1) If 6 > 1, then the_ cycli_zation rate is given ty~ peq(_r —_ 1.75 Analytic average
=r9) ~ (LRHf(r/R). which, withR ~ N, leads to the scaling (]
relation % 1.50
1]
o™ )
T ™~ NY(@9 (24) K 455
v )
(2) If & < 1, the compact exploration of conformations 1.00-
occurs between the chain ends. As a result, the internal modes ]
are not in local equilibrium. In this case, ~ 7r ~ R?, where 0.754
z = 2 + (1) is the dynamic exponent for free-draining ]
case andz = d when hydrodynamic interactions are in- 00 02 04 06 08 10 12 14
cluded3+45 Therefore, the scaling law for the cyclization rate
is given by t (ns)
Figure 9. Measured diffusion coefficient as a function of time for the
7.~ N (25) Rouse chain wittN = 19 andb = 0.39 nm. Symbols are the simulation

data, the dashed line (analytic average) is obtained using eqs 29 and 5
(with best fit of b ~ 0.26 nm), and the solid line is the center-of-mass

The inference about the validity of local equilibrium, based on average derived using eqs 4 and 5 (with best fibaf 0.41 nm).

0, is extremely useful in obtaining the scaling laws for polymer
cyclization, egs 24 and 25. Extensive Brownian dynamics .gjculation of @Rze(t)D with Redt) = r(N) — r(0p) as
simulation by Rey et @ have established the validity of these  yatermined from e‘a 1 gives
scaling laws. The expected scaling laws for three different
polymer models are discussed below. 1 L

Free-Draining Gaussian Chain  =3,g=0,z=4,v = DRt 0= 16Nb” Z — Q- (29)
(1/2)); 6 = 3/4 < 1. Becausef < 1, the local equilibrium n'odd N
approximation is not valid for a “long” free-draining Gaussian . . .
chain or, equivalently, the Rouse model. Accordingly, we expect We will refer to this result as the standard analytic average.

e ~ N2 for the Rouse chain foX > 1. However, ifN is small However, the nonphysical boundary conditions imposed on the
and the local equilibrium is established among the internal Rousecontinuum representation, with/os = 0 at the endpoints, will
modes so that. > g, the scaling relation change from ~ strongly affect the accuracy of this result.

N2 to ~ N%, with o, < 2. The simulations shown here and To minimize the effect of the boundary conditions on

elsewherd and the theory by Sokol6explicitly demonstrate ~ verages involving the end-to-end distance, we compute aver-
thata, can be less than 2 for small In this sense, the looping ~ 29es with respect to the differences between the centers of mass
time of the free-draining Gaussian chain of finite size is bound Of the first and last bonds using
by?33 7555 < 7c < TWF. N 1

Free-Draining Gaussian Chain with Excluded Volume Red) ~ [, dsr(st) — [ dsr(st) (30)
(d=3,9=(y — 1)lv =5/18,z= 11/3,v = 3/5); = 59/66
< 1. From eq 25, it follows thate ~ N?2 This polymer  We will refer to this as the center of mass average. Using this
model has been extensively studied using Brownian dynam- representationdR2(t)Cis given in eq 4.
ics simulation, and the value of the scaling exponent 2.2 e fit the time-dependent diffusion coefficent (defined in
has been confirmed by Vologodskii.The value of the ex- eq 5), measured in simulations with= 19 andb = 0.39, using
ponent (2.2) is also consistent with previous theoretical predic- poth the standard analytic average (eq 29) and the center of

tions?3 . o mass average (eq 4), with the Kuhn lengttaken as a fitting
Gaussian Chain with Excluded Volume and Hydrody- parameter for both average techniques. The results are shown
namic Interactions (d = 3,9 = 5/18,z= 3, v = 3/5); 0 = in Figure 9. The center of mass average, which fits the data

59/54 > 1. Since § > 1, the local equilibrium approxi-  quite well, has a best fit ob = 0.41 (a difference of 5%),
mation is expected to hold. This polymer model corresponds \yhereas the standard average does not give accurate results.

to the flexible polymer in a good solvent. The incorporation of For this reason, all averages involviRge are computed using
hydrodynamic interactions may assist the fast relaxation of the the center of mass theory.

rapid internal modes and changes the nature of the cyclization

dynamics from a compact to a noncompact one. The correct7. Appendix C
scaling law is predicted to be. ~ N0 Since the local
equilibrium approximation is correct, the first passage time
approach should give a correct estimate af only if the
effective potential of mean force acting on the two ends of the
chain is known.

The relation between the mean first passage tiraad the
probability Z(t) that at timet the system is still unreacted is
exact

r= [ S(t)dt (26)
6. Appendix B
In formulating the fluctuations of the end-to-end distance [OF @ny form ofZ(t) for which =(0) is finite and
vector, [OR5J] it is important to take into account the failings lim t2(t) = 0
of the continuum model of the freely jointed chain. A simple t—co
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Therefore, the stricter requirement tlt) ~ exp(t/t) in the
original SSS papéris not required.

We defineF(t), the flux (or density) of passage, &ft) =
—0Z(t)/ot. The mean first passage time is

v= [ tFOdt= [ t(—%?))dt =— [Ttd(t) (27)

Performing integration by parts gives
T =S5 + [ Zt)dt (28)

By definition, Z(t) must be finite, and henc&(t) = 0 att =
0. If Z(t) is such that it vanishes at— « faster thart=1, then

the first term in eq 28 vanishes, and we are left with eq 26.
Note that these are also necessary and sufficient conditions for38

7 in eq 26 to be finite.
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